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Abstract. We investigate the problem of Lp-maximal regularity on Ba-
nach spaces having a Schauder basis. Our results improve those of a recent
paper. We also address the question of Lr-regularity in Ls spaces.

1. Introduction

We will only recall the basic facts and definitions on maximal regularity.
For further information, we refer the reader to [2], [4], [8] or [7].

We consider the following Cauchy problem:{
u′(t) +B(u(t)) = f(t) for 0 ≤ t < T
u(0) = 0

where T ∈ (0,+∞), −B is the infinitesimal generator of a bounded analytic
semigroup on a complex Banach space X and u and f are X-valued functions
on [0, T ). Suppose 1 < p < ∞. B is said to satisfy Lp−maximal regularity if
whenever f ∈ Lp([0, T );X) then the solution

u(t) =

∫ t

0

e−(t−s)Bf(s) ds

satisfies u′ ∈ Lp([0, T );X). It is known that B has Lp-maximal regularity
for some 1 < p < ∞ if and only if it has Lp-maximal regularity for every
1 < p <∞ [3], [4], [14]. We thus say simply that B satisfies maximal regularity
(MR).

As in [7], we define:

Definition 1.1. A complex Banach space X has the maximal regularity prop-
erty (MRP) if B satisfies (MR) whenever −B is the generator of a bounded
analytic semigroup.

Let us recall that De Simon [3] proved that any Hilbert space has (MRP),
and that the question whether Lq for 1 < q 6= 2 < ∞ has (MRP) remained
open until recently. Indeed, in [7] it is shown that a Banach space with an
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unconditional basis (or more generally a separable Banach lattice) has (MRP)
if and only if it is isomorphic to a Hilbert space.

In this paper we attempt to work without these unconditionality assump-
tions and study the (MRP) on Banach spaces with a finite-dimensional Schauder
decomposition. In particular, we show that a UMD Banach space with an
(FDD) and satisfying (MRP) must be isomorphic to an `2 sum of finite di-
mensional spaces.

In the last question we consider the question of whether the solution u of
our Cauchy problem satisfies u′ ∈ L2([0, T ;Lr) if f ∈ L2([0, T );Ls).

This work was done during a visit of the second author to the Department of
Mathematics of the University of Missouri in Columbia in fall 1999; he would
like to thank the Department for its warm hospitality.

2. Notation and background

We will follow the notation of [7]. Let us now introduce more precisely a
few notions.

If F is a subset of the Banach space X, we denote by [F ] the closed lin-
ear span of F . We denote by (εk)

∞
k=0 the standard sequence of Rademacher

functions on [0, 1] and by (hk)
∞
k=0 the standard Haar functions on [0, 1] (for

convenience we index from 0).
Let 1 ≤ p <∞. A Banach space X has type p if there is a constant C > 0

such that for every finite sequence (xk)
K
k=1 in X:

(

∫ 1

0

‖
K∑
k=1

εk(t)xk‖2 dt)1/2 ≤ C(
K∑
k=1

‖xk‖p)1/p.

Notice that every Banach space is of type 1. A Banach space X is called
(UMD) if martingale difference sequences in L2([0, 1];X) are unconditional
i.e. there is a constant K so that for every martingale difference sequence
(fn)Nn=1 we have

‖
N∑
k=1

δkfk‖L2(X) ≤ K‖
N∑
k=1

fk‖L2(X)

if supk≤N |δk| ≤ 1.
Let (En)n≥1 be a sequence of closed subspaces of X. Assume that (En)n≥1

is a Schauder decomposition of X and let (Pn)n≥1 be the associated sequence
of projections from X onto En. For convenience we will also denote this
Schauder decomposition by (En, Pn)n≥1. The decomposition constant is de-
fined by supn ‖

∑n
K=1 Pk‖; this is necessarily finite. If each (En) is finite-

dimensional we refer to (En) as an (FDD) (finite-dimensional decomposition);
an unconditional (FDD) is abbreviated to (UFDD).
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If (En)n≥1 is a Schauder decomposition of X and (un)Nn=1 is a finite or infinite
sequence (i.e. N ≤ ∞) of the form un =

∑rn
k=rn−1+1 xk where xk ∈ Ek and

1 = r0 < r1 < .. < rn < .., then (un)n≥1 is called a block basic sequence of the
decomposition (En).

We denote by ω<ω the set of all finite sequences of positive integers, including
the empty sequence denoted ∅. For a = (a1, .., an) ∈ ω<ω, |a| = n is the
length of a (|∅| = 0). For a = (a1, .., ak) (respectively a = ∅), we denote
(a, n) = (a1, .., ak, n) (respectively (a, n) = (n)). A subset β of ω<ω is a branch
of ω<ω if there exists (σn)∞n=1 ⊂ N such that β = {(σ1, .., σn); n ≥ 1}. In this
paper, for a Banach space X, we call a tree in X any family (ya)a∈ω<ω ⊂ X.
A tree (ya)a∈ω<ω is weakly null if for any a ∈ ω<ω, (y(a,n))n≥1 is a weakly null
sequence.

Let (ya)a∈ω<ω be a tree in the Banach space X. Let T ⊂ ω<ω, (ya)a∈T is a
full subtree of (ya)a∈ω<ω if ∅ ∈ T and for all a ∈ T , there are infinitely many
n ∈ N such that (a, n) ∈ T . Notice that if (ya)a∈T is a full subtree of a weakly
null tree (ya)a∈ω<ω , then it can be reindexed as a weakly null tree (za)a∈ω<ω

We now state a result of [7] that will be an essential tool for this paper:

Theorem 2.1. Let (En, Pn)n≥1 be a Schauder decomposition of the Banach
space X. Let Zn = P ∗nX

∗ and Z = [∪∞n=1Zn]. Assume X has (MRP). Then
there is a constant C > 0 so that whenever (un)Nn=1 are such that un ∈
[E2n−1, E2n] and (u∗n)Nn=1 are such that u∗n ∈ [Z2n−1, Z2n] then(∫ 2π

0

‖
N∑
n=1

P2nune
i2nt‖2 dt

2π

)1/2

≤ C

(∫ 2π

0

‖
N∑
n=1

une
i2nt‖2 dt

2π

)1/2

and (∫ 2π

0

‖
N∑
n=1

P ∗2nu
∗
ne
i2nt‖2 dt

2π

)1/2

≤ C

(∫ 2π

0

‖
N∑
n=1

u∗ne
i2nt‖2 dt

2π

)1/2

.

We observe that, by a well-known result of Pisier [12] these inequalities can
be replaced by equivalent inequalities (with a modified constant) using εk in

place of ei2
kt :

(2.1) ‖
N∑
n=1

P2nunεn‖L2(X) ≤ C‖
N∑
n=1

unεn‖L2(X)

and

(2.2) ‖
N∑
n=1

P2nu
∗
nεn‖L2(X) ≤ C‖

N∑
n=1

u∗nεn‖L2(X∗).

We refer the reader to [15] for further recent developments in this area.
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3. The main results

We begin with a general result on spaces with a Schauder decomposition:

Theorem 3.1. Let X be a Banach space of type p > 1 and with a Schauder
decomposition (En)∞n=1. If X has (MRP), then there is a constant C > 0
so that for any block basic sequence (uk)

N
k=1 with respect to the decomposition

(En):

(3.3)
1

C

N∑
k=1

‖uk‖2 ≤
∫ 1

0

‖
N∑
k=1

εk(t)uk‖2 dt ≤ C
K∑
k=1

‖uk‖2.

Proof. If the result is false we can clearly inductively construct an infinite
normalized block basic sequence (un)∞n=1 so that there is no constant C so that
for all finitely nonzero sequences (ak)

∞
k=1 we have:

(3.4)
1

C

N∑
k=1

|ak|2 ≤
∫ 1

0

‖
N∑
k=1

akεk(t)uk‖2 dt ≤ C
N∑
k=1

|ak|2

It therefore suffices to show that (3.4) holds for every normalized block basic
sequence (un)∞n=1. We can clearly then suppose un ∈ En.

We next use a theorem of Figiel and Tomczak-Jaegermann [5] combined
with [13] (see also [10] p.112) that, since X has nontrivial type for every n ∈ N
there exists ϕ(n) ∈ N so that any subspace F of X with dimension ϕ(n) has a
subspace H of dimension n which is 2-complemented in X and 2-isomorphic
to `n2 .

Assume (3.4) is false. Then we can inductively find a sequence (an)n≥1 and
an increasing sequence (rn)n≥0 with r0 = 0 so that r2n > r2n−1+ϕ(r2n−1−r2n−2)
for n ≥ 1,

r2n+1∑
r2n+1

|ak|2 = 1

and either ∫ 1

0

‖
r2n+1∑

k=r2n+1

akεk(t)uk‖2 dt > 2n

or ∫ 1

0

‖
r2n+1∑

k=r2n+1

akεk(t)uk‖2 dt < 2−n.

In order to create new Schauder decompositions of X, we will need the
following elementary lemma, that we state without a proof:
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Lemma 3.2. Let (En)n≥1 be a Schauder decomposition of a Banach space X.
Assume that each En has a finite Schauder decomposition (Fn,k)

mn
k=1 with a uni-

form bound on the decomposition constant. Then (F1,1, · · · , F1,m1 , F2,1, · · · , F2,m2 , · · ·)
is also a Schauder decomposition of X.

We denote the induced decomposition by
∑∞

n=1⊕(
∑mn

k=1⊕Fn,k).
Now by assumption Er2n−1+1+· · ·+Er2n which has dimension at least ϕ(r2n−

r2n−1) contains a subspace Hn which is 2-Hilbertian and 2-complemented in
X. Let Gn be the complement of Hn in Er2n−1+1 + · · ·+Er2n by the projection
of norm 2. At the same time [uk] is 1-complemented (by the Hahn-Banach
theorem) in Ek for r2n−1+1 ≤ k ≤ r2n and let Fk be its associated complement.
We thus have a new Schauder decomposition:

(F1, [u1], F2, [u2], · · · , Fr1 , [ur1 ], H1, G1, Fr2+1, [ur2+1], · · · , [ur3 ], H2, G2, · · ·).
If we write Dn = Fr2n−2+1 + · · ·+Fr2n−1 +Gn then we have a Schauder decom-
position

∞∑
n=1

⊕(Dn ⊕Hn ⊕
r2n∑

k=r2n−2+1

⊕[uk]).

Next select a normalized basis (vk)
r2n−1

k=r2n−2+1 of Hk which is 2-equivalent to

the canoncal basis of `
r2n−r2n−1

2 . It is easy to see that we can obtain a new
Schauder decomposition by interlacing the (vk) with the (uk) i.e.:

(3.5)
∞∑
n=1

(Dn ⊕ [ur2n−2+1]⊕ [vr2n−2+1]⊕ · · · ⊕ [ur2n−1 ]⊕ [vr2n−1 ]).

Now again using Lemma 3.2 we can form two further decompostions:

(3.6)
∞∑
n=1

(Dn⊕[ur2n−2+1+vr2n−2+1]⊕[vr2n−2+1]⊕· · ·⊕[ur2n−1+vr2n−1 ]⊕[vr2n−1 ]),

and

(3.7)
∞∑
n=1

(Dn⊕[ur2n−2+1+vr2n−2+1]⊕[ur2n−2+1]⊕· · ·⊕[ur2n−1+vr2n−1 ]⊕[ur2n−1 ]).

Now we can apply Theorem 2.1. If we use decomposition (3.6) we note that
uk = (uk + vk)− vk and so for a suitable C and all n,

‖
r2n∑

k=r2n−2+1

ak(uk + vk)εk‖L2(X) ≤ C‖
r2n−1∑

k=r2n−2+1

akukεk‖L2(X).

However, using decomposition (3.5) there is also a constant C ′ so that

‖
r2n∑

k=r2n−2+1

akvkεk‖L2(X) ≤ C ′‖
r2n∑

k=r2n−2+1

ak(uk + vk)εk‖L2(X).
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This leads to an estimate: r2n−1∑
k=r2n−2+1

|ak|2
 1

2

≤ C1‖
r2n−1∑

k=r2n−2+1

akukεk‖L2(X).

If we use decomposition (3.7) instead we obtain an estimate:

‖
r2n−1∑

k=r2n−2+1

akuke
i2kt‖L2(X) ≤ C2

 r2n−1∑
k=r2n−2+1

|ak|2
 1

2

.

Combining gives us (3.4) and completes the proof. �

Let us first use this result to give a mild improvement of a result from [7]:

Theorem 3.3. Let X be a reflexive space with an (FDD) and with non-trivial
type which embeds into a space Y with a (UFDD). If X has (MRP) then X is
isomorphic to an `2−sum of finite-dimensional spaces (

∑∞
n=1⊕En)`2 .

Proof. Using Proposition 1.g.4 of [9] (cf. [6]) we can block the given (FDD) to
produce an (FDD) (En) so that (E2n)∞n=1 and (E2n−1)

∞
n=1 are both (UFDD)’s.

Let us denote, as in Theorem 2.1, the dual (FDD) of X∗ by (Zn)∞n=1. Now
it follows applying Theorem 3.1 to both X and X∗ (which also has (MRP))
that there exists a constant C so that if xn ∈ En and x∗n ∈ Zn are two finitely
nonzero sequences

‖
∞∑
k=1

x2k−j‖ ≤ C(
∞∑
k=1

‖x2k−j‖2)
1
2

‖
∞∑
k=1

x∗2k−j‖ ≤ C(
∞∑
k=1

‖x∗2k−j‖2)
1
2

for j = 0, 1. Hence

‖
∞∑
k=1

xk‖ ≤ 2C(
∞∑
k=1

‖xk‖2)
1
2

‖
∞∑
k=1

x∗k‖ ≤ 2C(
∞∑
k=1

‖x∗k‖2)
1
2 .

Now for given xk we may find y∗k ∈ X∗ with ‖y∗k‖ = ‖xk‖ and yk(x
∗
k) = ‖x∗k‖.

Let x∗k = P ∗k y
∗
k (where Pk : X → Ek is the projection associated with the FDD

(En)). Then ‖x∗k‖ ≤ C1‖xk‖ where C1 = supn ‖Pn‖ < ∞. Hence if (xk)
∞
k=1 is

finitely nonzero, we have

‖
∞∑
k=1

x∗k‖ ≤ 2CC1(
∞∑
k=1

‖xk‖2)
1
2 .
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Thus
∞∑
k=1

‖xk‖2 =
∞∑
k=1

x∗k(xk)

= (
∞∑
k=1

x∗k)(
∞∑
k=1

xk)

≤ 2CC1(
∞∑
k=1

‖x∗k‖2)
1
2‖

∞∑
k=1

xk‖

so that we obtain the lower estimate:

(
∞∑
k=1

‖xk‖2)
1
2 ≤ 2CC1‖

∞∑
k=1

xk‖.

This completes the proof. �

We next give another application to (UMD)-spaces with (MRP).

Theorem 3.4. Let X be a (UMD) Banach space with an (FDD) satisfy-
ing (MRP). Then X is isomorphic to an `2-sum of finite dimensional spaces,
(
∑∞

n=1⊕En)`2 .

Proof. Let (En) be the given (FDD) of X. We will show first that there is
a blocking (Fn) of (En) which satisfies an upper 2−estimate i.e. if there is
a constant A so that if (xn) is block basic with respect to (Fn) and finitely
non-zero then

(3.8) ‖
∞∑
n=1

xn‖ ≤ A(
∞∑
n=1

‖xn‖2)
1
2 .

Once this is done, the proof can be completed easily. Indeed if (Zn) is the
dual decomposition to (Fn) for X∗ then we can apply the fact that X∗ also
has (MRP) (X is reflexive) to block (Zn) to obtain a decomposition which
also has an upper 2-estimate. Thus we can assume (Fn) and (Zn) both have
an upper 2-estimate and then repeat the argument used in Theorem 3.3 to
deduce that X = (

∑∞
n=1⊕Fn)`2 .

Since X necessarily has type p > 1, we can apply Theorem 3.1 and assume
(En) obeys (3.3).

We now introduce a particular type of tree in the space L2([0, 1);X). Let Dn
for n ≥ 0 be the sub-algebra of the Borel sets of [0, 1) generated by the dyadic
intervals [(k − 1)2−n, k2−n) for 1 ≤ k ≤ 2n. Let En denote the conditional
expectation operator Enf = E(f |Dn).

We will say that a tree (fa)a∈ω<ω is a martingale difference tree or (MDT) if

• each fa is D|a|− measurable,
• if |a| > 0 then E|a|−1fa = 0,
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• there exists N so that if |a| > N then fa = 0.

In such a tree the partial sums along any branch form a dyadic martingale
which is eventually constant.

We will prove the following Lemma:

Lemma 3.5. There is a constant K so that if (fa)a∈ω<ω is a weakly null
(MDT), there is a full subtree (fa)a∈T so that for any branch β we have:

‖
∑
a∈β

fa‖L2(X) ≤ K(
∑
a∈β

‖fa‖2L2(X))
1
2 .

Proof. For each a we define integers m−(a) and m+(a). If fa 6= 0 we set m−(a)
to be the greatest m so that

‖
m∑
k=1

Pmfa‖L2(X) ≤ 2−|a|−1‖fa‖L2(X)

and m+(a) to be the least m > m−(a) so that

‖
∞∑

k=m+1

Pkfa‖L2(X) ≤ 2−|a|−1‖fa‖L2(X).

If f∅ = 0 we set m−(∅) = 0 and m+(∅) = 1; if fa = 0 where a 6= ∅ we set
m−(a) to be the last member of a and m+(a) = m−(a) + 1.

Since (fa) is weakly null we have limn→∞m−(a, n) =∞ for every a. It is then
easy to pick a full subtree T so that m−(a, n) > m+(a) whenever a, (a, n) ∈ T.
Now let ga =

∑m+(a)
k=m−(a)+1 fa. Then ‖fa − ga‖L2(X) ≤ 2−|a|‖fa‖L2(X).

For any branch β of T , we have that ga(t) is a block basic sequence with
respect to (En) for every 0 ≤ t < 1. Hence(∫ 1

0

‖
∑
a∈β

ε|a|(s)ga(t)‖2Xds

) 1
2

≤ C

(∑
a∈β

‖ga(t)‖2X

) 1
2

.

Integrating again we have(∫ 1

0

‖
∑
a∈β

ε|a|(s)ga‖2L2(X)ds

) 1
2

≤ C

(∑
a∈β

‖ga‖2L2(X)

) 1
2

.

From this we get(∫ 1

0

‖
∑
a∈β

ε|a|(s)fa‖2L2(X)ds

) 1
2

≤ 2C

(∑
a∈β

‖fa‖2L2(X)

) 1
2

+
∑
a∈β

2−|a|‖fa‖.

Estimating the last term by the Cauchy-Schwarz inequality and using the
fact that X is (UMD) we get the Lemma. �
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Now we introduce a functional Φ on X by defining Φ(x) to be the infimum
of all λ > 0 so that for every weakly null (MDT) (fa)a∈ω<ω with f∅ = xχ[0,1)

we have a full subtree T so that for any branch β

(3.9) ‖
∑
a∈β

fa‖2L2(X) ≤ λ+ 2K2
∑
a∈β
a6=∅

‖fa‖2L2(X).

Note that that since

‖
∑
a∈β

fa‖2L2(X) ≤ 2(‖x‖2 + ‖
∑
a∈β
a6=∅

fa‖2L2(X))

we have an estimate Φ(x) ≤ 2‖x‖2. By considering the null tree we have
F (x) ≥ ‖x‖2. It is clear that Φ is continuous and 2-homogeneous. Most
importantly we observe that Φ is convex; the proof of this is quite elementary
and we omit it. It follows that we can define an equivalent norm by |||x|||2 =
Φ(x) and ‖x‖ ≤ |||x||| ≤ 2‖x‖ for x ∈ X.

Next we prove that if x ∈ X and (yn) is a weakly null sequence then

(3.10) lim sup
n→∞

(|||x+ yn|||2 + |||x− yn|||2) ≤ 2|||x|||2 + 4K2 lim sup
n→∞

‖yn‖2.

We first note that we can suppose limn→∞ |||x± yn||| and limn→∞ ‖yn‖2 all
exist. Now suppose ε > 0. Then we can find weakly null (MDT)’s (fna )a∈ω<ω

with fn∅ ≡ x+yn so that for every full subtree T we have a branch β on which:

(3.11) ‖
∑
a∈β

fna ‖2L2(X) + ε > |||x+ yn|||2 + 2K2
∑
a∈β
a6=∅

‖fna ‖2L2(X).

In fact by easy induction we can pick a full subtree so that (3.11) holds for
every branch. Hence we suppose the original tree satisfies (3.11) for every
branch.

Similarly we may find weakly null (MDT)’s (gna )a∈ω<ω with gn∅ ≡ x− yn and
for every branch β,

‖
∑
a∈β

gna‖2L2(X) + ε > |||x− yn|||2 + 2K2
∑
a∈β
a6=∅

‖gna‖2L2(X).

We next consider the (MDT) defined by h∅ ≡ x,

h(n)(t) =

{
yn if 0 ≤ t < 1

2

−yn if 1
2
≤ t < 1

and if |a| > 1 then

h(a,n)(t) =

{
fna (2t− 1) if 0 ≤ t < 1

2

gna (2t) if 1
2
≤ t < 1.
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Now for every branch of the (MDT) (ha)a∈ω<ω with initial element {n} we
have

‖
∑
a∈β

ha‖2L2(X) + ε >
1

2
(|||x+ yn|||2 + |||x− yn|||2) + 2K2

∑
a∈β
|a|>1

‖ha‖2L2(X).

However, from the definition of Φ(x) = |||x|||2 it follows that there exists n0

so that if n ≥ n0 we can find a branch β whose initial element is n and such
that

‖
∑
a∈β

ha‖2L2(X) < |||x|||2 + 2K2
∑
a∈β
|a|>0

‖ha‖2L2(X) + ε.

Combining gives the equation (for n ≥ n0),

1

2
(|||x+ yn|||2 + |||x− yn|||2) ≤ |||x|||2 + 2K2‖yn‖2 + 2ε.

This proves (3.10). But note that if yn is weakly null we have lim infn→∞ |||x−
yn||| ≥ |||x||| and so we deduce:

lim sup
n→∞

|||x+ yn|||2 ≤ |||x|||2 + 4K2 lim sup ‖yn‖2.

Using this equation it is now easy to block the Schauder decomposition (En)
to produce a Schauder decomposition (Fn) with the property that for any N
if x ∈ F1 + · · ·+ FN and y ∈

∑∞
k=N+2 Fk then

|||x+ y||| ≤ (1 + δN)(|||x|||2 + 4K2‖y‖2)
1
2 ,

where δN > 0 are chosen to be decreasing and so that
∏∞

N=1(1 + δN) ≤ 2.
Next suppose (xk) is any finitely non-zero block basic sequence with respect
to (Fn). By an easy induction we obtain for j = 0, 1:

|||
n∑
k=1

x2k−j||| ≤ 4K2

n−1∏
k=1

(1 + δ2k−j)(
n∑
k=1

|||x2k−j|||2)
1
2 .

Hence

‖
n∑
k=1

xk‖ ≤ 32K2(
n∑
k=1

‖xk‖2)
1
2 .

This establishes (3.8) and as shown earlier this suffices to complete the proof.
�

Remark. Recently Odell and Schlumprecht [11] showed that a separable
Banach space X can be embedded in an `p−sum of finite-dimensional spaces
for 1 < p < ∞ if and only if X is reflexive and every normalized weakly null
tree has a branch which is equivalent to the usual `p−basis. This result is
closely related to the proof of the previous theorem.
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4. On Lr-regularity in Ls spaces

Let s ∈ [1,∞). We consider our usual Cauchy problem:{
u′(t) +B(u(t)) = f(t) for 0 ≤ t < T
u(0) = 0

where T ∈ (0,+∞), −B is the infinitesimal generator of a bounded analytic
semigroup on Ls = Ls([0, 1]) and f ∈ L2([0, T );Ls). Then we ask the following
question: for what values of s and r in [1,∞) does the solution

u(t) =

∫ t

0

e−(t−s)Bf(s) ds

necessarily satisfies u′ ∈ L2([0, T );Lr)? Thus we introduce the following defi-
nition:

Definition 4.1. Let r and s in [1,∞). We say that (r, s) is a regularity pair if
whenever −B is the infinitesimal generator of a bounded analytic semigroup
on Ls = Ls([0, 1]) and f ∈ L2([0, T );Ls), the solution u of{

u′(t) +B(u(t)) = f(t) for 0 ≤ t < T
u(0) = 0

satisfies u′ ∈ L2([0, T );Lr).

Notice that it follows from previous results ([3], [8] and [7]) that (s, s) is a
regularity pair if and only if s = 2. This is extended by our next result:

Theorem 4.2. Let r and s in [1,∞). Then (r, s) is a regularity pair if and
only if r ≤ s = 2.

Proof. It follows clearly from the work of De Simon [3], that if r ≤ s = 2 then
(r, s) is a regularity pair.

So let now (r, s) be a regularity pair. Since L1 does nat have (MRP) ([8]), we
have that s > 1. Then, solving our Cauchy problem with B = 0, we obtain
that r ≤ s. Thus we can limit ourselves to the case s > 1 and 1 ≤ r ≤ s.
Then by the closed graph Theorem, for any B so that −B is the infinitesi-
mal generator of a bounded analytic semigroup on Ls = Ls([0, 1]), there is a
constant C > 0 such that for any f ∈ L2([0, T );Ls):

‖u′‖L2(Ls) ≤ C‖f‖L2(Ls).

Using the inclusion Ls ⊂ Lr for r ≤ s, we can now state the following
analogue of Theorem 2.1:

Proposition 4.3. Let (En, Pn)n≥1 be a Schauder decomposition of Ls. Assume
that (r, s) is a regularity pair. Then there is a constant C > 0 so that whenever
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(un)Nn=1 are such that un ∈ [E2n−1, E2n] then

‖
N∑
n=1

P2nunεn‖L2(Lr) ≤ C‖
N∑
n=1

unεn‖L2(Ls)

Then our first step will be to show that the Haar system (hk) satisfies some
lower-2 estimates in Ls in the following sense:

Lemma 4.4. If there exists r ≤ s such that (r, s) is a regularity pair, then
there is a constant C > 0 such that for any normalized block basic sequence
(v1, ..., vn) of (hk) and for any a1, .., an in C:

‖
n∑
k=1

akvk‖2Ls ≥ C

n∑
k=1

|ak|2.

Proof. We first observe that if 1 < p < 2, it follows from the work of J.
Bretagnolle, D. Dacunha-Castelle and J.L. Krivine [1] on p-stable random
variables that there is a sequence (en)n≥1 in L1 which is equivalent to the
canonical basis of `p in any Lq for 1 ≤ q < p. Thus (en) is weakly null in
Ls, and by a gliding hump argument, we may assume that (en) is actually
a block basic sequence with respect with the Haar basis. If p = 2, then the
Rademacher functions form a block basic sequence in every Lq for 1 ≤ q <∞.

Now assume the lemma is false. We pick a normalized block basic sequence
(v1, ..., vn1) of (hk) and a1, .., an1 in C so that

‖
n1∑
k=1

akvk‖2Ls ≤
n1∑
k=1

|ak|2 = 1.

Then pick m1 ∈ N such that (v1, .., vn1 , em1) is a block basic sequence of (hk).
By induction, we pick a normalized block basic sequence (vnj+1, ..., vnj+1

) of
(hk), anj+1, .., anj+1

in C andmj+1 ∈ N so that (v1, .., vn1 , em1 , vn1+1, .., vnj+1
, emj+1

)
is a block basic sequence of (hk) and

‖
nj+1∑

k=nj+1

akvk‖2Ls ≤
1

2j

nj+1∑
k=nj+1

|ak|2 =
1

2j
.

So we can find (Ik)k≥1 and (Jk)k≥1 two sequences of finite intervals of N such
that {Ik, Jk : k ≥ 1} is a partition of N and for all k ≥ 1, vk ∈ [hj, j ∈ Ik]
and emk

∈ [hj, j ∈ Jk]. Then set

Xk = [hj : j ∈ Ik ∪ Jk].
Then (Xk) is an unconditional Schauder decomposition of Ls. Each Xk can
be decomposed into Xk = E2k−1 ⊕ E2k, where E2k−1 = [vk + emk

], emk
∈ E2k

and the corresponding projections are uniformly bounded. So, by Lemma
3.2, (Ek)k≥1 is a Schauder decomposition of Ls. We can now make use of of
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Proposition 4.3. If we decompose akvk = ak(vk + emk
)− akemk

in E2k−1⊕E2k,
we obtain that there is a constant C > 0 such that for all n ≥ 1:

‖
n∑
k=1

akvkεk‖L2(Ls) ≥ C(
n∑
k=1

|ak|2)1/2.

Since (vk) is an unconditional basic sequence in Ls, there is a constant K > 0
so that for all n ≥ 1:

‖
n∑
k=1

akvk‖2Ls ≥ K

n∑
k=1

|ak|2,

which is in contradiction with our construction. �

We now conclude the proof of Theorem 4.2. The Haar basis of Ls has a block
basic sequence equivalent to the standard basis of `max(s,2). Hence Lemma 4.4
shows that max(s, 2) ≤ p whenever s < p < 2 or p = 2. Thus s = 2.

�

References

[1] J. Bretagnolle, D. Dacunha-Castelle and J.L. Krivine, Lois stables et espaces Lp,
Annales de l’Institut Henri Poincaré 2, 231-259 (1966).
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[12] G. Pisier, Les inégalités de Kahane-Khintchin d’après C. Borell, Séminaire sur la
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