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ABSTRACT. We give a new construction of uniformly convex norms with a power
type modulus on super-reflexive spaces based on the notion of dentability index.
Furthermore, we prove that if the Szlenk index of a Banach space is less than
or equal to w (first infinite ordinal) then there is an equivalent weak™ lower semi-
continuous positively homogeneous functional on X satisfying the uniform Kadec-
Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK*
renorming problems for LP(X) spaces and C(K) spaces for K scattered compact
space.

1. Introduction—notations. Throughout this paper, X will denote a real
Banach space, By its unit ball and X* its dual. We will first define the three slicing
" indices associated to X that we will study in this paper.

o Dentability index, §(X): Let C be a closed bounded subset of X. We call
a slice of C' any set § of the form § = {z € C: 2*(z) > a}, where z* belongs to X*
' and a is real.

' For ¢ >0, ¢! = {z € C such that any slice of C' containing  is of diameter > ¢}.

For an ordinal a, F¢ is defined inductively by:
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FO = By
Fett = (o),
F¢ = (| F? if ais alimit ordinal.

B<a
Then

6(X,e) = ﬁ inf{a: F* = @} if it exists
© otherwise

And 6(X) = sup (X, e).
£>0

ﬁamw,mﬁmzr index, Sz,(X): Let C be a closed bounded subset of X. For
€>0,C¢’ = {z € C such that any weak neighborhood of z in C is of diameter > e}
For an ordinal a, F{* is defined inductively by:

F = By

NumAQ.:v - A%JmAQvVMJ

F = ) B if ais a limit ordinal,

B<a
Then

inf{e : ﬁm?v =0} if it exists
00 otherwise

%NSA»X‘“MV =

And §2,(X) = sup Sz, (X, ¢).
>0

Szlenk index, Sz(X): Let C be a closed bounded subset of X*. For ¢ > 0,

Y-
Ce’ = {z* € C such that for any weak*-neighborhood V of z*, diam(V N C) > ¢}.
We denote:

K = By.
NA‘MQ.T: - ANAM_M.QJMH

Nmm& = Nmmg, if & is a limit ordinal.
B<a

Sz(X,e) = inf{a : Rm& =@} ifit exists
o0 otherwise

52(X) = sup §z2(X,¢).
e>0

In [L1] and [L2] it is shown that if §(X) is countable then X admits an equiv-
alent locally uniformly convex norm and that if S N\AN ) is countable then X admits an
equivalent norm whose dual norm is locally uniformly convex. In this v@?,% we are in-
terested in the Banach spaces for which these slicings proceed even faster, namely when

they stop before w (the first infinite ordinal). More precisely, we try to know if these
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conditions imply the existence of equivalent norms enjoying some uniform properties
of convexity. . ,

In section 2 we notice that the renorming theorem of P. Enflo for super-reflexive
spaces ([E]) implies that the condition §(X) < w is equivalent to X super-reflexive.
Then we show how the geometrical construction introduced in [L1] provides us with a
uniformly convex norm, when 6(X) < w. And we prove that the norm built this way
has a modulus of convexity bounded below by a power function. By doing so we obtain
Pisier’s renorming result ([Pi]).

In section 3, we study the links between the condition 5z(X) < w and the
existence of an equivalent norm on X whose dual norm has the uniform Kadec-Klee
property for the weak*-topology (UKK*), a property that has been essentially intro-
duced by R. Huff in [Hu]. After noticing that the existence of such a norm implies
if X is a

separable Banach space with 5z(X) < w, then there is an equivalent weak* lower semi-

§2(X) < w, we prove a partial result for the general converse problem :

continuous positively homogeneous functional on X* with the UKK* property. Next we
show that the situation is particularly simple for LP(X) spaces. Indeed we obtain that
if 1 < p < +oo, LP([0,1],X) has an equivalent UKK norm if and only if LP([0,1], X)
has an equivalent norm whose dual norm is UKK* if and only if X is super-reflexive.
Then we solve this problem in the case of C(K') spaces, for K scattered compact space,
by showing that C(K) has an equivalent norm whose dual norm is UKK* if and only if
the wt® Cantor derived set K(*) is empty if and only if S2(C(K)) < w.

2. Dentability index and uniform convexity. For the definitions and for
a survey of the renorming results concerning the super-reflexive spaces, we refer the
reader to the book of R. Deville, G. Godefroy and V. Zizler ([D-G-Z]).

We shall start with the following easy fact, already mentioned in [L1]:

Proposition 2.1. §(X) < w if and only if X admits an equivalent uniformly
convex norm (or equivalently X super-reflezive).
Proof. From the existence of an equivalent uniformly convex norm, it follows

easily that for any ¢ > 0, §(X,¢) < w.

Let us now assume that X is not super-reflexive. Then X has the finite tree
property (see R.C. James [J1]). So there exists € > 0 such that for any » € N there
is a dyadic tree (z;),e9<n © Bx (where 9<n denotes the set of sequences of 0 and

1 with length < n) satisfying: for any s € 2571 |lgs~p — T5~1|] > 2¢ and z; =



4 Gilles Lancien

1
,mmf)o + z5~1). It is now easy to see that (z,),c9<n-1 C F!. Indeed for s € 2571,

any slice containing z; must contain either z,~¢ or x;~;. Therefore, this slice is of

diameter > ¢. Proceeding inductively we obtain that F* # @. Thus, for any =,
0 € F, because F is convex and symmetric. Therefore 0 € F¥. So §(X) > w. O

- We will now use the techniques developed in [L1] in order to give a new con-

struction of uniformly convex norms with a power type modulus on super-reflexive
spaces.

Theorem 2.2. (Pisier) Let X be a Banach space. If §(X) < w, then X admits
an equivalent uniformly convex norm | |. Moreover, the modulus of convezity 6 1(¢) of

this norm satisfies:

3C>0,3p>2, suchthat: V0<e<2, § (&) > CeP.

Proof. For any € > 0, §(X,e) < w. Let us denote N = §(X,27%) — 1, and

00 2» -
f(z) = :a:+MuM &? F3r)s
k=17n=1 N
where || || denotes the initial norm on X and d(z, F}-,) the distance from z to F7
for this norm.
Let | | be the Minkowski functional of the convex symmetric set

={z € X : f(z) <1}. Then, forall z € X : ||z|| < |z| < 2||z||. So| |is an
equivalent norm on X.
We will first show that f is uniformly convex and evaluate its modulus of con-
vexity in terms of the index §( X, €).

Lemma 2.3. Foranye >0 and anyz, y in X:

if f(z) = f(y) = 1 and |jc — y]| > ¢, then: \Asw@v <1- wmﬂmmnv

2

Proof. Let ¢ > 0 and _3 z and @ in X such that f(z) = f(y) = 1 and

|z —y|| > e. Hmﬁ\nmzmcnr;@n,m.Aw; AM

Let n = Max{m 2>
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» / m_:um. Remark that, since ||z — y|| > £, we have that n < Ni. Finally, put

0:z € F'y and y € F7,}. Assume for instance that = €

%2\0
Claim. There exists [, 1 <! < Ni — n, such that:

T -+ ”
L do, rpty i ) - (S5 ) 2o

Proof of Claim. Suppose thatforall 1 <1< Ny —mn:

1 o z+Y .
* L (g, ity at, F) - d (252, ) <

Then we will show by induction that for all 1 <1 < Ny —n:

) 5 (dle, ity + dly, F32H) < 1y

T + n-+1
o € FpAl

Thus, (*) implies that = E? msiv + &@Lﬁzi ) <. So (Py) is satisfied.

Assume () is <m:mmm. Then there exist z',y' € ﬁ.zmi such that

a’ .M Y _n_:tt

Forl=1: Smrmzm& y € Fj, and |lz ~ y|| > €, s0

12_& —z'|| + |ly = ¥'ll) < Iy, therefore ||z’ — ¢'|| > e = 2ly 2 5 3&

w
H
But awwlslwwm.: Azumogm w@qﬁ&tv < ly.

Then property () implies that:

~ (o, F3) + dly, FEEE) < (4 D

which concludes the inductive proof of (7).

1 €
So in vmiﬁnimﬁ 3 A&A& ﬁw@wv + d(y, mva < AZ» —n)y < Npy = T Thus
1 3
there exist o',y € F'% such that 12_& || +ly-9y'l) < = wsm therefore ||z’ — /]| > 5

E
2
End of the proof of Lemma 2.3. The functions |- || and d(-, F}_,) are

. 9=k 2
all convex, so: MQAS +fy) - f A&M@v > LS E

Ny 4N, ~ wwz\ﬂ

ﬁzxi is empty. O

1t follows that € ﬁw@niu which is impossible because
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2
Therefore f Ae + @v £

AHI.IIII'I.D‘
2 - 326%(X, §)

Let us denote by é; the modulus of convexity of the function f. It is not
difficult 8 see that Lemma 2.3. implies that | | is uniformly convex. More precisely:

b 1(e) >

Eovom;_oa“

AMv . Then the conclusion of Theorem 2.2. will follow from the next

Proposition 2.4. Let X be a Banach space. If §(X) <

(]
g > 1 and C' > 0 such that: for any 0 < e < 2, §(X, va.ﬂl

w, then there exist

We will first prove a similar result for the weak-Szlenk index:

Lemma 2.5. Let X be a Banach space. If Sz,(X) <

"
g > 1 and C" > 0 such that: for any 0 < ¢ < 2, §z,(X,¢) < ma .

w, then there erist

Proof. First we will show that
Ve > 0,Ve' > 0, 524(X, e6') < F2u(X,€)S24( X, €").

It is enough to prove by induction that Vn € N Fm-S20(Xe0) ¢ ptn)

an
This is clearly true for n = 0, so let us assume that mAM S (X Vv Fim

Let z such that z ¢ ﬁ?iv ‘We need to show that z ¢ F, 2:+: mnikm vv» S0 we may

assume that z € FS™. Thus there is a weak- open set V ooim:::m z and such that

diam(V N m.?vv < e. But Ammkvmik N = = (3, so, for every subset C of diameter < ¢,
C{52 X)) - (3. Therefore z¢ F

; A?iv: Szw(X, va
Now, it follows from the submultiplicativity of the function S z,(

1
exists ¢ > 1 such that 5z,(X,e) = O Ame

Maurey’s argument for Pisier’s renorming result appearing in [B] and detailed in
y g g g

[D-G-z]). O

X,-) that there

v (this argument is classical: see for instance

It seems to us very unlikely that the fundétion 6(X,-) is submultiplicative. But
this difficulty is overcome by the next lemma which enables us to control §(X) by
Szu(LAH(X)).

Lemma 2.6. Let X be a Banach space, 1 < p < +oco, F = Bx and

L = Brr(o,1),x)- For any e > 0, any ordinal o and .any k in N we have the following:
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=1 i € thW (where mﬁwlp

Q Z1,...,T belong to F2, then Musi zil
function of T..meC

Consequently 6(X,e) < Sz,(LP(X),e/2) and §(X) < Sz, (LP(X)).

i is the indicator
i

Proof. We will prove this by transfinite induction.

The case o = 0 is obvious and the property stated in this lemma passes clearly
to limit ordinals.

Assume this property is true for a.

bmﬁ T1,...,2k in F2T! and let V be a weakly open subset of L?(X) containing
k

Mussr_hw ir (by induction hypothesis MU& 1 (=L i MWWV

k w
=1 =1
By Hahn Banach theorem, there exists [ > 1 such that

1
¥l <i< \ﬁmﬁ&ivwn C F2 verifying: MM&S —zifl < yandforall 1 < j <1,

7=1
li; — ]| > W where 7 is a positive real number, small enough to insure that the ball
of radius v and centered at M;:L z; rfm; 2 is included in V.
!
Let ¢n = H~ Mw:ng MUQ.HH Hﬂ.a. (F+5 =it +ikl
We have that ¢, — M M&i [ i Therefore there exists ng > 1 such that
7==1 .TL

tno € V.

€ £
But, for all ¢ € [0, 1], ||¢n,(t) — M& ﬁﬁ_»mﬂ ) o> 27 50 Py — MU& HQL» > 5
But, by induction hypothesis ¢, € thW
Therefore, diam(V N thWV = and Ma HJW i € Mﬁ\%;. a

Proof of Proposition mxr Let X be a Banach space such that §(X) < w.
We already know, by Lemma 2.3, that X has an equivalent uniformly convex norm. So
L*(X') does too (see for instance M.M. Day’s proof [Da]). Therefore Sz(LAHX)) € w.

Thus there is ¢ > 1 so that Sz,(L*(X),e) = QA.WV ( hm:::@. 2.5). But, Lemma 2.6

AVD

Remark. This can be seen as an alternative proof of Pisier’s result, knowing

implies that 6(X,e) < mwe@w@?wv. So 8(X,¢) =

Enflo’s theorem. Indeed we are still lacking a direct proof of the fact that X super-
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reflexive implies §(X) < w. However, the main interest of this construction is to give

a simple and geometrical procedure for building uniformly convex norms with power
type moduli:

3. Szlenk indices and uniform Kadec-Klee Properties. In this section
we will study the following notions:

Definition 3.1.  Let X be a Banach space.X has the uniform Kadec-Klee

property (denoted UKK), if for any € > 0, there exists A > O such that: s.\\m:. any
weak-neighborhood V of z, diam(V N By) > ¢, then lz]l <1-A.
Definition 3.2. Let X be a Banach space. X* has the uniform Kadec-Klee

property for the weak*-topology (UKK*), if for any & > 0, there exists A > 0 such that:
if for any weak*-neighborhood V of z*, diam(V N Bx») > ¢, then llz*| <1 - A.

These definitions extend the usual ones introduced by R. Huff ([Hu)).

Clearly, if X has the property UKK, then 524(X) < w and if X* has the
property UKK*, then §2(X) < w. So it is natural to ask the following questions: let X
be a Banach space satisfying $2,,(X) < w (respectively 52(X) < w), does X have an
equivalent UKK norm (respectively an equivalent norm whose dual norm is UKK*)? If
80, can we construct this norm with a power type modulus Ale)?

3.1. The general case.

We present now the partial general result that we have obtained in this direction.

Theorem 3.3. Let X be a separable Banach space. Then S2(X) < w if and

only if there exists a function f : X* — RT weak*-lower semi-continuous (w*-Ls.c.)
verifying:

i) Vot e X Sl < A < o).

i) VAER f(Az*) = |\ f(z*).

iii) Ve >0, 3 A= As(e) > 0 so that, for any sequence (23 )p>0 in {y* € X*:

\@JM 1} and any z* in X*: (2 2 o and ¥ n #Fm |y —an |l > €)= flz*) <
1-A.
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u\?smce@ﬁ in this case, we can construct f such that there exist p > 1 and C > 0
verifying, for any 0 < € < 2, A(e) > CeP.

Proof. The “f” part is clear, so let us assume that Sz(X) < w. The first step

of our construction will be to show the following proposition:

Proposition 3.4, Let X be a separable Banach space.

If 52(X) < w, then for any € > 0, there exists h, : X* — R" such that:

) Vor e X Sla] < hele®) < o7l

i) VA€ R ho(Az*) = |Alhe(z™).

113) There exists Hq(e) v*o m:m\y that for any z* € X*\ {0} and any (2}, )n>0 in
X*, ifz “, 2* andVk # k' iﬂ > ¢ then he(z*) < (1-Aq(e)) liminf h(z}).
Moreover, there are ¢ > 1 and C' > 0 so that for all 0 < ¢ < 2, Aqy(g) > C'el.

Proof. This proof is inspired by the construction made by P. Enflo in [E] in
order to renorm super-reflexive spaces. We will therefore use a similar vocabulary:
Let z* € X*\{0},n € Rand ¢ > 0.
we call (n,)-partition of z* any family (z}),e,<n € X* verifying:
Ca)ay =g

25 s = 25wl

sn-l K > €.
b)Vsew , Yk £ K, Tim sup [, |
o) Vs € wSnl gk s gk,
We will begin with the following lemma:
£ . .
Lemma 3.5. Lete > 0 and n > %m@mqu = nle). If (2%),e0<n is an

(n,€)-partition of z* then

liminf;, .. Jiminfy, |l27;, ol > 3[lz™].

Proof. We may assume ||z*|| = 1. Let (23),c,<n be an (n,ée)-partition of z*
such that liminf;, ...liminf;, :&M: :;,i: < 3. By extracting a subpartition, we may
assume that (2%),c,<» C 3Bx+. But since [|z*]| = 1, we may also assume that for all

* (n]
s € w1 limsup|lal || > 1. So Vk # K/, ||l2% ), — 27 || > . Thus 2* € (3Bx)<".

1 £
Hence wa* € Amuﬁvwmu and therefore n < Sz(X, w.v a
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Remark. By Lemma 2.5. there exists ¢ > 1 such that n{e) = QA&WV.
€
End of proof of Proposition 3.4, Put he(0) = 0. and for 2> # 0:
liminf;, ...lim inf; __em.:.:z.;v__
SN
1+9 M w2
k=1
6

7 € N, (27)scusn (n,€) — partition of 2*}, where v = -
T

he(2*) = inf{

since z* is an (n, £)-partition of #*, we have he(z*) < [|2*||.

On the other hand, for any (n,¢)-partition of z*:

lim inf;, ... lim inf; __&N.w.:...;.:v__ S llz*|| _ m.__n.*:
n 1 O 1 o W b
1+7) 5 1+7) 5
k=1 k=1

So point i) of Proposition 3.4. is satisfied.
It follows clearly from the definition of A, that i) is also satisfied.

Now let 2™ € X\ {0} and (2} )n>0 in X* such that

z; %, 2* and VE £k __aa — 2 > €.
fim sup o
Let 0 < 8 < W. and let (23(n)),ewgin 3 (kn,€)-partition of 2% such that:

liminfy, .. Jim inf;, __aw.:..._; y(m)l]

Fn
RO
co =1

(1 + B)he(z2) >

We want to show an inequality of the type he(z*) < (1 — Ay)liminf ho(z2). So we
may assume, by taking a subsequence, that h.(z*) — lim inf he(z}). Moreover, by
Lemma 3.5, we have that for all n € N, k,, < n(e). So we can assume, by taking a new
subsequence, that there exists & < n(e) such that for all n € N, k, = k. Then we get
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) oo
that {z*} U C (25(n))sewsk is a (k + 1,¢)-partition of z*. Therefore
n=0
lim inf,, im inf;, ...lim inf;, :&w_::;;v?v__
k41

u+4M.~w
=1

he(z*)

IA

E
1+ M 7
=1 o *
< P (14 B)liminf h.(zX).

H+QMUMHM
I=1

Since k < n(e),

k 1 n{e)~1 1
125 147 3 5
=1 =1 .
k+1 1 < n(e) =1- DHAmv.

»+QMMM H+4me
=1 [=1

From the above remark it follows that there exist g 2> 1and €' > 0 such that for all
0<e <2 Ale) > Clel,
1

Furthermore, for all 0 < 8 < 5 he(2*) < (1~ Aq(e))(1 + B) lim inf he(2}), so he(z*) <

(1 — Aq(g)) lim inf he(zy). O

Proof of Theorem 3.3. Let us now denote fe the weak*-lower semi-
continuous regularization of h,, namely

\m?*vﬂm:mA :wmw\ \Nm@*v“<€m@r*-zmmmrvOarocm ofz*}
@i

fe is w*-ls.c. and keeps clearly the properties i) and ii) of h,.

fe enjoys also a property similar to iii). More precisely, we have:

Lemma 3.6. Lete > 0. For any z* € X*\ {0} and any sequence (T} )0 in
X*: if

20 o and v k£ A2l
lim sup ||z} ||

then
£z < (1 - PA.M.V:E inf f,(2%).
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Proof. Since f. satisfies ii), it is enough to show that
i ()0 € {" € X £o(y) < 1), then £(a%) < 1- Ay(5),

S0 let z* # 0 and (z3)n>0 C {y* € X*: fu(y*) < i satisfying the hypotheses
of Lemma 3.6. Let V and V' two weak*-neighborhoods of z* such that V7" cv T
denotes the weak*-closure of V). By taking a subsequence we may assume that for all

n € N:
|z — = :

lim sup ||z __

zy € V' and Vn > 0

On the other hand, we have that for any n € N and any émww*,:mwmrvo}oo; W of 7
there exists 2* € W such that h.(z*) < 1.

We will now build by induction a sequence (28)k>0 € V' such that:

llz — =~

he m.d& h AN\QV <1 and Yk * »\ .:N\q«: NT: >
" lim sup ||z |

VkeN, k20 .
lim sup ||z || 2
Put 2§ = z3.

Suppose z3, ..., z; constructed. Then there is a weak*-neighborhood U of z* such that:

vo<i<kvyrer: IE-VI e
limsup fjzz]] = 2

Since “ z*, there exists N such that V0 < i < k, __m _ aZ__
> Tim sup fJag]] ~

On the other hand lla” ~ ,m,
lim sup ||z __ 9

W C V' and such that

So there is a Sm@w*,:m_mrvc}oom W of 23, with

Ve W0 <i<k: A=l v;aa [le” — ="

€
lim sup ||zx]| Lim sup |jz| )

To conclude this induction we choose Zf1q € W such that ho(25,,) < 1.
To show that f.(z*) <
But h.(2}) < 1 implies ||zf|| < 2, thus ||2}]| < 4 lim sup [lz%|l. Therefore

€ . 1
1- D%w.v, we may assume that lim sup ||z || > 5

N :N IN\: €
R ER s ] 5

Now, there are a subsequence (2%, )iz0 and 2* € X* such that 2, s 2,

So, by Proposition 3.4, h.(z*)
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<1- DAMV.
But Aummvs..v.o CV!'CV™ CV. Thus z* € V and therefore infeey h(y*) <1 - D;Mv,
This is true for any weak*-neighborhood V of z*, so we have indeed fe(z*) <1~ D;mv.
0

. oo
End of proof of Theorem 3.3. Put \A&JHMMIQWLA&J.
=1
[ is w*-ls.c. and satisfies properties i) and ii).

Let ¢ > 0 and (z})ny0 € {¥* € X* : f(y*) < 1} such that zk <% 2* and Vn #

m ||z, — a5 || > e for any n > 0, fo(2}) < 1, s0 ||2%|| < 2 and therefore

# 5 msup ez ~ 7
Let 19 > 1 such that M <27 < W By Lemma 3.6:
'SvQ . .
So—io(2™) A 3 vv liminf f,—i(z}).
Moreover, for any i # i, fy-i(z*) < lim inf f2-i(x}), because the functions f,~: are
w*-Ls.c.
[ ) ] Mls.c
So f(z*) < Mwl liminf fo—i(2) — 27 Aq( 5 Ylim inf fyio (z})
i=1
1

e R

In order to show iii), we may assume ||z*|| > = and then liminf fomio(22) >

2
F(z*) < lim EQQS - WPA% - !D;

327

Ag(e) 2 5 A v So by Proposition 3.4, there exist p > 1 and C > 0 such
that for any 0 < ¢ < 2, Dlmv >Ce?. O

Remark. S. Prus studied in [Pr] the UKK renorming problem in the case
of reflexive Banach spaces with a Schauder basis. He proved that such a space has an
equivalent UKK norm if and only if there is a sequence of blocks of the original basis
satisfying some £, estimates. Building on this idea, Odell and Knaust recently solved
the renorming for spaces with a Szlenk index less than or equal to w, in the case of

reflexive spaces with a finite dimensional decomposition.

3.2. ILP(X) spaces.

In this paragraph we consider the Lebesgue-Bochner space L7([0,1], X) (de-
noted LP(X)), for 1 < p < 0o. In [Pa], J.R. Partington proves that if L?(X) is reflexive

2 Ceprinka 1/95
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with the UKK property, then X is uniformly convex. We give now an isomorphic ver-
sion of this result, which follows from Lemma 2.6., as it has been already partly noticed
in [D-G-K]. The result is the following:

Theorem 3.7.

assertions are equivalent:

Let X be a Banach space and let 1 < p < oo. The following
1) X is super-reflexive.

1) LP(X) admits an equivalent UKK norm.

13) §2,(LP(X)) L w.

i) LP(X) admits an equivalent norm whose dual norm is UKK*.

v) S2(LP(X)) < w.

Proof. i) implies ii): If X is super-reflexive, then X admits an equivalent
uniformly convex norm which induces on LP(X) an equivalent uniformly convex norm
which is therefore UKK.

ii) implies iii) is clear.

iii) implies i): Suppose 52,(LP(X)) < w. Then, by Lemma 2.6 we have that §(X) < w.
So, by Proposition 2.1, X is super-reflexive. _

i) implies iv): If X is super-reflexive, then X admits an equivalent norm whose dual
norm is uniformly convex. This norm induces on (LP(X))* = LI(X*) (where w._. L. 1)
a dual uniformly convex norm which is therefore UKK*. P
iv) implies v) clearly.

v) implies i): let us assume that Sz(L?(X) < w, and let ¢ be such that E + 1.
We may comsider LY(X*) as a closed subspace of (LP(X))*. Thus MNENM\.QANQ.JV <
Szw((LP(X))*) € 52(LP(X)). On the other hand, by Lemma 2.6, we have that §( X*) <
Szu(LI(X*)). So 6(X*) < w and therefore X and X* are super-reflexive. O

—

3.3. C(K) spaces.

The C(K) spaces, for K scattered compact space, have been in the last few
years the source of many results and especially of many counterexamples in renorming
theory (see for instance the papers of R. Deville [De}, M. Talagrand [T], R. Haydon
[H1,2], R. Haydon and C.A. Rogers [H-R]). We are able to give a positive answer to
our renorming problem for this class of Banach spaces.

So, let K be a compact space. Let us recall that for a closed subset F' of K
the Cantor derived set F() of F is the set of all non isolated points of F'. K@ for a
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ordinal, can then be defined inductively in the usual way.

Theorem 3.8.
equivalent :

i) K@ =g,

i) Sz(C(K)) < w.

i) C(K) admits an equivalent norm whose dual norm is UKK*.

Let K be a compact space. The following assertions are

Proof. iii) = ii) is clear and ii) = i) relies on the fact that if 2 € K(*) then
the Dirac measure §, € Qﬁﬁﬁvnvw&. So let us prove that i) = iii). For that purpose
we will adapt to our setting Deville’s construction (in [De]) of a norm with a locally
uniformly convex dual norm on C(K) spaces with K1) = ¢

Let K be a compact space such that K« = @. Then there exists an integer N
for which KV) is finite. For y ¢ (C(K))* we denote |||ul|] = 2zek Azlp(z)], where o
is defined by:

if z € KO\ K6+ then o, = m;
[l - il is an equivalent norm on (C(K))*. The fact that :m_s Il is a dual norm needs a
proof that can be found in [De]. Let us just point out that this is essentially due to the
fact that o is a decreasing function of the integer 2 such that z € K()\ fg(+1),

We need to show that [||-||| has the UKK* property. Solete > 0 and e (C(K))
such that for every weak*-neighborhood V of s Il ]I} = diam(V n Byy) > 2e (B is
the unit ball of || - |||).

We can find a finite subset F of K such that KV) CFandp=MX+ MU u(z)b,

with [IX[| < (|| -]| is the natural norm on (C(K))* and v is a positive 5=Ewwwﬂrwﬁ we

will precise later). Since K(V) C F', we can find (A, )zcr a partition of K into clopen
sets satisfying : for any z in F, A, N K0 = {z}, where i, is the integer 7 such that

2 € KO\ K6+, Thus there is v such that vl <1, filv =yl > € and

Ve e F MU wly) - M v(y)| <9' (7 > 0 to be chosen later).

N\,mbﬁ YEAL
letz e F,wehave 3" |u(y) — u(y)| > |u(z) - v(z)] - 7"
Ve \(z)

mgwm forany y in A, \ {z}, ay > 2a,, we get

> (Bl + W) > 200lumz) - v(z)] - 7

yEAz\{z}
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Hence,

Yo aluml< Y alu@) - 200fuz) @)+ 423 alu().

yEAL\{z} y€Az\{x} yeda\{z}

On the other hand |u(z)| < [v(z)| + |u(z) — v(z)|, therefore

Yol < 3 (@) - aalp@) = v@l+7 +2 Y aylu)l.

yEAL yEAz y€A \{x}

So llelll < Mwllh = 3 aclu(z) = (=) + | Fly' + 2y Eq_ is the cardinality of F).

z€F
We have now two wOmE?rSmm.

1) if M ag|p{z) — v(z)| >3 , then a right choice of ¥ and 4’ will insure, by the above
zEF c
inequality, that |||ull] < 1 — =.

4
2) if M ag|p(z)—v(z)| < w.v then M az|u(z) — v(z)) v —. So MU a|v(z)| > lllf
zeF ¢ F z¢F
while M aglp(z)] < 7.
¢ F
Therefore |[{p]l| < |lI#ll] + w - W,m + 27, which implies again, if ¥ was chosen small
enough, that |||ul]l <1 — .M; o

Remark. It is a well known phenomenon in geometry of Banach spaces that
the existence of nicely convex dual or bidual norms implies nice properties of the space,
such as being an Asplund space or reflexivity (see for instance the book of R. Deville,
G. Godefroy and V. Zizler [D-G-Z]).

The situation in similar for the property UKK*:

If X has an equivalent norm whose dual norm is UKK*, then X is an Asplund space.
Indeed, in this case, 52(X) < w, so X has also an equivalent Fréchet-differentiable
norm, by the results in [L2], and therefore X is an Asplund space.

If X has an equivalent norm whose bidual normis UKK*, then it is easy to prove that
X is reflexive. ‘
However, the James space J introduced by R.C. James in [J2] satisfies the following
properties: J has an equivalent norm whose dual norm is UKK*, J* has an equiva-
lent norm whose dual norm is UKK* but J is not reflexive. A detailed proof of this

counterexample can be found in [L3].
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