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ABSTRACT. We prove that if the Szlenk index Sz(X) and the weak*-dentability index
0*(X) of a Banach space X are countable, then they are determined by the closed separable
linear subspaces of X. From this we deduce the existence of an absolute function 1 from w;
to wy (first uncountable ordinal) such that §*(X) is bounded above by ¥(Sz(X)), and that
the condition Sz(X) < w; yields the existence of an equivalent norm on X whose dual norm
is locally uniformly convex. As an other application, we compute Sz(C(K)), where K is a
scattered compact space with K(“1) = (). Finally we solve the three space problem for the

condition Sz(X) < ws.
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1. INTRODUCTION.

Let X be a Banach space. We will first define the two ordinal indices 6*(X) and Sz(X).
Weak*-dentability index, §*(X) :
Let F' be a closed bounded subset of X*. For ¢ > 0, F! = {z* € F such that any

weak*-slice of F' containing z* is of diameter > ¢}.
For « ordinal we construct F* inductively :

F'=F

g
Fett = (F2)L

F® = () FP,if a is a limit ordinal.
A<a
Then
inf{a : F& = 0} if it exists
A(F) =

00 otherwise

And A(F) =sup A (F).
e>0
Finally, we denote 0*(X,e) = A.(Bx~) and §*(X) = A(Bx+), where Bx=« is the unit ball

of X*.

Szlenk index, Sz(X) :
Let F' be a closed bounded subset of X*. For € > 0, FEH = {a* € F such that for any
weak*-neighborhood V' of z*, diam (V N F) > €}.

We denote :
FY=F
Fletth = (plehl

Fg[a] =N Fg[’B], if o is a limit ordinal.
B<a

inf{a : FI) = 0} if it exists
5.(F) = { }
o0 otherwise
S(F) = sup S (F)
e>0
Sz(X,e) = Sc(Bx+) and Sz(X) = S(Bx+).

Clearly Sz(X) < §*(X).
Our main objective is to prove that, for a Banach space X, Sz(X) < w; if and only if
0*(X) < wy, where wy is the first uncountable ordinal. Then, answering a question suggested

by R. Haydon, we will be able to deduce that if Sz(X) < w;, then X admits an equivalent

norm whose dual norm is locally uniformly convex. An important step in the proof of this
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result is that, if Sz(X) is countable then Sz(X) = sup{Sz(Y),Y closed separable subspace
of X} and if §*(X) is countable then 6*(X) = sup{d*(Y),Y closed separable subspace of
X}. In section 5 we use this fact to compute Sz(C(K)), for K scattered compact space such
that its wi” derived set K (1) is empty. In the last section of this paper we give a quantitative

answer to the three space problem for the condition Sz(X) < w;.

2. SEPARABLE CASE.

It is well known that if X is a separable Banach space, then the following are equivalent :
i) Sz2(X) <wp

i) 6*(X) < wq

iii) X* is separable.

In this section we will explain how to obtain the following improvement.

PROPOSITION 2.1. There exists a function v : wy — w1 so that, for any separable
Banach space X and for any a < wy, Sz(X) < a implies §*(X) < 9(a).

This is the consequence of ideas developed by B. Bossard in a slightly different and also
more general setting [B].

Before proceeding to the proof of this proposition, we will introduce a few notations :

Let K = (Bjs,o(1*,1')). K is a compact metrizable space. We denote by F(K) the
collection of all closed subsets of K and we equip F(K) with the Hausdorff topology 7°
generated by the sets of the form {F € F(K): FNV # 0} and {F € F(K) : F C V}, where
V' is an open subset of K. (F(K),7) is a compact metrizable space.

PROPOSITION 2.2. There exists a function v : w; — wy so that, for any closed subset
F of K and for any o < w1, S(F') < « implies A(F) < ¢(a).

Proof. We will need the following result of B. Bossard [B] :
fore >0 d.:F(K)— F(K) and D.:F(K)— F(K)
F i+ F! F— Fg[]

are Borel derivations.



Therefore, for any a < wy, By ={F € F(K): S(F) <a}=
is a Borel set in (F(K),T).

(F e F(K):Sym(F) < a}
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Moreover, for any n > 1, B, € {F € F(K) : Ay (F) < wi}. Indeed, if S(F) < wy,
then F' is norm separable and therefore every weak*-closed subset of F' is weak*-dentable.

So (Ff‘/n)a is strictly decreasing and must stabilize at () before w;.

Now, by a result of C. Dellacherie [Del] about the applications of the Kunen-Martin

theorem to the study of the analytic derivations, there exists 1, () < wy such that :
Bo C{F € F(K) : Ayjn(F) < ¥n(a)}.

We can conclude the proof by taking 1(a) = sup ¢, (). []
n>1

Proof of Proposition 2.1. Let X be a separable Banach space and a < wj.

¢ (IN
There is a closed linear subspace Y of ¢1(IN) such that X is isomorphic to 1§/ )
6 (IN
So Sz(X) = Sz(%) = S(By.)

and §*(X) = 5*(@) = A(By.).

Thus by proposition 2.2, if Sz(X) < «, then §*(X) < ¢(a). [J

3. WHEN COUNTABLE, Sz(X) AND 6*(X) ARE SEPARABLY DETERMINED.

Our goal in this section is to prove the two following statements :

PROPOSITION 3.1. Let X be a Banach space and let o < w1.

If Sz(X) > «, then there exists a separable closed subspace Y of X such that Sz(Y) > a.

PROPOSITION 3.2. Let X be a Banach space and let o < w1.

If 6*(X) > «, then there exists a separable closed subspace Y of X such that §*(Y') > a.



Proof of Proposition 3.1 : We will give our original proof in which we construct ”by

hand” the space Y. In order to do this we will use a family (T4 )a<w, Of trees on w (first

infinite ordinal) constructed inductively in the following way :

Ty = {0}

Tor1=4{0}U U n"T,, where n=T, = {n"s,s € T, }.
n=0

T, = {0} U Ej n"T,,, if @ is a limit ordinal, (a,,)22, being an enumeration of the
ordinals less thannc:k?

Remarks :

1) The height of T, is ht(T,) = a.

2) For s in T,, we denote T,(s) = {t € w<¥ : st € T,}, where w<* is the set of all
finite sequences of elements of w. If we call ho(s) = ht(Tn(s)), we have that T (s) = Ty, (s)-

We will need the following :

LEMMA 3.3. For any 1 < o < wy, there exists a bijection ¢, : w — T, such that :

For any s,s' inT,, s <s' implies ;1 (s) < o5 (s).

Proof. Let {B,,}°2, be an enumeration of the branches of T,,. In order to define ¢, we
o0 oo
enumerate successively By, Ba\ By, ..., Bnt1\ U Bk, ... (each enumeration of B, 1\ | Bk
k=1

k=1
following the natural partial order on T,,). []

LEMMA 3.4. Let 1 < a < w; and € > 0 and let X be a Banach space. If x* € (BX*)LQ],

then there exist a separable subspace Y of X and a family (z%)ser, € Bx« such that

i) vy = x*
i)Vse (T, Vnecw: |[(@—, —z*)n || > g
i)V se (Tw) : (e, —a%)n "2 0.

(Note : (T,) ={s €Ty, Incw:snecTy}).



Proof. We will construct, by induction on n, (z*

%(n))%‘;o in Bx« and (z,)52; in Bx so

that :

b)Vnew o, € (Bx- )[ha%(")”

c)Vn=1(x7 )~ )(@n) > 5, where gq(n) = s ky with ky € w.
1
d)Vn>2V1<k<n-—1/|&] —x;‘)(xk)|§2—
<

Assume x:; (k) for 0 < k n—1and z, for 1 < k£ < n — 1 have been con-
structed and satisty a)...d). By Lemma 3.3, there exists i, < n such that ¢,(n) =
i) c (BX*)Lha(SDa(in))]. Since
pa(in) € (BX*)[Eh (Yo g6 for any weak*-

Ly diam (VN (BX*)gh (%(nm) > ¢. In particular there exists

©Yalin) " kn, with k, € w. By induction hypothesis x*

ha(0al(in)) = ha(pa(n)) + 1, we have that z*

neighborhood V' of xw (i

* ha(pa(n * * €

T, (n) € (BX*)L (¢ (D] quch that : H wn) %(in)H > 3 and

(x:;a(n) - x:;a(in))(xk) V 1<k<n-1.

We conclude the induction by choosing @, in Bx such that (z7 =7 ))(@n) > %.
Let Y be the closed linear span of {z,}>2 ;. Y and the family (z%)scr, constructed by

induction satisfy the properties claimed in Lemma 3.4. []

It is now easy to show that z} € (By*)[ /] This completes the proof of Proposition

3.1. ]

Proof of Proposition 3.2 : It is possible, by using convex combinations, to adapt the

proof of Proposition 3.1. But we will use instead a simpler and more global technique that
has been indicated to us.

We will show by transfinite induction that for any countable ordinal «, there is a
separable subspace Z, of X such that for any v < a : 2* € (Bx~)? implies 2}, € (Bz:)?.
First we pick z in X ¢ {0} and call Z; = Rz.

Assume that the previous statement is true for any § < a.

If v is a limit ordinal, we choose Z,, to be the closed linear span of |J Zg.

If a=p03+41:letuscall Vyj =Z3. Let Dy be a countable dense subsﬁeiaof Vo and Sy be
the collection of half spaces S = {z* € X*: x*(2) > ¢} with z in Dy and ¢ in @

If SN (Bx«)2*! # 0 for some v < 3, then diam(S N (Bx+)? > ¢ and therefore we can find
u*, v*in SN (Bx~)? and x = z(7,S) in Bx such that (u* —v*)(z) > e.
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Let us denote by V; the closed linear span of ZgU |J U z(7,S).

v<B SE€Sy
Then we consider D; a countable dense subset of V7 and we construct V5 similarly.
Finally Z,,1 is the closed linear span of Ej V..

We now need to prove by inductic;ln: Othat for any v < a : 2* € (Bx-)? implies
Try. € (Bzx)l. The case v = 0 and the limit case are trivial, so let us assume that this is
true for ~.

Let z* € (Bx-)2™" and let S be a slice of (Bz+)? containing *. We may assume that S
is defined by a z in some D,, and by a ¢ in @ Let v* and v* in S N (Bx=+)? such that
(u* —v*)(z(7,5)) > e

By induction hypothesis u}, and v}, belong to (Bzx)].

Thus diam(S N (Bz:)?) > € and x}, € (Bz:)2t". []

Remark : This method gives similar results about ordinals with a different cardinality

and the subspaces of X with corresponding density character.

However a refinement of the technique used in the proof of Proposition 3.1. allows us

to obtain the following extension :

PROPOSITION 3.5. Let X be a Banach space with a separable dual and let o < wy.

X
If Sz(X) > «, then there is a subspace Z of X such that - has a shrinking basis and
X

Proof : It will follow from a slight modification of W.B. Johnson and H.P. Rosenthal’s
proof of the existence of a quotient with a shrinking basis for any Banach space with separable
dual ([J-R)).

Since X* is separable, we may assume that the norm of X is such that the weak™ and

the norm topologies coincide on the unit sphere of X*.

Let € > 0 such that 0 € (BX*)[QC;], (€n)n>1 C (0,1) such that ) e, < oo and (zy,)p>1

n=1
be a dense subset of Bx. We will construct by induction (27, ,))nzo € Bx- and (Fn)32,

an increasing sequence of finite subsets Bx verifying :

a) 25,0 =0

* ha aln
b) Vn >0, z7, € (B )l (@a(m)]



x* —x*
c)Vn > 1, ||z} z} || > e, (let us denote y;; = $a(n) Sn )

palm) Hx:;a(n) -y I

d) For any f in ([y;]r_,)* with |[f]| <1, there is z € F}, such that :
* En *
F) =y @) < S llyll.

| <

vy € [yili=1s IS
&) Vo€ Py lyspi(@)] < 2
f)Vn>1 (xg)i_, C F,.
Suppose (x* (k))ZZO and F,,_1 have been constructed. Take F, satisfying d) and f).

As in the proof of Proposition 3.1, we now choose x* in (BX*)[;ZQ(%(RH))] such that

pa(n+1)
|27, () — 25,1 > € and |y; 4 (2)] < E for all z in F),.
Consequences of this construction : By d) and e), (y})2%, is a basic sequence in X*
and, if we denote by P, the natural projections from [y;]|32, onto [y;|}_,, we have that
||[Pnll = 1. Let (yx)32, € ([y5]221)* be the biorthogonal functionnals associated to the basis
(y5)52 ;. Following the paper of W.B. Johnson and H.P. Rosenthal ([J-R]) it is now possible

to check that the operator :

T:X = (lyelih)”

x+— Tz, where Tz(y") = y* ()

maps X onto Y the closed linear span of (yz)32,. From this we can deduce, as in [J-R],
that (y;)52, is a weak*-basic sequence. Finally, since the norm and the weak™ topologies
coincide on the unit sphere of X* we can see, still following [J-R], that (y;)3, is boundedly
complete. Therefore, (yx)52; is shrinking.

Moreover our construction insures that Sz(Y) > «. Thus we can conclude the proof by

taking Z = Ker T. []

4. MAIN RESULTS.

THEOREM 4.1. There exists a function v : w; — wj so that, for any Banach space X

and for any countable ordinal : Sz(X) < « implies 6*(X) < ¢ ().

Proof. This is an immediate consequence of Proposition 3.2 and Proposition 2.1. The

function 1 is the same as the function given by Proposition 2.1. []



Remarks.

1) For a Banach space X, it is possible to define a dentability index 6(X) and a “weak-
Szlenk” index Sz,(X) by peeling the unit ball of X with slices of small diameter or with
weakly open sets of small diameter. But the two conditions “§(X) < w;” and “Sz,(X) < wy”
are not equivalent, even in the separable case. Indeed the predual B of the James tree space
has the Point of Continuity Property and is separable, so Sz, (B) < wi; but B does not
have the Radon-Nikodym Property, so 6(X) = oo (see R.C. James [J], J. Lindenstrauss and
C. Stegall [L-S], C.A. Edgar and R.F. Wheeler [E-W]).

2) In general () > a. For instance, if X is finite dimensional, Sz(X) = 1, while
0*(X) = w. Moreover, the condition §*(X) = w is equivalent to X super reflexive. But this
is not true for the Szlenk index. For example it is easy to check that Sz((3> ., 7)) = w.

On the other hand, the descriptive set theory approach used in section 2 implies that
{a < w; : {X Banach space :Sz(X) < a} = {X Banach space : 6"(X) < a}}

contains a closed cofinal subset of w;y.

THEOREM 4.2. Let X be a Banach space. If Sz(X) < w1, then X admits an equivalent
norm whose dual norm is locally uniformly convex. In particular, there is an equivalent

Fréchet-differentiable norm on X.

Proof. This result is proven in [L] under the “a priori” stronger hypothesis : 6*(X) <

wi. |:|

5. Sz(C(K)) for K SCATTERED COMPACT SPACE.

For a topological space K, the derived space K’ is defined to be K\ {x : z isolated point
of K} ; for ordinals o we define K(® inductively by K(© = K, K(et1) = (K@) K@) =
N K® for a limit ordinal. Then the space K is said to be scattered if K(*) = () for some

B<a
Q.

THEOREM 5.1. Let K be a scattered compact space such that KV = (). Let o < wy
be the ordinal such that K“*) # () and K&"™") = (). Then S2(C(K)) = wetl,



As a corollary we obtain the following result of R. Deville [Dev] : if K is a compact
space such that K1) = (), then there is an equivalent norm on C (K) whose dual norm is

locally uniformly convex.

We will need two classical lemmas.

LEMMA 5.2. Let K be a compact space and X be a separable subspace of C(K). Then

there exists a compact space L such that :
i) C(L) is separable.
ii) X embeds isometrically into C(L).

iii) there is a map s : K — L which is continuous and onto.

Proof. Let X be a separable subspace of C(K). We denote by Lo the metrizable compact
space (Bx«,0(X*, X)). For z in K we call 0, the element of (C(K))* defined by : for any f

in C(K), 8.(f) = f(x).
We have that the application s: K — Ly

x> 0zr, is continuous.

Let L = s(K). X embeds isometrically and in a canonical way into C(L). []

LEMMA 5.3. Let K and L be two compact spaces and let s : K — L be continous and
onto. Then, for any ordinal o, L(®) C s(K ().

The proof of this lemma is an easy transfinite induction.

oz+1)

Proof of theorem 5.1. Let K be a compact space such that K 0, with o < wy.

Let X be a separable subspace of C(K). By Lemma 5.2, there is a compact space L such
that C(L) is separable, X embeds isometrically in C(L) and there is a continuous map s from
K onto L. Then by Lemma 5.3, L") = (). Since C(L) is separable and L is scattered we
have that L is countable. Now, it is known that for countable compact spaces, LE"T =)
implies Sz(C(L)) < w**! (see C. Samuel [Sa]). Therefore, for any separable subspace X of
C(K),Sz(X) < w1l Thus, by Proposition 3.1, Sz(C(K)) < w®*1.

Let us mention that the definition of the Szlenk index that we use is not the definition

introduced by W. Szlenk [Sz] and used by C. Samuel [Sa]. But the two definitions coincide
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for X separable Banach space not containing any isomorphic copy of 1;(IN) (see [L]) and
therefore for C(L) with L countable compact space.
On the other hand, if K(“") = ), then Sz(C(K)) > w®. More precisely we have that,
for any ordinal o : z € K(®) = §, € (BC(K)*)[IQ], where d,, is the point evaluation at x.
Therefore, under the assumptions of theorem 5.1 we have that w® < Sz(C(K)) < wt!,

The conclusion of this proof follows immediately from the next proposition.

PROPOSITION 5.4. Let X be a Banach space such that Sz(X) < wy. Then there exists

a countable ordinal o so that Sz(X) = w®.

Proof. We will use the following fact : for any Banach space X and any ordinal «

1 o 1 o
() 5(Bx )l + S Bx- € (Bx-) .

The proof of this is a straightforward transfinite induction.

Claim : Sz(X) > w® = Sz(X) > w*t.

If Sz(X) > w® then we can find € > 0 and z* € Bx- such that z* € (BX*)[;;Q]. Then,
by (*), 0 € (Bx-)" .
Thus JBx € (Bx )l So (3Bx)) € (Bx) . But 0 € (Bx)* = 0
(%BX*)E;;]. Hence 0 € (Bx-)

Proceeding inductively, we show that for any n in w,0 € (B X*)E’;; I,

[w®.2]
e/2
Therefore Sz(X) > w**!. This completes the proof of the Claim.
Now let o = Inf{ry : S2(X) < w}. If a is a limit ordinal, Sz(X) > supw” = w®. So

B<a
S2(X) =w* If @« = B+ 1, our claim implies that Sz(X) = w®. []

Remarks.
1) A similar argument shows that if §*(X) < wq, then §*(X) is of the form w®.
2) The property described by Proposition 5.4 has been suggested by a paper of A.

Sersouri [Se] about the Lavrientiev indices.

11



6. THREE-SPACE PROBLEM FOR THE CONDITION Sz(X) COUNTABLE.

The general question we are now interested in is the following : let X be a Banach space
and Y be a closed subspace of X. Assume that Sz(Y) < w; and Sz(X/Y) < w;. Can we
conclude that Sz(X) < w7

In this section we answer positively this question by proving the following result :

THEOREM 6.1. Let X be a Banach space and Y be a closed subspace of X such that
Sz(Y) <wy and Sz(X/Y) < wy. Then Sz(X) < Sz(X/Y).Sz(Y)

Remark. If we can prove this inequality when Y is separable, then we can use the
results of Section 3 to deduce the general case. Indeed, for any separable subspace Z of X,

if we call E the closed linear space spanned by Z and Y, since (E/Y)* is separable we have
Sz(E) < Sz(E/Y).Sz(Y) < Sz(X/Y).S2(Y)

So

Sz(Z) < Sz(X/Y).Sz(Y)

Hence, by Proposition 3.1

Sz(X) < Sz2(X/Y).Sz(Y)

Therefore, from now on, we will assume that Y1 is separable and we will denote by

V = (V,,)2, a basis of open sets for (By.,o(Y 1, X/Y)).

LEMMA 6.2. Let ¢ >0, F =3By. and B=F + %BX*. For any ordinal o :

12



Proof. We will prove this by transfinite induction on a.
By definition of B, it is true for a = 0.
Assume this property is true for any § < a.

If « is a limit ordinal, we have that
w. 18] _pla €
ﬂ B[ s < ﬂ F5/3 )_F5/3+§BX*7
B<a B<a

because (Fg[%)ﬁ<a is a decreasing family of o (Y +, X/Y)—compact sets.

If o= f+1:let (Vi a))i2y = {V € Vsuch that VAF) # 0 and diam(V N F) < g}.
We will show by induction that for any £ > 1 :

k
=1

k+1
If we assume that this is true for k, we have that BT \ [(FE[% \ U Vii(a)) + EBX*]

3
is a o(X™*, X)-open subset of BYPH] and is included in Vaisa(a) N FE[/%) + %BX*. So its
k41
diameter is < e. Therefore BE# T  ( 3/3\ U Vi) + 3BX*.

It follows from these inclusions that

w.x _ (o] €
BCL ! < ( 5/3\UVnz(a) +3BX* _Fe/3+§BX*'
=1

Let ¢ be the quotient map from X* to X*/Y L. We have the following lemma.

LEMMA 6.3. For any ordinal «, q((BX*)[gE'a]) - (BX*/YL)Q[.;O/%

where 7. = w.S,/3(F) = w.S2(X/Y, g)

Proof. Again the proof is a transfinite induction.

Since q(Bx+) = Bx=/y 1, the case a = 0 is clear.

Assume this is true for any ordinal a < (.

If « is a limit ordinal, it is easy to check that the property considered is therefore true
for a.

If «a = 3+1:let z* € Bx« so that qz* ¢ (BX*/yJ_)LO;]ZL. We need to prove that

x* ¢ (BX*)L =l s we may assume that * € (Bx~ )[75 A1 and then, by induction hypothesis,

13



qr* € (Bx*/yl)g[_:ﬁ/{l. Therefore there is a o(X*/Y L, Y)-neighborhood V of gz* such that

diam(V N (Bx*/yL)Lﬁ/]4) < Z V defines a o(X*, X)-neighborhood V' of 2*, and

By Lemma 6.2, (3By 1 + %Bx*)[gs]

= 0.
Therefore x* ¢ (BX*)DE"BJWE] = (BX*)L

E.a]. |:|

Proof of Theorem 6.1. We deduce directly from Lemma 6.3 that, for any ¢ > 0 :

Sz(X,e) <w.Sz(X/Y, g).Sz(Y, Z)

We will use the following easy and technical fact :

Claim : let o and 8 be two ordinals > 1. If v < w® then w.y.w® < w*.w?

We want now to prove that Sz(X) < Sz(X/Y).Sz(Y). It is clear that if dim(Y") is finite
then Sz(X) = Sz(X/Y) and that if dim(X/Y) is finite then Sz(X) = Sz(Y"). Therefore we
may assume that Sz(Y) > w and that Sz(X/Y) > w. Then, if we combine the claim above
with Proposition 5.4 we can conclude that Sz(X) < Sz(X/Y).Sz(Y). []

We will end this section with a slight improvement of the above inequality in the case
where Y is complemented in X. This will allow us to compute Sz(X) in some particular

cases.

LEMMA 6.4. Let X a Banach space and Y a complemented subspace of X.

X
If S2(Y) < wy and Sz(?) < w1, then there exists a constant C' > 0 such that :

for any € > 0, Sz(X,e) < Sz(Y, %)Sz(%, 5)

Proof : It is enough to show that if X =Y &1 Z, then for any € > 0 :
Sz(X,e) < Sz2(Y,e).52(Z,¢).
This can be done by a straightforward double transfinite induction. []

Remark : Now it is not difficult to see that if Sz(Y) < w and dim(Z) = oo, then
Sz(X) = Sz(2).

If we combine this remark with Proposition 3.1, we get the following result :
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PROPOSITION 6.5. Let X be a Banach space and Y be an infinite codimensional
subspace of X isomorphic to co(IN).

If Sz(%) < wi, then Sz(X) = Sz(=).

<]

Proof. By Proposition 3.1, it is enough to show that for any separable subspace E of X
containing Y and such that Y is of infinite codimension in E, we have Sz(EF) < S z(?)
But Sobczyk’s theorem (see [So]) implies that Y is complemented in E. Moreover it is easy to

E X
check that Sz(co(IN)) = w. Therefore, by the above remark, Sz(E) = Sz(?) < Sz(?). [

Example : Let JL be the space constructed by W.B. Johnson et J. Lindenstrauss (see
[J-L] for the definition and the main properties of this space).
J L contains a subspace Y isometric to ¢o(IN) and such that % is isometric to l2(I"), where
I' is a certain uncountable set.
Thus, by Proposition 6.5, Sz(JL) = Sz(lo(T")).
But l3(T") is uniformly convex, so Sz(I3(T")) = w = Sz(JL). []
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