LP—MAXIMAL REGULARITY ON BANACH SPACES WITH
A SCHAUDER BASIS

N. J. KALTON AND G. LANCIEN

ABSTRACT. We investigate the problem of LP-maximal regularity on Ba-
nach spaces having a Schauder basis. Our results improve those of a recent
paper. We also address the question of L"-regularity in L*® spaces.

1. INTRODUCTION

We will only recall the basic facts and definitions on maximal regularity.
For further information, we refer the reader to [2], [4], [8] or [7].
We consider the following Cauchy problem:

{ u(t)+ Bu(t)) = f(t) for0<t<T
u(0) =0

where T € (0,400), —B is the infinitesimal generator of a bounded analytic
semigroup on a complex Banach space X and u and f are X-valued functions

n [0,7). Suppose 1 < p < oo. B is said to satisfy LP—mazimal reqularity if
whenever f € LP(]0,7); X) then the solution

u(t) = /Ot e IB f(s) ds

satisfies v’ € LP([0,7); X). It is known that B has LP-maximal regularity
for some 1 < p < oo if and only if it has LP-maximal regularity for every
1 <p<oo[3],[4], [14]. We thus say simply that B satisfies mazimal regularity
(MR).

As in [7], we define:

Definition 1.1. A complex Banach space X has the mazimal reqularity prop-
erty (MRP) if B satisfies (MR) whenever —B is the generator of a bounded
analytic semigroup.

Let us recall that De Simon [3] proved that any Hilbert space has (MRP),
and that the question whether L9 for 1 < ¢ # 2 < oo has (MRP) remained
open until recently. Indeed, in [7] it is shown that a Banach space with an
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unconditional basis (or more generally a separable Banach lattice) has (MRP)
if and only if it is isomorphic to a Hilbert space.

In this paper we attempt to work without these unconditionality assump-
tions and study the (MRP) on Banach spaces with a finite-dimensional Schauder
decomposition. In particular, we show that a UMD Banach space with an
(FDD) and satisfying (MRP) must be isomorphic to an ¢ sum of finite di-
mensional spaces.

In the last question we consider the question of whether the solution u of
our Cauchy problem satisfies v’ € L*([0,T; L") if f € L*([0,T); L*).

This work was done during a visit of the second author to the Department of
Mathematics of the University of Missouri in Columbia in fall 1999; he would
like to thank the Department for its warm hospitality.

2. NOTATION AND BACKGROUND

We will follow the notation of [7]. Let us now introduce more precisely a
few notions.

If Fis a subset of the Banach space X, we denote by [F] the closed lin-
ear span of F'. We denote by (g4)p, the standard sequence of Rademacher
functions on [0,1] and by (hy)72, the standard Haar functions on [0, 1] (for
convenience we index from 0).

Let 1 < p < oco. A Banach space X has type p if there is a constant C' > 0
such that for every finite sequence (zx)r_; in X:

1 K K
( / 1S el dn? < (S agl?) 7.
0 k=1 k=1

Notice that every Banach space is of type 1. A Banach space X is called
(UMD) if martingale difference sequences in Ly([0,1]; X') are unconditional
i.e. there is a constant K so that for every martingale difference sequence

(f))_, we have

N N
1D 0k fillaco < KNI fellzaeo
k=1 k=1

if supg<n |0k < 1.

Let (E,).>1 be a sequence of closed subspaces of X. Assume that (E,),>1
is a Schauder decomposition of X and let (P,),>1 be the associated sequence
of projections from X onto E,. For convenience we will also denote this
Schauder decomposition by (E,, P,)n,>1. The decomposition constant is de-
fined by sup, || > %_, Pll; this is necessarily finite. If each (E,) is finite-
dimensional we refer to (E,,) as an (FDD) (finite-dimensional decomposition);
an unconditional (FDD) is abbreviated to (UFDD).
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If (E,),>1 is a Schauder decomposition of X and (u,)Y_, is a finite or infinite
sequence (i.e. N < o0) of the form w, = > ;" " 1417k Where x5, € Ej and
l=ro<mr <. <r,<.,then (u,),>1 is called a block basic sequence of the
decomposition (E,).

We denote by w<“ the set of all finite sequences of positive integers, including
the empty sequence denoted (). For a = (ay,..,a,) € w<¥, |a|] = n is the
length of a (|| = 0). For a = (aq,..,ax) (respectively a = (), we denote
(a,n) = (ay,..,ax,n) (respectively (a,n) = (n)). A subset § of w<“ is a branch
of w<¥ if there exists (0,)5; C N such that 8 = {(01,..,0,); n > 1}. In this
paper, for a Banach space X, we call a tree in X any family (y,)acw<e C X.
A tree (Ya)acw<w 18 weakly null if for any a € W<, (Y(a,n))n>1 is a weakly null
sequence.

Let (Ya)acw<w be a tree in the Banach space X. Let T C w<¥, (Ya)aer is a
full subtree of (Yq)acw<e if @ € T and for all a € T, there are infinitely many
n € N such that (a,n) € T. Notice that if (y,)aer is a full subtree of a weakly
null tree (Yq)acw<w, then it can be reindexed as a weakly null tree (z,)qen<w

We now state a result of [7] that will be an essential tool for this paper:

Theorem 2.1. Let (E,, P,),>1 be a Schauder decomposition of the Banach
space X. Let Z, = P:X* and Z = [UX,Z,]. Assume X has (MRP). Then
there is a constant C’ > 0 so that whenever (u,)N_, are such that u, €
[Eap_1, Eayn) and (u?)N_, are such that u¥ € [Zan_1, Zap) then

or N o N 1/2
e o dt om0 A
E:Pn 272 <0/ Zn12t2
(/0 H ot oanUn€ || 27T> = 0 || — Un€ || 27T

27 dt 1/2 21 N dt 1/2
I E Py une ’2nt||2 <C / 1Y une™ )=
(/0 n=1 2 0 =1 2

We observe that, by a well-known result of Pisier [12] these inequalities can
be replaced by equivalent inequalities (with a modified constant) using & in

/2

and

place of €2 :
N N
(2.1) 1Y Prnttnenllrax) < CID - wngnllnai)
n=1 n=1
and
(2.2) | ZPML enllLox) < Cl ZU EnllLa(xe)-
n=1

We refer the reader to [15] for further recent developments in this area.
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3. THE MAIN RESULTS

We begin with a general result on spaces with a Schauder decomposition:

Theorem 3.1. Let X be a Banach space of type p > 1 and with a Schauder
decomposition (E,)3 . If X has (MRP), then there is a constant C' > 0
so that for any block basic sequence (uy)N_, with respect to the decomposition

| 1 N K
: = 2 < tyug||? dt < 2,
39 gl < [ I a0ula <3 jul

Proof. If the result is false we can clearly inductively construct an infinite
normalized block basic sequence (u, )32 ; so that there is no constant C' so that
for all finitely nonzero sequences (ag)3; we have:

N 1 N N
1 2 2 2
(3.4) 5;'“’“‘ g/o H;akek(t)ukﬂ dth;]ak\

It therefore suffices to show that (3.4) holds for every normalized block basic
sequence (u,)5 ;. We can clearly then suppose u,, € E,.

We next use a theorem of Figiel and Tomczak-Jaegermann [5] combined
with [13] (see also [10] p.112) that, since X has nontrivial type for every n € N
there exists p(n) € N so that any subspace F' of X with dimension ¢(n) has a
subspace H of dimension n which is 2-complemented in X and 2-isomorphic
to (3.

Assume (3.4) is false. Then we can inductively find a sequence (ay,),>1 and
an increasing sequence (7, ),>0 with ro = 0 so that 79, > 79,1+ (ren—1—"ron—2)
forn > 1,

T2n+1

Dl =1

ron+1

and either

1 T2n+1
/|| > apsk(tyug dt > 2
0

k:r2n+1

or
T2n+1

1
/H > werBu]?dt <27
0

k=ron+1

In order to create new Schauder decompositions of X, we will need the
following elementary lemma, that we state without a proof:
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Lemma 3.2. Let (E,),>1 be a Schauder decomposition of a Banach space X .

Mmn

Assume that each E,, has a finite Schauder decomposition (F, )i, with a uni-

form bound on the decomposition constant. Then (Fy,- -+, Fimy, Fox, - Fomy, - -

is also a Schauder decomposition of X.

We denote the induced decomposition by Y 2, (>, GF, ).

Now by assumption E,, 1+ +E,, which has dimension at least ¢(rg, —
Ton—1) contains a subspace H,, which is 2-Hilbertian and 2-complemented in
X. Let G,, be the complement of H,, in E,, 41+ -+ E,,, by the projection
of norm 2. At the same time [u] is 1-complemented (by the Hahn-Banach
theorem) in Ej, for 1o, 1+1 < k < 1y, and let F}, be its associated complement.
We thus have a new Schauder decomposition:

(Fla [Ul], F27 ['UQ], e 7F’r‘1a [url]a Hla Gla FT2+17 [ur2+1]a Y [UT3]7 H27 G27 o )
If we write D,, = F,,,_,+1++ -+ F.,,_, + G, then we have a Schauder decom-
position

> (D, @ H, ® Z D[u).-
n=1 k=ron_o+1

Ton—1 ,+1 of Hj, which is 2-equivalent to

Next select a normalized basis (v ), 2.

the canoncal basis of £, "', Tt is easy to see that we can obtain a new

Schauder decomposition by interlacing the (vy) with the (ug) i.e.:

(35) Z(Dn 52 [Ur2n72+1] ® [,U7'2n72+1] ©--- O [U’TZn—l] b [UTZn—l])'
n=1

Now again using Lemma 3.2 we can form two further decompostions:

[e.e]

(36) Z(Dn@[urzn_2+1 +vr2n—2+1]®[vr2n—2+1]@' ’ '@[urzn—1 +vr2n—1]@[vr2n—l])7

n=1

and

(37) Z(Dn@[uwnfﬁl +U7’2n72+1]®[ur2n72+1]@. ) .EB[,U”?n—l +U7‘2n71]€B[u7'2n71])'

n=1
Now we can apply Theorem 2.1. If we use decomposition (3.6) we note that
ur = (up + vg) — g and so for a suitable C' and all n,

Ton T2n—1
I D a(ut+oerllmeo <Ol Y akwekl|ny-
k=ron_2+1 k=ron_2+1

However, using decomposition (3.5) there is also a constant C’ so that

T2n T2n

l Z akVkeR|| Lo (x) < Z ar (U + V)er| Lo (x)-

k=ron_o+1 k=ron_2+1
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This leads to an estimate:

T2n—1 T2n—1
doodal ] <Gl YD akuekll, -
k=ron_2+1 k=rop_2+1

If we use decomposition (3.7) instead we obtain an estimate:

1

2

T2n—1 T2n—1
ok
| Z arpure™ || Lyx) < Oy Z |ay,|”
k=ron_2+1 k=ron_2+1

Combining gives us (3.4) and completes the proof.

U

Let us first use this result to give a mild improvement of a result from [7]:

Theorem 3.3. Let X be a reflexive space with an (FDD) and with non-trivial
type which embeds into a space Y with a (UFDD). If X has (MRP) then X is

isomorphic to an lo—sum of finite-dimensional spaces (D - | BEy)q,.

Proof. Using Proposition 1.g.4 of [9] (cf. [6]) we can block the given (FDD) to
produce an (FDD) (E,) so that (Fa,)%, and (Es,_1)22, are both (UFDD)’s.
Let us denote, as in Theorem 2.1, the dual (FDD) of X* by (Z,)%°,. Now
it follows applying Theorem 3.1 to both X and X* (which also has (MRP))
that there exists a constant C so that if z,, € E,, and z € Z,, are two finitely

nonzero sequences

oo o0
1
1> 2ol <CO_ llwarsl*)?
k=1 k=1

oo o

1

1D asiyll < O syl
k=1 k=1

for 7 =0, 1. Hence

o0 oo i
1Dzl <203 ll=ll?)z
k=1 k=1

0 . o0 . .
1D @il <200 laill®)z.
k=1 k=1

Now for given z; we may find y;; € X* with |ly;|| = ||z&]| and yr(x}) = ||z%]].
Let z; = Ply; (where P, : X — EJ is the projection associated with the FDD
(E,)). Then ||z}|| < Ci||zg|| where Cy = sup,, || P.|| < oo. Hence if (xx)52, is

finitely nonzero, we have

1> @il < 20C (Y llzl®)>.
k=1 k=1



LP—MAXIMAL REGULARITY ON BANACH SPACES WITH A SCHAUDER BASIS 7

Thus

oo oo
Do lleell® =) i)
k=1 k=1

= (D)X )

k=1

<2CC (Y NailP)zl )l
k=1

k=1
so that we obtain the lower estimate:

O llal®)z <20C1 Yl
k=1 k=1

This completes the proof. O
We next give another application to (UMD)-spaces with (MRP).
Theorem 3.4. Let X be a (UMD) Banach space with an (FDD) satisfy-

ing (MRP). Then X is isomorphic to an ly-sum of finite dimensional spaces,
(ZZO:I @En)b'

Proof. Let (E,) be the given (FDD) of X. We will show first that there is
a blocking (F},) of (E,) which satisfies an upper 2—estimate i.e. if there is
a constant A so that if (z,) is block basic with respect to (F},) and finitely
non-zero then

(3.8) 1D all < AQ llzal)2.

Once this is done, the proof can be completed easily. Indeed if (Z,,) is the
dual decomposition to (F,,) for X* then we can apply the fact that X* also
has (MRP) (X is reflexive) to block (Z,) to obtain a decomposition which
also has an upper 2-estimate. Thus we can assume (F},) and (Z,,) both have
an upper 2-estimate and then repeat the argument used in Theorem 3.3 to
deduce that X = (307 ®F,)e,.

Since X necessarily has type p > 1, we can apply Theorem 3.1 and assume
(E,) obeys (3.3).

We now introduce a particular type of tree in the space Ly([0,1); X). Let D,
for n > 0 be the sub-algebra of the Borel sets of [0, 1) generated by the dyadic
intervals [(k — 1)27",k27") for 1 < k < 2". Let E,, denote the conditional
expectation operator E, f = E(f|D,,).

We will say that a tree (f,)sew<e is @ martingale difference tree or (MDT) if

e cach f, is D|,— measurable,
o if |a| > 0 then E_1f, =0,
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e there exists N so that if |a| > N then f, = 0.

In such a tree the partial sums along any branch form a dyadic martingale
which is eventually constant.
We will prove the following Lemma:

Lemma 3.5. There is a constant K so that if (fo)ecw<e s a weakly null
(MDT), there is a full subtree (f,)aer so that for any branch 8 we have:

1" Fallzac) < KT £al2 000

a€p acp

Proof. For each a we define integers m_(a) and m. (a). If f, # 0 we set m_(a)
to be the greatest m so that

1Y Pofall oy < 277 fall Loy
k=1
and m, (a) to be the least m > m_(a) so that

1> Pefallae < 277 fall o)
k=m+1
If fop =0 weset m_(0) =0 and m,(0) = 1; if f, = 0 where a # () we set
m_(a) to be the last member of @ and m, (a) = m_(a) + 1.
Since (f,) is weakly null we have lim,,_,o, m_(a,n) = oo for every a. It is then

easy to pick a full subtree T" so that m_(a,n) > m,(a) whenever a, (a,n) € T.
my

Now let g, = k:n(qa,)(a)+1 Ja- Then Hfa - ga”Lz(X) < 27‘a|||fa||L2(X)'
For any branch 8 of T, we have that g,(t) is a block basic sequence with
respect to (E,) for every 0 < ¢ < 1. Hence

(/ IIZ€|a|(S)9a(t)I|§¢dS) SC(lega(t)H?() :

0 a€p a€p

Integrating again we have

1 3 3
</0 HZQa(S)gaH%Q(X)dS) SO(Z”%H%Q(X)) :

a€p aep

From this we get

(/ ||Z€|a|<5)fa’|iQ(X)d3> <20 <Z||fa|’%2(X)> +Z27‘a|’|fa\|~

0 a€ep acp acp

Estimating the last term by the Cauchy-Schwarz inequality and using the
fact that X is (UMD) we get the Lemma. O
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Now we introduce a functional ® on X by defining ®(x) to be the infimum
of all A > 0 so that for every weakly null (MDT) (f,)acw<e with fo = xxp1)
we have a full subtree T" so that for any branch

(3.9) 1D fallfacey SA+2K2Y [ fall )
a€f a;eég

Note that that since

1D~ falfay < 2002l + 1) falfax)
a€cp aep
a#0
we have an estimate ®(z) < 2||z||>. By considering the null tree we have
F(z) > |z||*. Tt is clear that ® is continuous and 2-homogeneous. Most
importantly we observe that ® is convex; the proof of this is quite elementary
and we omit it. It follows that we can define an equivalent norm by |||z|||? =
®(x) and [[z]| < |[[|z][] < 2[|z] for 2 € X.
Next we prove that if € X and (y,) is a weakly null sequence then

(330)  timsup(|lla+ g+ l[le — vallP) < 2ol 2+ 4K i sup [y

n—oo n—oo

We first note that we can suppose lim,, o |||z + y, ||| and lim,, . ||y, [|* all
exist. Now suppose € > 0. Then we can find weakly null (MDT)’s (f2)aecw<w
with fi' = x4y, so that for every full subtree T' we have a branch  on which:

(3.11) 1> o0 + € > e+l + 2K ) 1217, 00
acp ai(ﬂl)

In fact by easy induction we can pick a full subtree so that (3.11) holds for
every branch. Hence we suppose the original tree satisfies (3.11) for every
branch.

Similarly we may find weakly null (MDT)’s (g7 )acw<w With gj = 2 —y, and
for every branch £,

| ZQZH%z(X) +e> ||z — yall]? + 2K3 Z 192117, -
a€p ai,g

We next consider the (MDT) defined by hy = =z,

y, if0<t<i
hn (1) = 1,
—Yn if 5 <t<1
and if |a| > 1 then

fret—-1) ifo<t<i
h(a,n)(t) == n e 1 2
gr(2t) if 5 <t<1.



10 N. J. KALTON AND G. LANCIEN

Now for every branch of the (MDT) (hg)acw<e with initial element {n} we
have

1
1D hallface + € > S+ walll® + lllz = galll?) + 252 > llhallZ, x).

a€p a€f
la]>1
However, from the definition of ®(x) = |||x|[|* it follows that there exists ng

so that if n > ng we can find a branch S whose initial element is n and such

that
1Y~ hall, o0 < 2P + 2K hallf ) + €

acp a€p
la|>0

Combining gives the equation (for n > ny),

1
5l + 9l + 11z = gall1?) < l2ll]” + 2K lynl* + 2¢.

This proves (3.10). But note that if y,, is weakly null we have lim inf,,_, |||z —
yalll > |||z||| and so we deduce:
lim sup ||| + ya||[* < [[J2]]* + 4K lim sup ||y ||*.

n—oo

Using this equation it is now easy to block the Schauder decomposition (£,,)
to produce a Schauder decomposition (F},) with the property that for any N
ifreFi+---+ Fyandy €Y " ., Fi then

Iz +ylll < @+ ow)(Il]2]|* + 467 [yl*)z,

where dy > 0 are chosen to be decreasing and so that [[y_,(1 + dn) < 2.
Next suppose (zy) is any finitely non-zero block basic sequence with respect
to (F,). By an easy induction we obtain for j =0, 1:

n n—1 n

1

11> woryll] < 452 [T+ Gok-5) O lwansl11%)2
k=1 k=1 k=1

N[

Hence
1
1)l < 32K°(0)  Jlail®)2.
k=1 k=1

This establishes (3.8) and as shown earlier this suffices to complete the proof.
O

Remark. Recently Odell and Schlumprecht [11] showed that a separable
Banach space X can be embedded in an ¢,—sum of finite-dimensional spaces
for 1 < p < oo if and only if X is reflexive and every normalized weakly null
tree has a branch which is equivalent to the usual £,—basis. This result is
closely related to the proof of the previous theorem.
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4. ON L"-REGULARITY IN L°® SPACES

Let s € [1,00). We consider our usual Cauchy problem:

u(t)+ Bu(t)) = f(t) for0<t<T
u(0) =0

where T € (0,400), —B is the infinitesimal generator of a bounded analytic

semigroup on L* = L*([0,1]) and f € L([0,T); L*). Then we ask the following

question: for what values of s and 7 in [1, 00) does the solution

u(t) :/o e =IB f(s)ds

necessarily satisfies v’ € L*([0,T); L")? Thus we introduce the following defi-
nition:

Definition 4.1. Let  and s in [1, 00). We say that (r, s) is a regularity pair if
whenever —B is the infinitesimal generator of a bounded analytic semigroup
on L* = L*([0,1]) and f € L*([0,T); L*), the solution u of

{ w(t)+ Bu(t)) = f(t) for0<t<T
u(0) =0

satisfies v’ € L*([0,T); L").

Notice that it follows from previous results ([3], [8] and [7]) that (s, s) is a
regularity pair if and only if s = 2. This is extended by our next result:

Theorem 4.2. Let r and s in [1,00). Then (r,s) is a reqularity pair if and
only if r < s=2.

Proof. 1t follows clearly from the work of De Simon [3], that if » < s = 2 then
(r,s) is a regularity pair.

So let now (r, s) be a regularity pair. Since L' does nat have (MRP) ([8]), we
have that s > 1. Then, solving our Cauchy problem with B = 0, we obtain
that r < s. Thus we can limit ourselves to the case s > 1 and 1 <r <s.
Then by the closed graph Theorem, for any B so that —B is the infinitesi-
mal generator of a bounded analytic semigroup on L* = L*([0,1]), there is a
constant C' > 0 such that for any f € L*([0,T); L*):

||U,||L2(LS) < C||f||L2(LS)-

Using the inclusion L® C L" for r < s, we can now state the following
analogue of Theorem 2.1:

Proposition 4.3. Let (E,,, P,),>1 be a Schauder decomposition of L*. Assume
that (r,s) is a reqularity pair. Then there is a constant C' > 0 so that whenever
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(un)N_, are such that u, € [Esyn_1, Fay,] then

N N
|| Z P2nun€n||L2(LT) S C” Z unenHLQ(LS)
n=1 n=1

Then our first step will be to show that the Haar system (hy) satisfies some
lower-2 estimates in L® in the following sense:

Lemma 4.4. If there exists v < s such that (r,s) is a regularity pair, then
there is a constant C' > 0 such that for any normalized block basic sequence
(v1, ..o, vp) of (hg) and for any aq, .., a, in C:

n n
1Y vz > CD 7 lagl”.
k=1 k=1

Proof. We first observe that if 1 < p < 2, it follows from the work of J.
Bretagnolle, D. Dacunha-Castelle and J.L. Krivine [1] on p-stable random
variables that there is a sequence (e,),>1 in L' which is equivalent to the
canonical basis of £, in any L? for 1 < ¢ < p. Thus (e,) is weakly null in
L?, and by a gliding hump argument, we may assume that (e,) is actually
a block basic sequence with respect with the Haar basis. If p = 2, then the
Rademacher functions form a block basic sequence in every L9 for 1 < g < oc.

Now assume the lemma is false. We pick a normalized block basic sequence
(v1, ...y Uy ) Of (hg) and ay, .., a,, in C so that

ni ni
1Y " arvellfe <l = 1.
k=1 k=1

Then pick m; € N such that (vy,..,v,,, €m,) is a block basic sequence of (hy).
By induction, we pick a normalized block basic sequence (vy, 41, ..., Un;,,) of
(hk), Gnji1s oy Gy, in Cand myyg € Nso that (v1, .., Unys €mys Vgt 1y - Unjyys €myy)
is a block basic sequence of (hy) and

nj+1 1 Mj+1 1
I avnlie <= D > = o
k:nj-i-l 2] k:nj—l—l 2j

So we can find (Iy)r>1 and (J)g>1 two sequences of finite intervals of N such
that {Ij, Jy : k> 1} is a partition of N and for all & > 1, v, € [hj, j € I}
and e, € [h;, j € Ji]. Then set

Xk:[hji jG]kUJk]

Then (Xj) is an unconditional Schauder decomposition of L*. Each X} can
be decomposed into Xy = For_1 @ Foy, where Eop_1 = [vk + €], €m, € Fog
and the corresponding projections are uniformly bounded. So, by Lemma
3.2, (E))g>1 is a Schauder decomposition of L*. We can now make use of of
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Proposition 4.3. If we decompose avy = ay (Vi + €m,, ) — QkEm,, 0 Eo_1 & Eoy,
we obtain that there is a constant C' > 0 such that for all n > 1:

1Y~ arvreellzaey = CO a2,
k=1 k=1

Since (vg) is an unconditional basic sequence in L*, there is a constant K > 0
so that for all n > 1:

n n
1D avellfe > K fail,
k=1 k=1

which is in contradiction with our construction. O

We now conclude the proof of Theorem 4.2. The Haar basis of L° has a block
basic sequence equivalent to the standard basis of £yax(s,2). Hence Lemma 4.4

shows that max(s,2) < p whenever s < p <2 or p=2. Thus s = 2.
0]
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