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How to play to win?

You have to begin!

• In theory, the first player (Red) can always win. We
say that Red has a winning strategy.

• It’s similar with the tic-tac-toe...
• and chess.

What’s the point of playing if the first one
always wins?

• For the boards of size 10× 10 and larger, no one
knows the winning strategy.
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So how to play?

A hint
Try to “build bridges” :

..and prevent your adversary from building them.



What is a winning strategy?

• Let :
Ω ... the set of all possible configurations of stones in the
game.
ΩR ... the set of the configurations "Red’s turn"
ΩB ... the set of the configurations "Blue’s turn"
o ... the configuration "empty board"

• We then have Ω = ΩR ∪ ΩB and o ∈ ΩR.
• We denote τ ∈ succ(ω) for ω, τ ∈ Ω such that one can

reach the configuration τ from the configuration ω in
exactly one move.

• A strategy for the Red player is a function S : ΩR → ΩB
which respects the rules of HEX, that is S(ω) ∈ succ(ω) for
all ω ∈ Ω.
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We split the terminal configurations acoording to their winner in
3 disjoint subsets :

R = {Red wins} B = {Blue wins} N = {tie games}

A sequence of configurations (ωi)
m
i=0 ⊂ Ω will be called a

complete play if it satisfies

• x0 = o • ωi+1 ∈ succ(ωi)
for all i < m

• ωm ∈ R ∪ B ∪ N
• ωi /∈ R ∪ B ∪ N if i < m

Winning strategy for Red
A strategy S of the Red player is winning if for every complete
play (ωi)

m
i=0 ⊂ Ω which satisfies

ω2i+1 = S(ω2i) for all i < m/2

we have necessarily ωm ∈ R.
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A general case

Can we do a similar analysis for the board of size n × n?

• In theory, yes.
• In practice, it’s impossible already for 10× 10 boards.
• In fact, it’s only in 2003 that a winning strategy was found

for the 9× 9 boards (J. Yang, S. Liao, M. Pawlak).

Exercise

• Find a winning strategy for Red on the 3× 3 board.
• What about if we forbid Red to play the central tile in the

first turn?



A general case

Can we do a similar analysis for the board of size n × n?

• In theory, yes.

• In practice, it’s impossible already for 10× 10 boards.
• In fact, it’s only in 2003 that a winning strategy was found

for the 9× 9 boards (J. Yang, S. Liao, M. Pawlak).

Exercise

• Find a winning strategy for Red on the 3× 3 board.
• What about if we forbid Red to play the central tile in the

first turn?



A general case

Can we do a similar analysis for the board of size n × n?

• In theory, yes.
• In practice, it’s impossible already for 10× 10 boards.

• In fact, it’s only in 2003 that a winning strategy was found
for the 9× 9 boards (J. Yang, S. Liao, M. Pawlak).

Exercise

• Find a winning strategy for Red on the 3× 3 board.
• What about if we forbid Red to play the central tile in the

first turn?



A general case

Can we do a similar analysis for the board of size n × n?

• In theory, yes.
• In practice, it’s impossible already for 10× 10 boards.
• In fact, it’s only in 2003 that a winning strategy was found

for the 9× 9 boards (J. Yang, S. Liao, M. Pawlak).

Exercise

• Find a winning strategy for Red on the 3× 3 board.
• What about if we forbid Red to play the central tile in the

first turn?



A general case

Can we do a similar analysis for the board of size n × n?

• In theory, yes.
• In practice, it’s impossible already for 10× 10 boards.
• In fact, it’s only in 2003 that a winning strategy was found

for the 9× 9 boards (J. Yang, S. Liao, M. Pawlak).

Exercise

• Find a winning strategy for Red on the 3× 3 board.
• What about if we forbid Red to play the central tile in the

first turn?



Red has always a winning strategy!

Proof

1. Blue can’t have a winning
strategy.

2. It follows that Red has a
non-losing strategy.

3. There are no tie-games
(N = ∅).

4. So the non-losing strategy
of Red is in fact a winning
strategy.
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• We suppose that Blue has
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• Red can “steal” it : he will
use a strategy Ŝ derived
from S by inverting the
colors.

• Any play must finish (at the
latest after n2 turns).

• Both players win – we get
a contradiction.
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Theorem of Hex
Theorem (J. Nash, 1952)
Let n ∈ N. Let us suppose that every tile of the n × n board is
painted either by red or by blue. Then there exists either a red
path which conects the red sides or a blue path which connects
the blue sides.



Proof (David Gale, 1979)
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Remarks

• The fact that at least one of the players has a non-losing
strategy is still true for every finite game with perfect
information (Zermelo’s theorem).

• The fact that the second player can’t have a winning
strategy is true if the game is moreover symmetric.

• These results belong to the game theory.
• The theorem of Hex implies a fundamental theorem in

topology :

Theorem (Brouwer’s fixed point theorem,1909)
Let f : [0,1]2 → [0,1]2 be a continuous function. Then there
exists x ∈ [0,1]2 such that f (x) = x.
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Thank you for your
attention!
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