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Prescribed Szlenk index of separable Banach spaces
by

R. M. CAUsEY (Oxford, OH) and G. LANCIEN (Besangon)

Abstract. In a previous work, the first named author described the set P of all values
of the Szlenk indices of separable Banach spaces. We complete this result by showing that
for any integer n and any ordinal « in P, there exists a separable Banach space X such
that the Szlenk index of the dual of order k of X is equal to the first infinite ordinal w for
all k in {0,...,n—1} and equal to a for k = n. One of the ingredients is to show that the
Lindenstrauss space and its dual both have Szlenk index equal to w. We also show that
any element of P can be realized as the Szlenk index of a reflexive Banach space with an
unconditional basis.

1. Introduction and notation. In this paper we exhibit some new
properties of the Szlenk index, an ordinal index associated with a Banach
space. More precisely we study the values that can be achieved as the Szlenk
index of a Banach space and of its iterated duals. Let us first recall the
definition of the Szlenk index.

Let X be a Banach space, K a weak*-compact subset of its dual X™* and
€ > 0. Then we define

s} (K) = {z* € K : for any weak*-neighborhood U of z*, diam(K NU) > ¢}
s1(s

€
)
and s¢(K) = g, s?(K) if « is a limit ordinal.

Then we let Sz(K,e) = inf{a : s&(K) = 0} if it exists, and Sz(K,e) = o0
otherwise. Next we define Sz(K) = sup,-Sz(kK,¢e). The closed unit ball
of X* is denoted Bx+, and the Szlenk index of X is Sz(X) = Sz(Bx-).

The Szlenk index was first introduced by W. Szlenk [21], in a slightly
different form, in order to prove that there is no separable reflexive Banach
space universal for the class of all separable reflexive Banach spaces. The
key ingredients in [21I] are that the Szlenk index of a separable reflexive
space is always countable and that for any countable ordinal «, there exists

E )
¢(K

and inductively the sets s¢(K) for o ordinal as follows: s@T!(K) =
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a separable reflexive Banach space with Szlenk index larger than «. It has
been remarked in [I5] that, when it is different from oo, the Szlenk index of a
Banach space is always of the form w® for some ordinal «. Here, w denotes the
first infinite ordinal. On the other hand, it follows from the work of Bessaga
and Pelczyniski [4] and Samuel [20] that if K is an infinite, countable, compact
topological space, then the Szlenk index of the space of continuous functions
on K is w™!, where « is the unique countable ordinal such that w® <
CB(K) < w*! and CB(K) is the Cantor-Bendixson index of K. Finally,
the set of all possible values for the Szlenk index of a Banach space was
completely described in |7, Theorem 1.5]. One consequence of this general
result is that for any countable ordinal «, there exists an infinite-dimensional
separable Banach space X with Sz(X) = « if and only if « € I' \ A, where

I={w*:¢¢cl,w)} and A= {w“’5 1€ € [1,w;) and ¢ is a limit ordinal}.

Our first result shows that there is quite some freedom in prescribing the
Szlenk indices of the iterated duals of a separable Banach space. We shall use
the notation Z(™ for the nth dual of a Banach space Z. Then our statement
is the following.

THEOREM 1.1. Let n € N and o € I' \ A. Then there exists a separable
Banach space Z,, such that for all k € {0,...,n — 1},

Sze(Z) =w and  Sz(ZM) = .

The above result relies on a statement of independent interest. Let us first
recall that in [16], J. Lindenstrauss constructed, for any separable Banach
space X, a Banach space Z such that Z**/Z is isomorphic to X. We prove
the following.

THEOREM 1.2. For any separable Banach space X, the associated Lin-
denstrauss space Z satisfies

Sz(Z) = 82(Z%) = w.

Theorem [I.2] and then Theorem [I.T] are proved in Section 2. In Section 3,
we show the following refinement of [7, Theorem 1.5].

THEOREM 1.3. For any a€I'\ A there exists a separable reflexive Banach
space G with an unconditional basis such that

Sz(Go) =a and  Sz(G}) = w.

We conclude this introduction by recalling the definitions of some uniform
asymptotic properties of norms that we will use. For a Banach space (X, || ||)
we denote by Bx the closed unit ball of X and by Sx its unit sphere. The
following definitions are due to V. Milman [I8] and we follow the notation
from [I3]. For t € [0,00), z € Sx and Y a closed linear subspace of X, we
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define

px(t,2,Y) = sup (|lz +ty]| —1) and Ox(¢t,z,Y)= inf (||z +ty|| —1).
yeSy yESy

Then

px(t,x) :dim()i(?}f/)@oﬁ)((t,x,l/) and 0x(t,x) :dim()s(l/lgkoogx(t,m,)/).

Finally,

px(t) = sup py(t,z) and Ox(t) = inf dx(t,x).
xESx TESx
The norm || || is said to be asymptotically uniformly smooth (AUS for
short) if
lim m =0.
t—0 ¢

It is asymptotically uniformly conver (AUC) if
vt >0, dx(t)>0.
Let p € (1,00) and ¢ € [1,00). We say that the norm of X is

e p-AUS if there exists ¢ > 0 such that py(t) < ct? for all t € [0, 00);
e ¢-AUC if there exists ¢ > 0 such that dx(t) > ct? for all t € [0, 1].

Similarly, there is on X* a modulus of weak® asymptotic uniform con-
vexity defined by

Sx(t)= _inf sup (lz" 4+ ty*[| = 1),

inf
z*€Sxx | Y*ESE
where F runs through all weak*-closed subspaces of X™* of finite codimension.
The norm of X* is said to be weak® asymptotically uniformly convex (for
short weak*-AUC) if 6 (t) > 0 for all ¢ in (0,00). If there exist ¢ > 0 and
q € [1,00) such that &y (t) > ct? for all t € [0, 1], we say that the norm of
X* is g-weak*-AUC.
We will need the following classical duality result concerning these moduli
(see for instance [10, Corollary 2.3| for a precise statement).

PROPOSITION 1.4. Let X be a Banach space. Then || ||x is AUS if and
only if || [|x+ is weak*-AUC.

If p,q € (1,00) are conjugate exponents, then || ||x is p-AUS if and only
if || |lx= is g-weak*-AUC.

Finally, let us recall the following fundamental result, due to Knaust,
Odell and Schlumprecht [I4], which relates the existence of equivalent asymp-
totically uniformly smooth norms and the Szlenk index.

THEOREM 1.5 (Knaust—Odell-Schlumprecht). Let X be a separable in-
finite-dimensional Banach space. Then X admits an equivalent norm which
is asymptotically uniformly smooth if and only if Sz(X) = w.
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2. Prescribed Szlenk index of iterated duals

2.1. Renormings of the Lindenstraus space and of its dual. We
recall the construction given by J. Lindenstrauss [16] (see also [I7, Theo-
rem 1.d.3|) and introduce notation that will be used throughout this sec-
tion. We refer the reader to the textbooks [17] and [I] for a presentation
of the standard notions of a Schauder, shrinking, boundedly complete or
unconditional basis of a Banach space.

Let (X, ||x) be a separable Banach space. Assume X # {0} and fix a
dense sequence (z;)°; in the unit sphere Sx of X. Let

E = {a: (a;)2, € RN

k Pi 2\ 1/2
llall & 207 sup <ZH Z a;T; X) < oo}.
=po<p1<--<PpPk j=1 i=pj_1+
Then (E,| ||g) is a Banach space. Let (e;)72; be the canonical algebraic

basis of c¢pg, the space of finitely supported real-valued sequences. It is
clear that (e;)?°, is a boundedly complete basis of E. It follows that E
is isometric to the dual Y* of a Banach space Y with a shrinking basis.
If (ef)32, is the sequence of coordinate functionals associated with the ba-
sis (e;)52, of E, then the canonical image of Y in its bidual Y** is the
closed linear span of {ef : i > 1} and (e})$2; can be seen as a shrinking
basis of Y. Note now that if a = (a;)$2, € E, then the series Y .o, a;x;
is converging in X. It is important to note that the density of (z;)7°; in
Sx implies that the map @ : E — X defined by Q(a) = > 72, a;x; is
linear, onto, ||Q| = 1, and the open mapping constant of @ is 1. Conse-
quently, @* is an isometry from X* into Y**. The main result of [16] is
that

where Y is the canonical image of Y in Y™, and the projection from Y**
onto Q*(X*) with kernel Y has norm 1. In particular, ¥ is isomorphic to
the quotient space Y**/Q*(X™).

Now let Z denote the kernel of ). Then Z is a subspace of E = Y™ and
its orthogonal Z= is clearly equal to Q*(X*). It follows from the classical
duality theory that Z* is isometric to Y**/Q*(X™*) and therefore isomorphic
to Y. If I is the inclusion map from Z into Y* and Jy is the canonical
injection from Y into Y™**  then an isomorphism from Y onto Z* is given
by T = I'*Jy. Finally, if Jz is the canonical injection from Z into Z**, it is
easy to check that T*Jz = Idz. It follows immediately that Z**/Jz(Z) (or
simply Z**/Z) is isomorphic to Y*/Z and therefore to X.

The purpose of this subsection is to prove Theorem[1.2] In fact, our result
is stronger.
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THEOREM 2.1. For any separable Banach space X, the associated Lin-
denstrauss space Z satisfies the following properties:

(i) The space Z* admits an equivalent norm which is 2-AUS.
(i1) The space Z admits an equivalent norm which is 2-AUS.

We start with the proof of the easy part (i) which can be precisely stated
as follows.

PROPOSITION 2.2. The norm || ||g is 2-weak*-AUC on Y* = E and
therefore || ||y is 2-AUS. In particular, Z* admits an equivalent norm which
is 2-AUS, there exists C > 0 such that Sz(Z*,&) < Ce™2 for all e > 0, and
Sz(Y) =Sz(Z*) = w.

This result is an immediate consequence of the following elementary
lemma.

LEMMA 2.3. Let a,b € E and assume that there exists k € N such that
the sequence a is supported in [1, k] while b is supported in [k + 3,00). Then

lla + blI% > flall + [[bl%-

Proof. Since a is supported in [1, k|, we can find a sequence 0 = py <
p1 < -+ < pm =£k+1such that

2

m pPj
ol =Y\ >0 a,

J=1 i=pj—1+1

Fix n > 0. Since b is supported in [k + 3, 00), we can find a sequence k+ 1 =
qo < q1 < --+ < g such that

r q;
=3 Y b

J=1 i=qj_1+1

2
x T

Let n; = pj for j € {0,...,m} and nj = ¢j_p, for m < j <m+r. Then

m—+r

nj
la+bl% >3] > (a+b)a

j:1 i:nj_1+1

We now turn to the proof of Theorem ii), which will rely on the
following technical lemma.

2
> [lall? bl|Z — .
X_llaHE+|! lz—mn =

LEMMA 2.4. Assume that a',...,a" are skipped blocks with respect to

the basis (€;)2, of E, meaning that there exist 0 =rg <1y < --- < 1N such
that

Vk € {17'--7N}a Supp(a’k) C (rk—lark)a
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and denote e, = || .2, a¥xi||x. Then

i=1 44

N N N 1/2
[, = Xew 2 1)
k=1 k=1 k=1

Proof. Fix0=1py < p1 < -+ < pp and assume without loss of generality
that p,, > rn. Then for j € {1,...,m} we denote

AJ = {k <N: (rk’—lark) C (pjflapj}}a A= U AJ7 B = {17 . am}\A

We first estimate

3l Y (2 o)

j=1 i=p;_1+1 ke

Y i“ 5 (3 ab)a

i=p;j—1+1 k€A

S 3 DIl SR I Sp ol

j=1" k€A, i=pj_1+1 j=1keA; i=pj_1+1

7
X

and obtain

ey (3] X ()

Jj=1 i=pj_1+1 keA

>1/2 i:”‘:z/; }CZN;&C

So we may assume that B is not empty and enumerate B = {ak(l), e ak(L)}
with k(1) <--- < k(L). Note that for 1 <1 < L, supp(aq)) C (Tk)—1, k@)
C (Th(—1)>Tk@))> and (Ty(-1), Tk()) is not included in any of the sets (p;—1, p]
for 1 < j < m. Then we define i9p = 0 and i; = min{i : p; > ryy} for
1 <[ < L. From the definition of B, we see that 2 < i; < --- < iy, and
Pi—1 <1y < py foralll € {1,...,L}. We can now write

SIS (Sl - X | (e

j=1 i=p; 1+1 keB q=1 j=iq—1+1 i=pj_1+1 [=1

Using the convention a¥(®) = 0 = a*(L+1) and the properties of our various
sequences we get

i” i (Zaf)sz :EL: f: H i (af(Q)—i-af(qH)):Ui

j=1 i=p;_1+1 keB q=1 j=iq_1+1 i=p;_1+1

N
k k
D4 L <13 RO <143 o,
k=1

q=1

2

X

IIMh
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which yields

e (] 5 (S

J=1 i=pj_1+1

) <a(3 )
k=1

The conclusion now clearly follows from ([2.1)), (2.2]) and the triangle inequal-
ity, by taking the supremum over all finite sequences (p;);. =

Before we proceed with the proof of Theorem we need to introduce
some notation. For an infinite subset M of N, we denote by [M]<“ the set of
void or finite increasing sequences in M. The void sequence is denoted (). For
E € [N]<¥, we denote by |E| the length of E, defined by |E| =0 if E = {)
and |E| = kif E = (n1,...,ng). For F' = (n1,...,n;) in [N]<¥, we write
E<FiftE=0or E=(ny,...,ng) for some k < [, and we then say that E
is a proper initial segment of F. We write £ < F if E < F or E = F and we
then say that E is an initial segment of F. For E = (nq,...,nx) € [N]<¥ and
n € N such that n > ng, (F,n) denotes the sequence (nq,...,ng,n), while
(0,n) is (n). For a Banach space X, we will call a family (2g)gep<e in X
a tree in X. Then a family (rg)gepy<~ in a Banach space X is said to be a
weakly null tree if for any E in [N]<¢ the sequence (z(g n)) is weakly null.
If (rg)pen<w is a tree in the Banach space X and M is an infinite subset
of N, we call (zg)pep<w a refinement or a full subtree of (k) pepy<w-

Proof of Theorem [2.1)(ii). Fix a sequence (£,)52, in (0,00) such that
>0 pe2 < 1/4. Let (2F) penj<w be a weakly null tree in the unit ball Bz. By
extracting a full subtree, we may assume that there exist 0 =rg <r; < ---
and for any F € [N]<%\ {0} there exist a’" € Bg such that

VE = (n1,...,m) € [N]=\ {0},
supp(aF) C (Tny—1,7n,) and HaF — zr|lE < €.

Since (2r)penj<w is in the kernel of @, the last condition implies

<€k:

VF € [N]<“\ {0}, HZa z;

We can therefore apply Lemma [2.4] and the triangle inequality to deduce
that for all (Ar) pe<e\ o} in R and all F € [N]<“\ {0},

H Z )\GZGH <2 Z |)\G\€|G|+2( Z )\2)1/2

0<G<F P<G<F P<G<F

It then follows from our initial choice of (e,)72, and from the Cauchy—
Schwarz inequality that

EeN=A), | Y dasf <3( X a2)"

D<G<F D<G<F
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In the terminology introduced in [9] this means that Z satisfies 2 upper tree
estimates. It then follows from [9, Theorem 1.1] that Z admits an equivalent
norm which is 2-AUS.

REMARK 2.5. Statement (i) in Theorem can be rephrased as follows:
The space Z* admits an equivalent norm whose dual norm is 2-weak*-AUC.
It is important to note that this norm cannot be the dual norm of an equiv-
alent norm on Z. Indeed, a bidual norm cannot be weak™AUC unless the
space is reflexive (see the proposition below). In particular, in Lindenstrauss’
construction, the space Y is isomorphic but never isometric to Z*.

For the convenience of the reader, we state and prove an elementary fact
from which the previous remark follows.

PROPOSITION 2.6. Let Z be a non-reflexive Banach space. Then the norm
of Z** is not weak*-AUC.

Proof. Assume that Z is not reflexive, so there exists z** € Sz« \ Z.
Pick € > 0 such that ¢ < d(2**,Z). Fix 6 > 0 so that ¢ + 6 < d(z**,2)
and a weak*-closed finite-codimensional subspace E of Z**. We can write
E =N, Kerz} with 2 € Z*. Fix now n > 0. Then Goldstine’s theorem
ensures that there exists z € Bz such that [(z** — 2)(2])| < n for all i < n.

If we denote by F' the linear span of z],..., %, it follows from elementary
duality theory that
d(z" — 2, E) = ||z = 2|l g1 = |27 = 2||F-.

So, if n was chosen small enough, we get d(z** — z, E') < 6. Thus we can pick
e** € E such that ||z — 2** —e**|| < 0. Note that this implies that ||e**| > e.

Now, writing z = z**+e™+2—2**—e™ and using the fact that z € Bz, we
deduce that ||z** +e**|| < 14 4. Finally, by convexity, there exists A € (0, 1)
such that |[Ae™|| = € and |[z** + Ae™|| < 1+ ¢. Since ¢ could be chosen
arbitrarily small, we deduce that for any weak*-closed finite-codimensional

subspace E of Z**,
inf ||z +ey™ <1,
y**ESE**

which implies that 3. (¢) = 0 and finishes our proof.

2.2. Proof of Theorem We fix o € I\ A and use induction on
n € N.

For n = 2, let X,, (given by [7, Theorem 1.5]) be a separable Banach space
such that Sz(X,) = «. Then denote by Zs the Lindenstrauss space such that
Z3* | Z is isomorphic to X,. By Theorem [1.2] we have Sz(Z2) = Sz(Z3) = w.
Next, by [0, Proposition 2.1|, there exists C' > 0 such that

Ve >0, Sz(Z5%,e) <Su(Z5%)Zs,e/C)Sz(Z2,e/C) < a.
The last inequality follows from Sz(Z5*/Z2,e/C) < «, Sz(Z2,e) < w and
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elementary properties of multiplication of ordinal numbers. We deduce that
Sz(Z3*) is at most a and therefore Sz(Z5*) = «, since Sz(Z5*) > Sz(Z3* | Z2)
= Sz(X,) = a. Thus we can choose Z; = Z3.

Assume now that n > 3 and that spaces Z1,...,Z,_1 have been con-
structed with the required indices of the duals. Then denote by Z, the
Lindenstrauss space such that Z3*/Z, is isomorphic to Z,_2. We already
know that Sz(Z,) = Sz(Z};) = w. Since Sz(Z,,—2) = w, we can use the fact
that having Szlenk index w is a three-space property (see [0]) to deduce that
Sz(Z}*) = w. Then using elementary facts about duality, we find that for all

k > 3 the space Z7(Z ) is isomorphic to Zp (k=2) @ Z, (=~ o ), which implies that
Sz(Z*)) = maX{Sz(Z,(lk 2)), Sz(ZfLIiQQ))} (see [8]). It now clearly follows that
SZ(ZT(lk)) =wforall k€{0,...,n—1} and SZ(Z;[L)) =a. .

3. Prescribing Szlenk indices of reflexive Banach spaces. We now
turn to the proof of Theorem which will take a few steps.

First we describe a general construction of a Banach space associated
with a given Banach space with a Schauder basis, which will be essential
further on. As will be clear, this resembles Lindenstrauss’ construction. The
crucial difference is that the dense sequence (z;)7°; in X will be replaced by
a normalized Schauder basis of X.

So assume that (z;)°; is a normalized Schauder basis of the Banach
space X and denote again by (e;):2; the canonical algebraic basis of cog. We
define X as the completion of ¢gy with respect to the norm

IS, = (] 3 > ) 0shcki< ]
=1 1

=1 j=k;—1+
This construction is presented in [19, Section 3| in a more general setting.
With the notation from [T9], the space X*2 is ZV(E) with Z = X, V =/,
and F the finite-dimensional decomposition of X into the one-dimensional
spaces spanned by the basis vectors (x;):2; of X. Clearly, the definition of X &2
depends on our choice of (x;):2,. However, we shall omit reference to this
dependence in notation.

Note first that (e;)$2, is a basis for X2 which is an unconditional basis for
Xt if (x;)$2, is unconditional in X. Furthermore, the map e; — z; extends
to a well defined linear operator I : X — X of norm 1. Note also that
(e;)%2, is a bimonotone basis for X2, even if (2;)$2, is not bimonotone in X.

PROPOSITION 3.1. Assume that ()2, is a shrinking basis of X. Then:

(i) The space X* is reflexive. In particular, (€;)32, is a shrinking and
boundedly complete basis of X*.
(ii) The space (X*2)* is 2-AUS. In particular, Sz((X*)*) = w.



10 R. M. Causey and G. Lancien

Proof. Statement (i) is a particular case of [19, Corollary 3.4].

(ii) Since (e;)$2; is shrinking, (X*2)* can be seen as the closed linear span
of {ef :i € N}. Now it is clear that if z*, y* € (X*2)* with maxsupp(z*) <
min supp(y*), then ||z* + y*||* < [|[2*||? + [|y*||*. Here, the support is meant
with respect to the basis (e})%°, of (X*2)*. Hence (X*2)* is 2-AUS and has
Szlenk index w.

Note that this also implies that the bidual norm on (X%2)** is weak*-
AUC and, by Proposition re-proves the fact that X* is reflexive, since
we know that (e;)5°; is shrinking. m

Our next proposition provides a crucial estimate for Sz(X*?).

PROPOSITION 3.2. Assume that (x;);2, is a shrinking basis of X. Then
SZ(XZQ) < Sz(X).

Our strategy will be to show that Sz(X‘) < Sz(f2(X)), where £5(X)
is the space of sequences (z,)%°; in X such that > °° ||z, ||% is finite,
equipped with its natural norm,

© 1/2
l@niillecn = (3 leall)
n=1
Then the conclusion will follow from the well known fact that Sz(¢2(X)) =
Sz(X) when X is infinite-dimensional (see [5] for a general study of the
behavior of the Szlenk index under direct sums).

Let Mj be the set of all sequences (y;)72; in By, x+) such that there
exist n € Nand 0 = kg < --- < kp—1 with the following properties: for
every 1 <4 < n, y; belongs to the linear span of {z7 : ki_1 < j < k;},
Yy, belongs to the closed linear span of {z} : j > k,—1} and y; = 0 for all
i > n. Then we denote by M3 the set of all sequences (y;)f2; in By,(x+) such
that there exists an infinite sequence 0 = kg < k1 < --- such that for all
i € N, y7 belongs to the linear span of {x} : k;—1 < j < k;}. Finally, we set
M = M; U Ms.

It is easy to check that M is weak*-compact in lo(X*) = lo(X)*.

Recall that T : X — X denotes the continuous linear map such that
I(e;) = x; and ||I|| = 1, and define j : M — (X*)* by

Yyt =) €M, Gyt = Ty}
=1

An elementary application of the Cauchy—Schwarz inequality shows that j
is well defined and

vyt e M, {5y )l xy < N6 leaxe):

It is also easy to verify that j is weak*-to-weak®™ continuous.
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Note that the set j(M) can be less formally described as the set of all
Z;; bje; such that there exists an increasing finite or infinite sequence
(F))kea of blocks of N such that

2
ZHZ bjzj |

k€A jEF,

<1

*

So we now consider the weak*-compact subset K = j(M) of B(XKQ)*. First
we will need to show that K is norming for X*2. More precisely, we have:
CrAM 3.3. There exists a constant ¢ > 0 such that
Vo€ X2, ||zl xe > c sup 2*(2).
z*eK

Proof. Let C > 1 be the bimonotonicity constant of the Schauder basis
()32, of X, let z = 2 ae; € X% and e > 0. Pick 0 < ko < -+ < ky,

such that
2\ 1/2
> > wa) > el ==
=1 j=k;—1+

It follows from the Hahn—Banach theorem that for all 1 <4 < n, there exists
uf € X* with supp(u}) C (ki—1, k;] and such that

ki ki
uj( Z aja;j>:H Z ajijX and |juj||x+ < C.

j=ki—1+1 j=ki—1+1

We now set
[ s
Y= — ]k":“]] 1212for1§i§n, y; =0 for i > n.
C(>oiey ||ijzk2‘_1+1 a;zill%) /

It is then clear that y* = (yl*)fil € M and

=S| 35 sl s s

.7_7,1

CraM 3.4. The function j : M — K is 2C-Lipschitz, where C is the
bimonotonicity constant of the basis (x;)72, in X.

Proof. Fix y* = (y})2,,2* = (2})2; € M. Then there exist S,7 C N
and sequences (Is)ses, (J¢)ter of successive intervals, where S, T are (pos-
sibly infinite) initial segments of N, {i : y* # 0} C 5, {i : 2 # 0} C T,
and for each s € S and t € T, supp(y:) C I, and supp(z;) C J; (here the
supports of y; and z; are meant with respect to the basis (z})52; of X™).
By allowing either Iy = () or J; = () for s > max .S or ¢ > maxT, we may
assume S =T = N. For each ¢ € N, consider three cases:



12 R. M. Causey and G. Lancien

(a) Ji (- Ii,
(b) I; C J,
(c) neither (a) nor (b) holds.
If (a) holds, let
uj =y; —2z; €span{z;:j € ;} and v; =0 € span{xz]:j€ Ji}.
If (b) holds, let
u; =0 €span{z} : j € I;} and v =y; — 2] € span{x} : j € Ji}.
If (c) holds, let
u; = Py g (yi — 7)) € span{aj : j € L;},
;= Pj(y; — z) €span{z} : j € J;}.
Here, for an interval I, Py : X — span{z; : j € I} denotes the basis
projection. Note that in case (c), I; \ J; is an interval. Then, since each
vector uy, v} is either zero or an interval projection of ¥ — 27, we see that
for each i, Huz HX* < CHyz % HX* and ||vz HX* < CHyz
that v* = (u})2,, v* = (v})2; lie in ¢5(X)* and ||u* HEQ(X
Clly* — 2*[|gy(x)+- Because the (u])§2; are successively supported another
application of the Cauchy-Schwarz inequality implies that » ;o uf is norm
convergent in (XEQ) with [|3572 ufll(xe2)s < Clly" — 2*|ley(x)+- Similarly,

[t z Vf ooy < Clly* = 2%y (x)=- Since j(y*) — j(2%) = 22197 — 2 =
Yo uf + vl We conclude that

17(y*) — 3zl (xe2) < 2C[Y" — 2" [ley(x)

Proof of Proposition [3.2. It is easily seen that if F and F are Banach
spaces, B C E* and C' C F* are weak*-compact and f : B — (' is a
weak*-to-weak® continuous Lipschitz surjection from B to C, then Sz(C) <
Sz(B) (see [1, Lemma 2.5(i)]). It follows from this fact and Claim that
Sz(K) < Sz(M). On the other hand, since M C By, (x)-, we deduce from [3]
that Sz(M) < Sz(f2(X)) = Sz(X). Combining these yields Sz(K) < Sz(X).
Denote by L the weak*-closed convex hull of K. It follows from Claim
and the geometric Hahn—Banach theorem that cB(Xz.Q)* C L C B(xts)--
Finally, we can apply [7, Theorem 1.1] to deduce Sz(L) < Sz(X) from
Sz(K) < Sz(X). =

The construction of our family (Ga)aer\a of spaces will also rely on the
use of the Schreier families. These were introduced in [2]. Let us now recall
the definition of the Schreier family S, for a a countable ordinal. Recall that
[N]<“ denotes the set of finite subsets of N, which we identify with the set of
void or finite, strictly increasing sequences in N. We complete the notation
introduced in Section 2 by writing £ < F to mean max F < min F, and
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n < E to mean n < min E. For each countable ordinal o, S, will be a subset
of [N]<%. We let

So = {0}u{(n):n €N},

n
SaH:{@}U{UEi:neN,@#Eiesa, E1<---<En,n§E1},
i=1
and if @ < wj is a limit ordinal, we fix an increasing sequence (o, )5 ; tending
to a and let
Sa={Fc|N*:In<EecS,,}

In what follows, [N]<“ will be topologized by the identification [N]<¥ 3 E <>
1g € {0,1}Y, where {0,1}" is equipped with the Cantor topology.

Given (m;)k_,, (n;)k | in [N]<%, we say (n;)%_, is a spread of (m;)F_, if
m; < n; for each 1 <1¢ <k.

We say that a subset F of [N]<¥ is

(i) spreading if it contains all spreads of its members,
(ii) hereditary if it contains all subsets of its members,
(iii) regular if it is spreading, hereditary, and compact.

Given F,G C [N]<N, we let
FlG] = {@}U{U Ei:neN0#£E, €G Ey1<--<E,, (mnkE;), € .7:}.
i=1

We refer to [§] for a detailed presentation of these notions and their funda-
mentals properties.

For a topological space F, we denote F' its Cantor-Bendixson derived
set (the set of its accumulation points), for an ordinal o we let F< be its
Cantor-Bendixson derived set of order «, and finally CB(F) is its Cantor—
Bendixson index.

We note that if F and G are regular subsets of [N]<%, then F[J] is reg-
ular; and if the Cantor-Bendixson indices of F and G are o+ 1 and g+ 1,
respectively, then the Cantor-Bendixson index of F[G] is Sa + 1 (see [,
Proposition 3.1]).

For each n € N, let

A, ={E € [NJ*¥: |E| < n}.

It is well known that for each a < wi, S, is regular with Cantor-Bendixson
index w*+1. Moreover, for each n € N, A,, is regular with Cantor-Bendixson
index n+ 1. These facts together with those cited from [§] yield the following.

LEMMA 3.5. Fiz an ordinal o« < w1 and n € N.

(1) A,[Sa] is regular with Cantor-Bendizson index w*n + 1.
(ii) For any B<wi, Sp[Sa] is regular with Cantor—Bendizson index w* P+1.
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LEMMA 3.6. If F and G are reqular families, E < F # 0, and E,EUF
€ FI[G], then either E € F![G] or F €G.

Proof. Write E U F = J!' | E;, where ) # E; € G, Ey < --- < Ep, and
(min E;)]* , € F.
If ENE, = 0, then there exists 1 < m < n such that ENE; # ) for each
i <mand ENE; = for each m <i <n.
If m =1, then E =0 € F, since ) < (min E;)", € F.
If m > 1, then the representation
m—1
E=J(ENE)
i=1
witnesses that E € F[G], since (min E;)"7" € FL.
Now if ENE, # 0, then F=FE,\ECE,,and F€G. n

We are now ready to prove Theorem that is, to construct for each
a € I'\ A a reflexive Banach space G, with an unconditional basis and such
that Sz(G,) = a and Sz(G},) = w.

So, let o € I' \ A. We write a = w® with § € (0,w;). Then by standard
facts about ordinals, either § = w¢ for some ordinal ¢ € [0,w;), or § = B+~
for some 3,7 < 6. We shall separate our construction into these two main
cases.

3.1. First case: § = w® with ¢ € [0,w;). In this situation, & must be
either 0 or a successor ordinal, otherwise o € A.

If£=0,let F, =S for all n € NU {0}.

If&E=C+1, let Fo =So and Frpq = S¢[Fr] for n € N.

In both cases, denote

Mn:{Q’"Ze;‘:EEFn} forn € {0}UN and M =[] M,,
i€eE n=0

where (e})7°, is the sequence of coordinate functionals defined on cqp.

Then we define &, to be the completion of ¢oy with respect to the norm
[zlle, = sup [z*(x)].
z*eM

Note that the canonical basis of cgg is a 1-suppression unconditional basis
of &,. To keep our notation consistent, we shall denote by (x;):°; this ba-
sis of &,. The reason is that we need next to set G, = (’5(‘;2, where this
construction is meant with respect to the basis (z;)22,, which we shall later
call the canonical basis of &,. On the other hand (e;)?2; will still denote

the canonical basis of cgy considered as a basis of G,. Finally, we define the
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following subsets of &:

K, = {2*"295;‘ : Ee]—“n} forne{0}UN and K =|]JK,.
S n=0
Later, the sets M,, and M will be considered as subsets of GJ,.
It is easily checked that &, = ¢y and G, = #5. Clearly G|, is reflexive with
an unconditional basis and Sz(G,) = Sz(G},) = w. So we shall now assume
that ¢ is different from 0 and is therefore a countable successor ordinal.

PROPOSITION 3.7. Assume a = w‘”g, where £ is a countable successor

ordinal. Then Sz(B,) < a.

Proof. By [7, Theorem 1.1], it is sufficient to prove that Sz(K) < a, since
Bg:, is the weak*-closed, absolutely convex hull of K.

First, it is easy to see that for any € > 0 and any ordinal 7,

oo
$1(K) € {0} U | s2(Ka),
n=0
whence
Sz(K,e) < < sup Sz(Kn,£)> +1.
neNU{0}
Thus it suffices to show that sup,enygoy Sz(Kn,€) < a for each £ > 0.

For a given € > 0, we will provide an upper estimate for Sz(K,, 2¢) in
one of two ways, depending on whether n is large or small relative to €. The
Cantor—Bendixson index of K, is an easy upper bound for Sz(K,, 2¢), which
is a good upper bound for small n. We note that the map ¢, : F, — K,
given by ¢,(E) = > ,cp; is a homeomorphism from F,, to K, where K,
is endowed with its weak™ topology. It follows that for any n € NU {0} and
any € > 0,

Sz(Kp,e) < CB(K,) = CB(F,).

We now turn to bounding Sz(K,, 2¢) for large n. Recall that £ = ¢ + 1
with ¢ € [0,w;). We now prove that if 27 < g, then for any n > m and any

ordinal 7,
sa (K. {2 ”Zw :E e F! ]}
i€l

The proof is by induction on 7, with the base case following from the fact
that F,[Fp] = Fayp for any a,b € N. The limit ordinal case follows by taking
intersections. Finally, assume we have the result for some 1 and

27" Z:L‘ e s (K,),

el
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so that the inductive hypothesis guarantees that E € F/h[F,—_m]|. Then there
exists a sequence

(0.9}
(2 "in>j: C so.(Ky {2 "Zx :E e Fl[Fn- ]}
’LGE]' i€ER
converging weak* to 27" ZJEE x; and such that

lijxgingQ "N a2 ”Z

i€l S

> €.

&g,

Of course, this means that E; — E in F,, so that, after passing to another
subsequence, we may assume E; = E U Fj for some F; # () with E < F.
Now since E, Ej € Fh[Fpn—m) for each j, by Lemmaeither Fj € Fpem or
E € FN [ Fuim]. However, if F; € Fy—m, then 277 ZieFj r; € Bgx and

vjeN, |2 ar-2 ”Z . =27 Y

i€ER J ’iGFj

<27 < g,

a contradiction. This concludes the successor case.
We now deduce from the inclusion just proved that

s () < {en et B e B ) =0,
i€ER

So, we can estimate

Sok20) < |0 L n < logy(1/e),
= o 11, > logy(1/0),

which finishes the proof of Proposition .

Proof of Theorem in the first case. Let a = w‘”g, where £ is a count-
able successor ordinal and &, GG, are constructed as above.

Since the canonical basis (x;):°, of &, is 1-suppression unconditional, it
is clear that (e;)$°; is a l-suppression unconditional basis for G. Proposi-
tion [3.7 ensures that Sz(®,) < « and therefore &, does not contain ¢1. Then
a classical result of R. C. James [12] shows that (x;)$°; is a shrinking basis
of 8,. Thus we can apply Proposition [3.1]to deduce that G, is reflexive and
Sz(GY) =w

We also deduce from Proposition [3.2 that Sz(G,) < Sz(®,) = a.

Now we have to prove that Sz(G,) > «. So write again o = w* with
¢ € [0,wy). Suppose n € N and E < F are such that F' € F,,. Fix k € F\ E.

Note that
27" Z e;j € My,
ieF
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and

HQ*”Z@Z—Q’"ZQ? G > ‘(Q*HZG;&_anZez)(ek)‘ —9

ick el ieE i€l

since |legx]|G, = 1. From this and an easy induction argument, we see that
27"y icper € sy .1 (Bgy) for any n € N, any 0 < p < CB(F,) and any
E € Ff. Since CB(F,) = (w‘*’g)” = w¥'" we deduce that
Sz(Gy) > sup W’ = =
neN

This finishes the proof and our construction for a = w** with ¢ being a
countable successor ordinal. =

3.2. Second case: § =  + v for some 3,7 < . We will now slightly
modify our construction in order to treat the case of @ = WP with w? <
and w” < a. We have to consider two subcases.

First suppose 7 is a limit ordinal. We fix 79 = 0 and an increasing
sequence ()52 such that sup,cyyn = 7. Then we set

Fo=8s and F,=3S8,,[Sg] forneN.
If v = (¢ + 1 is a successor ordinal, we set
Fo=3S8p4¢c and F, = A,[Spy¢] forn eN.

In either case, let

[e.@]
M, = {2*”2(3; : Ee]—“n} forn € {0}UN and M = | J M,.
el n=0
As in Subsection [3.1, we define &, to be the completion of coy with
respect to the norm ||z||g, = sup«cy |2*(z)| and let G, = &2, where this
construction is meant with respect to the canonical basis (z;)72; of &,. As
previously, we define

o0
K, = {2‘”2:{:;k ' E e}'n} forne {0} UN and K = U K,.
el n=0
PROPOSITION 3.8. Assume that o s a countable ordinal that can be writ-
ten as a = WP with w® < a and WY < a. Then Sz(®,) < a.

Proof. Again, it is sufficient to show that Sz(K) < «. Arguing as in
Proposition we first note that for any € > 0 and n € N,

Wt 41, 4 a limit,

Su(K,, ) < CB(F,) =
“(Hn,€) () {w6+“n+l, vy=C(+1.
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Now for n € N and € > 0 such that 27" < ¢, we claim that for any ordinal 7,

27"y gl E €8, [Ssl}, ~ a limit,
sy c {12 Rieei EESLISIE - va

The proof is even easier than the analogous proof in the first case, so we
omit it. Note that in particular when ~ is a limit ordinal and 27" < ¢, we
have 8" = (), whence the previous claim yields the estimate Sz(K,, 2¢)
WY < WPt when 27" < e. Similarly, since A% = (), we see that Sz(K,, 2¢)
w < Wt when 277 < e,

Therefore for n < logy(1/¢),

<
<

Bt 4 1 limit
Su(K,,2¢) < CB(F,) =4 L yaimt
Wwtrn +1, y=(+1,

and for n > log,(1/¢),
w?, v alimit,
w, y=¢+1L

Thus in either case, for every & > 0, sup,enu{oy Sz(Ky,e) < a, yielding the
result. m

Proof of Theorem in the second case. The end of the proof is the
same as for the first case, after noting that CB(F,,) = w®* + 1 when 7 is
a limit ordinal, and CB(F,) =w/*n+1ify=(+1. u

Sz(Kp,2¢e) < {
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