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ABSTRACT. We investigate a non-local non linear conservation law, first introdbge® C. Fowler to describe
morphodynamics of dunes, see [5, 6]. A remarkable feature is th&tioio of the maximum principle, which
allows for erosion phenomenon. We prove well-posedness for initialid&? and give explicit counterexample
for the maximum principle. We also provide numerical simulations comatig our theoretical results.
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1 Introduction

We investigate the following Cauchy problem:

{&gu(t, x) + Oy (“72) (t, ) + Z[u(t, ))(z) — O2,u(t,z) =0 t € (0,T),z € R, 1)

u(0,z) = up(z) z € R,

whereT is any given positive timeyo € L?(R) andZ is a non-local operator defined as follows: for any
Schwartz functionp € S(R) and anyz € R,

+oo 1
Tlo|(z) == /0 ¢3¢ (@ — C)dc.

Remark 1. Equation(1) can also be written in conservative form
2

Oyu + Oy <u2 + Llu] — ag;u) =0

where

400 i
Clol() = /0 ¢ (@ - Q).
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Equation (1) appears in the work of Fowler [5, 6] on the evolutionlwfies the term dunes refers
to instabilities in landforms, which occur through the interaction of a turbulemt ¥ith an erodible
substrate. Equation (1) is valid for a river flow (from left to the right) roaerodible bottorm (¢, x) with
slow variation. For more details on the physical background, we refeetder to [5, 6].

Roughly speakingZ[u] is a weighted mean of second derivatives:afith the bad sign; hence, this
term has a deregularizing effect and the main consequence is probalfacthiihat (1) does not satisfy
the maximum principle (see below for more details). Nevertheless, one edmes¢he diffusive operator
—02,, controls the instabilities produced dyand ensures the existence and the uniqueness of a smooth
solution for positive times. The starting point to establish these facts is theatien of a new formula
for the operatofZ, namely (3). This result allows to show easily tHat- 92, is a pseudo-differential

operator with symbotjz(¢) = 4r2¢£2 — az|£]% + 1 bzé‘\gﬁ, whereaz and bz are positive constants
(see (4)). The symbalr2£2 corresponds to the diffusive operate®2, and—az|¢|5 + i br&|¢|5 is the
symbol of the nonlocal operat@r. Notice that—az\fﬁ corresponds to a fractional anti-diffusion and
i bI§|§\% to a fractional drift. Because of the fact that the fractional anti-diffiussoof order%, the real
part of ¢»7(¢) behaves ag?, up to a positive multiplicative constant, & — +oo. A consequence
is that Equation (1) has a regularizing effect on the initial data: eves i§ only L?, the solutionu
becomegC> for positive times. The uniqueness of.&((0,7); L?) solution is obtained by the use of
a mild formulation (see Definition 1) based on Duhamel’s formula (13), in whiglears the kernek

of Z — 92,. The use of such a formula also allows to prove local-in-time existence withetipeohi a
contracting fixed point theorem. Such an approach is quite classicalfevahe reader, for instance, to
the book of Pazy [8] and the references therein on the application oféleytlof semigroups of linear
operators to partial differential equations. We also refer the readeetavdik of Droniouet al. in [3]
for fractal conservation laws of the form

A
2

Opu+ Oy (f (w) + (—02,) 2 [u] = 0, (2)

wheref is locally Lipschitz continuous andl € (1, 2], and to the work of Tadmor [9] on the Kuramoto-
Sivashinsky equation:

Do+ 3 100uf? — Oy = (~02,)[u].

In fact, fractal conservation law (2) is monotone and the global existefrecé > solution is based on the
fact that the.>°> norm ofu does not increase. In our case, this is not true and we have to useiaallas
energy estimate to get a glob&at estimate. The regularizing effect on the initial data are first proved by
a fixed point theorem on the Duhamel’s formula to g€t regularity in space and next by a bootstrap
method to get further regularity. This technique has already been usgd in [

On the other hand, one of our main result is probably the proof of the éadéithe maximum
principle for (1): more precisely, we exhibit positive dunes which takgatiee values in finite time,
since we establish that the bottom is eroded downstream from the dunesd\givee some numerical
results that illustrate this fact (for more precision, see Remark 2 and S&gtidhe proof of the failure
of the maximum principle is based on the integral formula (3), which roughdaldpg means that
is a Lévy operator with a bad sign, see [2]. Notice that the Kuramoto{Sivslsy equation is also
non-monotone, but no proof of the failure of the maximum principle is givda]in

The paper is organized as follows. In Section 2, we give the integrgbseuado-differential formula
for Z; we also establish the properties on the kerkdedf 7 — 8§I that will be needed. In Section 3, we
define the notion of mild solution for (1). Sections 4 and 5 are, respectielypted to the proof of the
uniqueness and the existence of a mild solution; Section 5 also contains dgfi@fitte regularity of the



solution. The proof of the failure of the maximum principle is given in Sectiofri®ally, we give in
Section 7 some numerical simulations that illustrate the theory of the precedtignse

Here are our main results.

Theorem 1. LetT > 0 andug € L?(R). There exists a unique mild solutianc L>°((0,7T); L?*(R)) of
(1) (see Definition 1). Moreover,

i) ue C™((0,T] x R) and for allty € (0,T], v and all its derivatives belong t6'([to, T]; L*(R)).

i) u satisfieso,u + 896(“—22) + Z[u] — 0%,u = 0, on (0, T] x R, in the classical sens€&[u] being
properly defined by3) and (4)).

i) we C([0,7]; L*(R)) andu(0,.) = uo almost everywhere (a.e. for short).

Proposition 1 (L2-stability). Let (u,v) be solutions tq1) with respectivel.? initial data (ug, vo). We
have: ||u — v|c(o.r;.2)) < C (T [uollL2(r), lvollL2(wy) o — vol| L2(w)-

Theorem 2 (Failure of the maximum principle)Assume that, € C?(R) N H2(R) is nonnegative and
such that there exist, € R with ug(z,) = uj(z) = ug(z.) = 0 and

0
uo(y + 2)

Then, there exists. > 0 with u(t., z,) < 0.

Remark 2. Hypothesis of the theorem above are satisfied, for instance, for nativieg, € C?(R) N
H?(R) such that there exists, € R with ug(z.) = uh(z«) = uf(z.) = 0 and

Ve <z, up(z) >0 and 3Fzg < x, S.t.ug(zg) > 0.

A simple example of such an initial dune is shown in Figure 1. Observe thabdtiom is eroded
downstream from the dune (recall that the nonlinear convective termagedps a positive dune from the
left to the right).

time t=0 X
time t=tD

Figure 1: Evolution of a dune, & = 0 and¢ = ¢.. We can observe that(t,,z,) < 0 and that
[ u(t, z) dz remains constant.



Notations: In the following, we letF denote the Fourier transform defined fore L'(R) by: for
all ¢ € R,

Ff) ::/Re_%mgf(m)dx.

We also letF define the extension of the preceding operator fibfrto L2. In the sequel, we only
consider Fourier transform with respect to (w.r.t. for short) the spadahble; in order to simplify the
presentation, for any € C([0,7]; L?(R)), we letFu € C([0, T]; L*(R, C)) denote the function

t€[0,T] — F(u(t,-) € L*(R,C).

2 Preliminaries

In Subsection 2.1, we give the integral and the pseudo-differentialuiar for Z and in Subsection 2.2
we give the properties on the kernel®f- 92,.

2.1 Integral formula for 7
Proposition 2. For all ¢ € S(R) and allz € R,
0

plz+2) —plr) - ¢'(z)2
|2|7/3 d

T¢)(x) = Cr / ., 3)

—00
: _ 4
with C7 = 3.

Proof. The proof is an easy consequence of Taylor-Poisson’s formula @nidils Theorem; notice that
the regularity ofp ensures the validity of the computations that follow. We have:

—00 —0o0

_ /01(1 —7) (/Ooo 25" (x + Tz)dz> dr,
= [a-nrt ([Tt o) ar

thanks to the change of variabte = —(. Then,

0 x4+ 2)— o) — ()2 ! 2
[ A A Dz e i) = i)

— 0o
The proof is now complete. |

Corollary 1. There are positive constanig andbz such that for allp € S(R) and all{ € R,
F (Zle] = ¢") (€) = ¢z(&) F(€), (4)

whereyz (€) = 47262 — az|€|5 + i bre|¢]3.



Proof. We have

0 —o(x) — Y (x)z
F(Zlg)) (€) = Cx /R / o~2imae T+ 2) — (@) @)z

|Z‘7/3

Notice that Proposition 2 ensures that fore S(R), Z[p] € L'(R) and thus its Fourier transform is
well-defined. By Fubini’s theorem, we can first integrate w.itdé deduce that

0 B B NE)»
f(IM)(g):CI/ F(T_29) (€) ’jﬁgé) F©z ,

2,

where we let7_,p denote the (translated) functian — ¢(z + z). Classical formulae on Fourier
transform imply thatF (Z[y]) (&) = ¢¥(§)Fe(§), where

0 e2imez _ 1 _ 2intz
|2[7/3

(€)= O /

—00

Simple computations show that

¢(§):CI/O cos (2m€z) — dz—HC’ / sin (27€z) — 27&z oo,

oo |z\7/3 |2|7/3

It is immediate that the real part @f(¢) is even, non-positive, non-identically equalt@nd homoge-

neous of degreé (the last property can be seen by changing the variabl€ by £z). Moreover, the

imaginary part of)(¢) is odd, negative and homogeneous of degm R, . There then exist positive
constantsi;z andby such that

(&) = —azl¢|5 + i brelé]s (5)
and, in particular,F (Z[¢]) (¢) = (—aﬂf\é +ibz£|£\%) Fep(£). SinceF(—p")(€) = 4m*E*Fp(€),
the proof of Corollary 1 is complete. |

Remark 3. 1. SinceZ[y] = <1R+]-\_%>*<p”,we haveF (Z[g]) = F(1g, ||~ 5)-(—4n2[€[2)-F ().
Elementary computations give(1g. | - ]‘%) = F(%) (— isign(§)5° )|§] 3. Hencear =
(%)L andbr = I'(2)2.

2. Lets € R. If ¢ € H*(R), one can also defing[y] through its Fourier transform by
2 (1 V3
F(TP)(E) = —47°T(3) ( — isign(§) =~ ) €] - F ()

Thus,ify € H®, we have thaf[y] € H3 andHI[ap]HH 1 < A7 T(3)||s=- This implies in

3

particular thatZ : H2(R) — C(R)NL2(R), since by Sobolev embeddifig — C,(R)NL2(R).

3. Corollary 1 implies thaf — 82, : C*(R) N H%(R) — C(R) N L*(R) with Z which satisfies both
Formula(3) and (4).



2.2 Main properties on the kernel K of Z — 92,

By Corollary 1, we see that the semi-group generated byd?,, is formally given by the convolution
with the kernel (defined for > 0 andx € R)

K(t,z) = F e ™7)(2).
Proposition 3. K(t,-) is a L' real valued continuous function.

Proof. K(t,-) is a L' real valued continuous function as inverse Fourier transform1é¥a function
with an even real part and an odd imaginary part. |

In the sequel, we only consider real valued solution of (1). We expoBegime 2 the evolution of
K(t,-) for different times. Note thak((¢, -) is not compactly supported but that(t, ) < %, for
|| > Twith C(t) = 75|02 F (K (t, ) ()|

/t=0.05 s

t=0.1s

t=0.5s

Figure 2: The kernel af — 92, for t = 0.05,0.1 and0.5 s.

Proposition 4. The kernelK has a non-zero negative part.

Proof. Let us assume thdt is nonnegative, then

|67t¢1(£)‘ < H]:fl(efth)HLl(R) = /]R K (2,

- /R K(t) = F (F7H ) (0) = 20 = 1

3
4 2
for all ¢ € R; hence, sincge ¥7(€)| = ¢t4r*EP~azlel®) > 1 for 0 < [¢] < ¢Z;, this gives us a
contradiction. [



The main consequence of this is the failure of the maximum principle for theiequa
Owu + Tlu) — 02,u = 0; (6)

that is to say, there exists a non-negative initial conditignsuch that, for some > 0, u(¢,.) :=
K(t,.) * up has a non-zero negative part, see section 6 below. Neverth&le=mgjoys many properties
similar than those one satisfied by the kernel of the heat equation and shae ¢hat Equation (6) has
a regularizing effect on the initial condition: ify € LP(R) for somep € [1,+00), thenu is C* for
positive times, see section 5.

Let us precise here the properties that will be needed in this paper. Kifice € L!(R), the family
of bounded linear operatofa,y € L*(R) — K(t,-) * ug € L*(R)},_ is well-defined. Moreover, it is
a strongly continuous semi-group of convolution, that is to say:

Vi, s >0, K(s,)* K(t,) =K(s+t,-), )
Yug € L2(R), limy_o K (t,-) * up = ug in L*(R).

Next, the kerneK is smooth on(0, +o00) x R and we have:

VT > 0, I s.t.Vt € (0,T), [|0:K (¢,)|| 2y < Kot ™3, 8)
VT > 0, Iy st VE € (0,T), [|0:K ()| gy < Kt ™2, 9)
Vi, s >0, K(s,") %0, K(t,") =0, K(s+1,-). (10)

Proof of these propertiesThe semi-group property (7) and (10) are immediate consequencesmidr-o
formula. Let us prove the strong continuity. By Plancherel’'s formula,

1K (2,) % uo — uol[F2gmy = [|F(K (L, ) * uo) — Fuol| 72,

= He_wzfuo — .7:u0||%2(R) = / |e—t¢z — 1‘2 |fu0|2. (1)
R

The function|e=®7 — 1|2 | Fug|? converges pointwise td on R, ast — 0. Using thatmin Re(v7) is
finite, we infer thate %7 — 1|2 | Fug|? < C|Fup|? and the dominated convergence theorem implies that
the last term of (11) tends tbast — 0. This completes the proof of (7). Let us now prove the estimates
on the gradient. The smoothness/ofis an immediate consequence of the theorem of derivation under
the integral sign applied to the definition Af by Fourier transform. We get in particular:

Op K (t,-) = 0, F (e 7)) = F! (f — 22'7T§e_wz(§)) .
Since the functiog — 2irée 78 is L2, 9, K (t,-) is L? and we have:
|0, K (t, .)HQB(R) = /R47r2§2,€—th(£)‘2d§ — /R47r2§26—2t(4ﬂ2|g|2—a1g|§)d§_
Let us change the variable lgy = t%f. We get:

e Ll 4
0K (1, sy = 3 [ antlgpe2miert-dutsidge,
R

W

IN

t / Ar?|g/ e 2amIE P=T ozl ) gt
R

7



forall¢ € (0, 7). The proof of (8) is now complete. To prove (9), we have to derivecaibgeneity-like”
property fork. Easy computations show that

K(t, CC) _ /eQiﬂxﬁet¢I(§)d£7
R
_ / 2 mat —t(4m g —azlelF+ivrelelh) g
R
_ b / G2int b (i —tharle B4 horelenh) oo
R
by changing the variable bt/ = tég. Then,

1 % ti% /! 42/2 /% -b//% lt% /% i b //% /
K(t,z) = t—2/€m( D) o~ (421 P —az|e'|3 4+ bre'[€3) o~ (1~ ) (o |¢'| 8 ~i br€'|€'|%) gt
R

N[

- / (2t )€ —ur(€) o~ (1=t ) (azle | —i bl ) g
R
1 4 1
Fort < 1, defineG((1 — ¢3),-) := F~1 <£ — e_(l_t3)(“15|3—”’155|3)>. It is readily seen thaf is

L' as inverse Fourier transform ofi@?! function. Moreover, fot, € (0,1) and allt € (0, ¢o],

1 4 1
|G((1 - t%), MNriwy <C e~ (1=t azl |3 =ibr-|13) < C(to),

‘w%l (R,C)

whereC'(ty) only depends ony. Classical formula on Fourier transform then gives:
K(t) =73 (K(1,2) G- t5),)) (£ #2),

Observe now thab, K(1,-) = F~1 (¢ — 2i ére 7)) is L' as inverse Fourier transform off&?!
function. Then,

O K (t,z) =t~ <8wK(1, ) x G((1 — t3), .)) (t~3z)
is L' and itsL' norm can be computed by the change of variable: =32 as follows:
192K (¢ M ey = 210K (1) % G = 15),)lpagey < ¢ 218K (1, )|y Clto),
for anyt € (0,%p]. Since
1025 (¢, )1 () < ClIE = 20 Eme™ 2O |pang ey < Clto, T),

forall ¢t € [ty, T, the proof of (9) is now complete. |
Remark 4. For anyug € L*(R) andt > 0,

1K (E, ) uol| 2 ry < € |uoll 2wy, (12)
wherewy, = — min Re(¢)7) > 0.

Proof. This is readily established with Plancherel’s formula, like in (11). [



3 Duhamel’s formula

Using Fourier transform and Corollary 1, we formally see that any solutqd) satisfies Duhamel’s
formula (13). This observation is the starting point of the definition of mild sauielow.

Definition 1. LetT > 0 andug € L*(R). We say that. € L°°((0,T); L?(R)) is a mild solution to(1)
if fora.e.t € (0,7),

I 2
u(t,) = K(t,-) *up — 2/0 0. K(t—s,-)xu(s,-)ds. (13)

The following proposition shows that all the terms in (13) are well-definetithat Equation (1)
generates a (non-linear) semi-group.

Proposition 5. LetT > 0, ug € L*(R) andv € L*°((0,T); L'(R)). Then, the function
t
u:te(0,T) — K(t,)*xug— ;/ 0K (t —s,-) xv(s, )ds € L*(R), (14)
0

is well-defined and belongs ([0, 7]; L?(R)) (being extended at= 0 by the value:(0, .) = wg).
(Semi-group property) Moreover, for alf € (0,7) and allt € [0, T — tg],

t
lto-+ ) = K () wultn ) = 5 [ 0.K(E 5. v it + 5, )ds.
0

Proof. By (7), it is classical that the functiane (0, 7] — K(t,-) * ugp € L*(R) is continuous and can
be continuously extended by the valu@, -) = ug att = 0. What is left to prove is thus the continuity
of the function

t
wite[0,T] H/ 0K (t — s,-) % v(s,)ds € L2(R).
0
Let us extend),, K andwv for all times the following way:

| 0:K(t,)) ift>0, [ oo(t,) ifte(0,T),
H(tv ) T { 0 if not and V(t’ ) T { 0 if not.

Then we have

w(t, ) = / H(t —s,) = V(s,)ds.
R
It is immediate thal’ € L>°(R; L!(R)). Moreover, (8) implies that

3
[H(E, )2 m) < Lio<t<ryKot ™1 (15)

and it follows that{ € L*(R; L?(R)). Young's Inequalities imply that for atl € R

IN

/R [[H(t = s,+) * V(s, )| 2wy ds /}R [[H(E = s, 2@V (s, )| 11wy ds,

[H| 2 mse®)) V]| Loe (L (m))- (16)

IN



This implies, in particular, that the functianis well-defined. Let us now takie s € R and define

(t—7,)xV(r)dr — /R'H(s —7,) x V(1)dT

L2®)

We have
o< [0t =) = s =) VOl
< /RIIH(t—T,-) —H(s = 7 ) 2@ V(D) L1 ) dr,
thanks to Young’s Inequalities. It follows that
1< [t =7, = 1o = Mlzzgydr VIl ey

Since the translation are continuouslih(R; L?(R)), we see thal — 0 as|t — s| — 0. In particular,
the functionw is continuous and this completes the proof of the continuity.of
Let us now prove the semi-group property. By (7) and (10), we infatr th

1 [to
u(to+t,-) = K(t,-)* K(to,*) *up — 5 O K(t+tyg—s,)xv(s, )ds
0
1 t+to
5 | Kt 5wl s,
2 Ji,
1 [t
= K(to, ) * K(t,-) *up — 3 K(t,-) * 0, K(tg —s,-) *xv(s,-)ds
0
_/ 0. K (t Yxv(to+ 5, -)ds,
thanks to the change of variable= s — t, to compute the last integral term. Then,
1 [t
u(to+t,-) = K(t,-)* K(to,-) *ug — K(t,-) * 3 0. K (to — s,-) xv(s,-)ds
0
—/ 0. K (t Yxv(to+ 5, -)ds,

= K(t,-)* <K(t0, -) sk ug — % v 0: K (to — s,) * v(s, )d‘s)

0

_/ 0. K (t Y vty + 8, -)ds,
= K(t,-) *u(to, - —/8K Yxv(to+ s, )ds’.
The proof of the semi group property is now complete. |

Remark 5. Forv € L>((0,T); L*(R)), u € C([0,T]; L*(R)) defined in(14) satisfies:

ulloqorrzmy) < €7 luollz2®) + 20CoT % ||| oo ((0,T):L1(R))- (17)
Proof. Indeed, with (15) and (16), we estimate the integral term of (14) and W&} {le estimate the
L? norm of K (t, -) * uy. |

10



4 Uniqueness of a solution

Let us state a lemma that will be needed later.

Lemma 1. LetT > 0, ug € L*(R). Fori = 1,2, letw; € L*((0,7T); L'(R)) and defineu; €
C([0,T); L?*(R)) as in Proposition 5 by

1 t
ui(t,-) == K(t,-) xug — 2/ 0K (t —s,-) xvi(s,-)ds.
0
Then we have the estimate

1
lur — walloqo e my) < 2KoT'1 [|vr — 2| poe (0,1);L1 (R))- (18)

Proof. For allt € [0, 7], we have

up(t, ) —ua(t,) = —;/0 0 K(t —s,-) % (v1(s,) — va(s,-))ds.

Hence,
1 t
e, = unlt ooy = 5| [ 0o (=5 (o) —walo, ]|
0 12(R)
1 t
< QAH@K@—&)Mm@)_w@Jmpﬁw& (19)
By (8),
10K (t —s,.) * (vi(s,) —v2(s, Dllrzw) < N0K(E—s,) [[L2mllvi(s, ) — va(s, ) w)
_3
< Kot —s) 1|[vi(s, ) —va(s, )|l (w)-
Inequality (19) then gives
Ko [* _3
ur(t, ") —ua(t, )2y < 2 (t = s)"ads [|vr — v2l| Lo ((0,0):11 ()

1
= 2Kot* ||v1 — va|peo (0,001 (R)-

In particular, for alls € [0, ]

1 1
[[ui (s, +) —u2(s, )2y < 2Kos? [[vr — v2|[ Lo (0,601 (R)) < 2K0t [[v1 — v2ll oo (0,001 (R))

and we have proved that
1
lur — walle(ogr2®)) < 2Kot [[v1 — v2llLoo (0,601 (R))- (20)

Proposition 6. LetT > 0 anduy € L?(R). There exists at most onec L°°((0,T); L?(R)) which is a
mild solution to(1).

11



Proof. Letu,v € L>((0,T); L*(R)) be two mild solutions. Let € [0, T]. With Lemma 1 applied to
v1 = u? andvy = v?, we get

1
llu = vlleo.g:rzmy) < 2Kot T |[u? — v?||pso(0,0:2 ®)- (21)

Since|[u? —v?|| oo (0,021 ®)) < M[u—vlle(o,0;22®y) With M = [[ul|c (o112 )+ vl (o.11,02(R))
we get:

lu —vlleqo;r2m)) < 2M Kot T ||u — vlle(o,0:02(R) -

We then have established that= v on [0,¢] for anyt € (0, T] such that < (2MK,)~*. Notice that
sinceu andv are continuous with values ib?, u = v on [0, 7] with T, = (2M Ky)~* > 0. To prove
thatu = v on|0, 77, letus defing, := sup{t € (0, 7] s.t.u = v on|[0, t]} and let us assume that< 7.
The continuity ofu andv implies thatu(ty, -) = v(to, -). The semi-group property of Proposition 5 thus
implies thatu(ty + -, -) andv(to + -, -) are mild solutions of (1)with the same initial condition; that is to
sayu(to + 0,-) = v(to + 0, -). The first step of the proof then implies that, + -,-) = v(to + -, ) on

[0, T.]; hence, we get a contradiction with the definitioni@find we deduce thay = 7'. The proof of
the uniqueness is now complete. |

5 Existence of a regular solution

This section is devoted to the proof of the existence of a classical solutton(1). As far as the
regularity is concerned, we show thate C'2((0,7] x R), that is to say,u € C((0,7] x R) and
Ozu, 92,u € C((0,T] x R) and for the sake of simplicity we only give the main ideas to get further
regularity.

We first need the following technical result:

Lemma 2. Letuy € L?(R) andT > 0. Letv € C([0,7]; L*(R)) N C((0, T]; WHL(R)) that satisfies

sup 12 |0,0(t, )| o) < +oc. (22)
te(0,77]

Letu € C([0, T]; L*(R)) be the function defined i14). Thenu € C((0,7]; H(R)) with

1 ’C I 1 1
sup t2[|0zu(t, )| 2wy < Killuollr2m) + TO T sup t2(|0zv(t, )| (r), (23)
te(0,77] te(0,17]

wherel! is a constant equal tgfol(l - s)*gs*%ds = B(1/2,1/4), B being the beta function.
Moreover, lety; € C([0,T]; LY(R)) N C((0, T]; WH1(R)) satisfy(22) and define; by (14) (with « and
v replaced, respectively, by, andwv;) fori = 1, 2. Then,

1 ]C I 1 1
sup. 1310, (1 — wa) (6 Mgy < o TH sup 210u(on — )t )y (24)
te (0,7 te(0,7]

Proof. Recall that Proposition 5 ensures that C([0, T]; L?(R)). It is easy to check that the distribu-
tion derivative ofu w.r.t. the space variable satisfies: for any (0,77,

t
axu(t’ ) - 89:K(t> ) * Uy — ;/ 8IK(t ek ) * 8IU(S’ )dS
0

12



Let us verify that all the terms are well-defined if. Sinced,K(t,-) € L'(R), it is obvious that
0. K(t,-) * ug € L*(R). Moreover, define

/aK ) 5 By(s, )ds.

Young’s Inequalities and (8) give

0K (t = s,-) * (s, |2y < 0K (= s,°)l|L2w)l|0zv(s, )| 21 ()
= |[0:K(t—s, )HL2(R)3 232"8361)(57')”L1(R)7
< Kot — s)*%s*% sup TéHaxv(T, N1 w)- (25)

7€(0,T

Sincefg(t - s)‘%s‘% ds < oo, by (22) we deduce thab(t, -) is well-defined inL? and thus for all
€ (0,7, dyu(t,-) € L*(R). Let us now prove thad,u is continuous or{0, 7] with values inL?. For
d > 0andt € (0,7, define

t
= ;/ 0. K(t—s,-)* (1{5>5}6zv(s, )) ds.
0

Sincely .5 0,0(s,-) € L>([0,T]; L' (R)), Proposition 5 ensures thag; is continuous o0, 7'] with
values inL2. Moreover, for any, € (0,7], § < to andt € [to, T},

Jw(t, ) —ws(t, )rzw) < /HaK s,7) * 0z0(s, )| | L2(w)ds,
< / (t—s)" Ts72ds sup 82H8xv( s, )lLiwy by (25),
2 Jo s€(0,T]
5
< Ko Lo -5 tshds sup sH10a0(s M
2 Jo s€(0,T]

It follows that

K
sup_[lw(t, ) = ws(t, )| 2m) < 5 / (to— )45 2ds sup_s2[0,0(s, )| (z) = 0,
tefto,T) 0 s€(0,77]

asd — 0. We deduce thav € C((0,T]; L*(R)) as local uniform limit of continuous functions. More-
over,

O K (L, ) xug = F! <g 9 ﬂﬁe_t¢1(£)fu0(£)) .

The dominated convergence theorem immediately implies that fofyanyo,
2
/ 4m?|e | )e—wI(f) — e—fWI@)‘ |Fuo(€)2dé — 0, ast — to.
R

This means that > 0 — (5 — 24 wge’twf(g)}“uo) € L%(R) is continuous and, sincg is an isometry
of L2, we deduce that > 0 — 9, K (t,-) * up € L*(R) is continuous. We then have established that
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dzu € C((0,T); L*(R)). Let us now estimate how the* norm ofd,.u can explode at = 0. By (25),

wt, Mo < 2 / (t— syt 3ds sup 7H00(r Nl
2 Jo 7€(0,T]
Kol 1
=Bt sup Ao g,

7€(0,T7]

wherel = fol(l — s’)‘%s"%ds’ = B(1/2,1/4); notice that the last integral term has been computed
with the help of the change of variable= 7. Moreover, (9) and Young's Inequalities imply that

102K (£, ) o | 2ry < Kat ™2 |uol 2y
We deduce that for anye (0, 77,
Kol
[Ozu(t, )|z < Kat™ 2HU0HL2(R +Tt T sup s2(|0pu(s RIIPAYEY
s€(0,T

which implies immediately (23).
Let us now prove (24). For antye (0, 77,

100 (w1 — w2t o) < /Ham—s s aor — v2) (5, 2y 05,

< 50 Lo hetas swp st - ) o
0 s€(0,T]

Kol
= S5t sup s2([0p(01 — v2)(s. )| |age,
s€(0,7T7]
which implies immediately (24). |

Remark 6. Letug, T, v andu that satisfy assumptions of Lemma 2. Then, we have established that for
anyt € (0,77,

1 t
Ogu(t, ) = 0z K(t,-) xug — 2/ 0. K(t —s,-)* dyv(s,-)ds.
0
With Lemma 2 in hand, we can prove the local-in-time existence.

Proposition 7. Letug € L%(R). There existd}, > 0 that only depends Offuol|z2(r) Such that(1)
admits a (unique) mild solution € C([0, T.]; L?(R)) N C((0, Ty]; H*(R)) on (0, T%) such that

sup t2|\8 u(t,)|[r2m) < +oo and  sup t|]02, u(t, N 2w < +o0.
te(0,T%] te(0,Tx

Proof. We use a contracting fixed point theorem. kae C([0, T.]; L2(R))NC((0, T.]; H'(R)), define
the norm

1
ulll := llulleqo,r;zz@yy + sup 2[|0zu(t, )| L2(w)- (26)
te(0,T%]
Define the space

X = {u € C([0,T.]; L*(R)) n C((0, T.]; H'(R)) s.t. (0, -) = ug and||[ul|| < +oo} .

14



It is readily seen thak is a complete metric space endowed with the distance induced by the hdfm
Foru € X, define the function

t
Ou:te(0,T,] — K(t,-)*ug — ;/ 0K (t — s,-) xu?(s,-)ds € L*(R). (27)
0
By Proposition 50u € C([0,T.]; L*(R)) and satisfie®u(0,-) = ug. Definev := u?. We have
Ozv = 2ud,u. Therefore thav € C([0,T.); LY(R)) N C((0, T.]); WHL(R)) and that (22) holds true.

By Lemma 2, we deduce th&u € X. Let us takeR > ||uol|2w) + K1l|uol|12r) @and assume that
[llull| < R. Sincel[u?(| o o.1.):L1 &) = |[ull¢: 0.1 1.2 (r))» €Stimate (17) of Remark 5 implies that

1
T ||uo|| L2ry + 20T Ul o 1022 )

IN

||©ul ‘C([O,T*};LZ(R))

wo T

IN

e

1
uol|r2r) + 2K0TS R, (28)

Estimate (23) of Lemma 2, implies that

NI

Kol 1
= T sup £2]|0a(u®) (¢, )l 1 gy,
te(0,T%]

1
]ClHuOHLQ(R) + Kol T2 RQ,

1
sup  12(|0,(Ou(t, )| 2y
te(0,T%]

IN

Killuoll 2wy +

IN

by Cauchy-Schwarz inequality. Adding this inequality with (28), we get:

1
ulll < e luoll 2z + Kalluoll 2y + (2 + T) KoT3 B,

ForT, € (0, T sufficiently small such that

1
e Juol| r2ry + Killuollr2my + (24 I) KoTX R* < R, (29)

we deduce thafj|©u||| < R. To sum-up, we have established that for &ye (0,7] such that (29)
holds true,© (defined by (27)) map® into itself, whereB denotes the ball of (endowed with
the||| - ||| norm) centered at the origin and of radilis Let us now prove tha® is a contraction. For

u,v € Bg, Estimate (18) of Lemma 1 implies that
1
[[Ou — Ovl|c(o,n;22w)) < ARK0T [|u — vlc(o0,1):L2(R)) (30)
where we again used

lw? = v*|lcongn @) < (lulleqoryr2m) + lollcqoryrz@)lle — vlleqor:r2®)-

Moreover, Estimate (24) of Lemma 2 implies that

1
sup 12|10, (Ou — ©v)(t, )| 2y < Kol T sup 7[|(udyu — v3,0) (¢, )| 1 gy-
te(0,T%] t€(0,T%]
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Since

£2 | (udp — v9u0) (¢, )| amy < 2000t )| 2wyl (u — v)(E )| 2(r)
2 ult, )| L2y 10 (u — 0)(t, ) L2 @)
< lll 110w = v)(t, ) 2y
[l £21105(w — 0)(E, )| 2w,
< Rllju—oll|,

we get

1
sup £2|0a(Ou — Ov)(, )| 2z) < RKoIT |[Ju— v]]|.
te(0,7%]

Adding this inequality with (30), we find that
1
10w — ©vll| < (4 + D) RKT |[|u — vl|].

1
Consequently, for an§, > 0 sufficiently small such that (29) holds true afict- 1) RKoT, < 1, O is
a contraction fromBp, into itself. The Banach fixed point theorem then implies Batdmits a (unique)
fixed pointu € C([0,7.]; L*(R)) N C((0, Ti]; H'(R)) which is, of course, a mild solution to (1).
To prove theH? regularity ofu, we have to use again a contracting fixed point theorem. But,
this is now the gradient of the solution which is searched as a fixed pointt,Let(0,7,) and, for
t € (0, T, — to], define:
u(t,) ==u(to +1t,-).

Let T, € (0, T, — to] and define the complete metric space
X' = {v € C([0,TL); L2(R)) N C((0, TL]; H'(R)) s.8.0(0, ) = vp and|jo]l] < +o0},

wherevy := 9,u(0,-) and||| - ||| is defined in (26) withT replaced byT,. Forv € X', define the
function

t
O'v:tel0,T) — K(t,-)*vg — / 0K (t —s,-)  (wv) (s, )ds € L*(R). (31)
0
Arguing as in the first step of the proof, we claim that Proposition 5, Refiallemmas 1 and 2 imply
that®’ mapsX’ into itself with: for anyu,v € X',

woT! 1L
[11©"v[I] < e ||vol| 2wy + Kallvoll 2y + CT IIv]] (32)

1
1180 — ©"wl|| < CTLH|[|v — wl||,

for some nonnegative constafitthat only depends oklo and |[@||c (1, 7.); 51 (r))- L€t us takeR' such
that
R > e [Jg|| 2wy + Kallvol r2(ry-

If 7] > 0 satisfies

’ 1 1
T |vo|| 2 gy + Kallvol | 2y + CTL* R < R and CT.* < 1,
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then®’ mapsB g (X') into itself and is a contraction. Letdenote its unique fixed point. Observe now
that®’d,u = d,u, thanks to Remark 6. But, using the same argument as in Proposition 6,roeasiy
prove that there is at most one functienc L>°((0,T7); L*(R)) which is a fixed point oP’. It follows
thatd,u = v € X’ on(0,7) and thus that: € C((to, %o + T1]; H*(R)). Recalling that, is an arbitrary
time in (0, 7..], we see that: is continuous or{0, 7%] with values inH?.

We now provesup,c g 7. /|07, u(t, -)|| 2wy < +00. From (32), since'T, i < 1land®'v = v, we get
that|||v||| < C||vo|| L2, for some constar(t’ This yields

sup 2|0, vl|r2w) < Cllvol| 2
te(0,717]

ie. Vit € (to, Tu], [|02,ult, )| 12y < C(t —to) 2 |vo|| L2z Sinceu € X,

sup 2 [|0u(t, )| 2z < 0,
t€(0,7%]

_1
then we havé|vo|| 2wy < Cty % Thereforett & (to, 7., |02, u(t, M2 < C(t—to) 2ty 2. Taking
to =t/2, we get
H(?C%:Cu(t, ')HLQ(R) S Ct_l.

The proof of Proposition 7 is complete. |

Let us now prove the regularity of the solution. We also establish the régulgrto timet = 0
whenu is C2 N H?, since this will be nedeed in the proof of the maximum principle failure.

Proposition 8. Letuy € H?(R) andT > 0. Assume that is a mild solution to(1) that satisfies the
regularity of Proposition 7 up to tim&. Then,u belongs in fact ta”([0, T]; H?(R)) N C12((0, T] x R)
and satisfie¢l) in the classical sense.

Moreover, ifuy € C?(R), thenu € C1%(]0, T] x R) and satisfies the PDE up to time= 0.

Proof. First, we leave it to the reader to verify that the continuity with valueH frup to the timet = 0
can be proved again by the use of a contracting fixed point theorem. Notih&regularity oty allows

to work in a space of continuous functions with valuegfifup to timet = 0; more precisely, we argue
as in the proof of Proposition 7, but we can directly use@i§, 7..]; H?) norm instead of thej| - |||
norm defined in (26). Let us now give the proof of té&2-regularity in three steps: first, we prove that
u satisfies the PDE (1) in the distribution sense; next, we prové&theegularity in space that implies
the C'12-regularity, thanks to the equation.

First step: u is a distribution solution. Taking the Fourier transform w.r.t. the space variable in
(13), we get: for alk € [0, 77,

Flu(t,-)) = e W Fug — /t 17 e_(t_s)d’z]:(ﬁ(s, -))ds. (33)
0
Sinceu? € C([0,T]; L*(R)), we know thatF(u?) € C([0,T]; C»(R,C)) C C([0,T] x R,C). The

function

w(t, &) == —/O 27r§e (t— S)¢I(5)f(u2(s,-))(£)ds

17



is thus continuous of), 7'] x R; moreover, classical results on ODE imply thats derivable w.r.t. the
time variable witho,w € C([0,7] x R,C) and

2

Ou(t,€) + vr(Eu(t. & = ~ineF e )© = -7 (00 () €)@ @)

Let us prove that all these terms are continuous with valuég irFirst,u. € C([0, T]; H'(R)) therefore
0 (u?) € C([0,T]; L*(R)) and we deduce thdf(&w(g)) is continuous with values i?. Moreover,
Equation (33) implies that

vrw(t,) = vz (Flult,) - e Fup ).

Sinceu € C([0,T]; H?(R)) and7 behaves at infinity as- |2, we clearly have that the functiane
[0,T] — w7 w(t,-) € L*(R,C) is continuous. Finally, we have proved that all the terms in (34) are
continuous with values ifi?. In particulard,w € C([0,T); L?(R,C))NC([0,T] x R, C) and it follows
thatw € C1([0, T]; L*(R, C)) with

%(w(t, ) iz w(t, ) =-F <3x <f> (t, '>> :

Moreover, it is easy to see that [0, 7] — e 7 Fuy € L*(R,C) is C* with

d —tyr —tyr _
a (e fuo) + hre Fug = 0.
From Equation (33), we infer thau is C* on [0, 7] with values inL? with

Sl ) = —vrult,) — vz Fu - 7 (0 () 40)

u2
= -7 F(u(t,")) = F <6x (2> (t, )) :
SinceF is an isometry of.?, we deduce that € C'([0, T]; L?(R)) and that

U2
Gt = =0, (%) ()= £ e lue, ).

U2
_ _a, <2> (t, ) — Tlult, )] + O2,u(t, ),

where we used Corollary 1 to compute the pseudo-differential term. ticplar, « satisfies the PDE (1)
in the distribution sense.

Second step:C?-regularity in space. Differentiating (13) two times w.r.t. the space variable, we
get: for anyt € [0, 7],

2 u(t,) = K(t,-) *uf — /t O, K(t—s,-)*v(s,-)ds. (35)
0

wherev = (d,u)? + ud?,u. By the Sobolev imbedding??(R) — C}(R), we know thatv €
C([0,T); LY(R) N L?(R)). By Lemma 4 in Appendix, we know that for all y € R,

‘61«K(t—$, -)*’U(S, ')(x)_aIK(t_Sa -)*’U(S, )(y)’ < HaﬁK(t_s)HLQ(R)H,T(x—y) (U(sa ~))—’U(S, ')HLQ(R)'
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By (8), we deduce that for atle [0, 7] and allz,y € R,

/ DK (t —s,-) % v(s,)(x)ds —/ O K (t —5,-) *v(s,-)(y)ds
0 0

t B .
< [ Kot = AT (065 ) = s, laagayds < 4TH sup [Ty (0(5,) = 05l g2ce

s€[0,7

By Lemma 5 in Appendix, we deduce that the second term of (35) is consnuai. the space variable
uniformly in the time variable (equicontinuity w.r.t. the time variable). Moreoveraleady know that
this term is continuous of), 7'] with values inL? (by Proposition 5) and Lemma 6 in Appendix implies
that it is continuous w.r.t. the couplé, z) on [0,7] x R. We now leave it to the reader to verify that
(t,x) — K(t,-) *uj(x) is continuous orf0, T'] x R whenuy € H?(R). By Formula (35), we then have
proved thav?,u € C((0,7] x R).

Conclusion: C''2-regularity. By the first step, the term%v and—0, (“;) — Z[u] + 0%,u have the
same regularity; by the second step, it is enough to establish the contindity|of.r.t. the space-time
variable. To do this, we recall thate C([0,7]; H*(R)) and we use the second item of Remark 3. We
conclude thafZ[u] € C([0,7] x R) and thusu € C12((0,T] x R). This completes the proof when
ug < HQ(R).

To finish with, we prove the regularity up to timte= 0 whenwuy, € C?(R) N H%(R). We leave
it to the reader to verify that, z) — K (t,-) * uj(x) is continuous up to timé = 0. Moreover, we
already have seen in the second step that the integral term of (35) isumrgion[0, 7] x R. We
deduce thab?,u € C([0,T] x R). But, we also have seen above t@dt] € C([0,7] x R); hence,
Equation (1) implies that,u € C ([0, T] x R) and thus, € C1%([0, T] x R). The proof of Proposition 8
is complete. |

We can finally prove the global-in-time existence.

Proposition 9. Letug € L*(R) andT > 0. There exists a (unique) mild solutianc C ([0, T; L*(R))N
C((0,T]; H*(R)) to (1) such that

sup ¢2[|0yult, )| p2m) < +oo and  sup t|82u(t, )| L2y < +oo.
te (0,7 t€(0,7]

Moreoveru belongs taC2((0, T] x R) and satisfies the PDEL) in the classical sense.

Proof. First step: a priori estimate. We begin by deriving &2 estimate on a priori solution of (1)
with regularity:u € C([0,T]; L*(R)) N C((0, T]; H2(R)) N CY2((0,T] x R). Multiplying (1) by  and
integrating w.r.t. the space variable, we get:

d1

7 /Rzﬂdm + /R(I[u] — 02 u)udx = 0. (36)

Indeed, the following computations show that the nonlinear term equals

u? u? 1 1 u?
/Raz <2> udr = —/RQ@xudx =5 /Ru(uﬁmu)dx = _2/11& Oy <2> dx;
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notice that “there is no boundary term from the infinity”, becauge-) andu?(t, -) belong toH*(R),
for allt € (0, 7], sinceu(t,-) € H?(R) . But, Corollary 1 implies that

/ (Z[u] — 02, u)udx = / F s Fu)udr = / Yr|Ful?dé = / Re(v7) | Fuldé,
R R R R

since [, (Z[u] — 02, u)udx is real. It follows that,

/(I[u] — 0% u)udr > minRe(wI)/ | Fuldg,
R R
= min Re(wz)/UQd:c,
R

thanks to Plancherel's Equality. Equation (36) then implies that

IR <
t2/ud:r wo/udm

and by Gronwall's Lemma, we deduce that fortad [0, T,
ult, 2wy < e luollr2)- (37)
Conclusion. With this estimate, we can prove the global-in-time existence. Define

to := sup{t > 0 s.t. there exists a (unique) mild solutiarto (1)
on (0, t) that satisfies the regularity of Propositioh 9

We have to prove that > 7. To do so, we assume the contragy< 7" and we seek a contradiction.
Let us first verify thatty > 0. By Proposition 7, Equation (1) admits a local-in-time mild solution
u € C([0,T.); L*(R)) N C((0, T]; H*(R)) on (0,T.). Applying Proposition 8 witht; € (0,7.) as
initial time, we see thats € C12((t1,T.] x R) for all t; € (0,7}). Finally, we infer thatu has the
following regularity:u € C([0, T.]; L*(R)) N C((0, T.]; H*(R)) NC2((0, Ti] x R), which implies that
to > T, > 0. Using again Propositions 7 and 8, there exigts> 0 such that for any initial data, that
satisfy

voll L2y < €% |uoll 2(r), (38)

Equation (1) admits a regular mild solutienon (0, 77) with initial datumuv,. Since (37) implies that

vg := u(tg — T /2) satisfies (38), we infer that (1) admits such a solutiotJsing the uniqueness and
the semi-group property, we see thét, — 77, /2 +t,-) = v(t,-) forall t € [0,77/2). Finally, defineu
byu =won|0,ty) andu(ty — 1./2 +t,-) = v(t,-) fort € [T, /2,T}]. Then,u is still a mild solution

to (1) that satisfies the regularity of Proposition 9. Since the solutibres on[0, ¢y + 77 /2], this gives

us a contradiction. We conclude thgt> T and this completes the proof of the global existence of a
C12-solution. [ |

For the sake of completeness, we give the main ideas to get further igguldre proof follows
closely the one given in [3].
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Sketch of the proof of thé>°-regularity. We use a bootstrap method. Let us first introduce some no-
tations. Forn € N, J07.u denotes the spatial partial derivativesobf ordern. We also say that

u € C™>((0,T] xR) if all the mixed derivatives of. up to ordem in time are continuous of9, 7] x R.

The proof follows in three steps. First, we prove the spatial regularitgyabeder and the temporal reg-
ularity of order one by derivating the equation w.x:t. Next, we win one degree of regularity in time in
order to derivate the equations w.t.t.Finally, we conclude by induction.

First step: C''-regularity of the spatial derivatives. Up to this point, we know that
u € C((0,T]; H*(R)) N CH2((0,T] x R).

Derivating Duhamel’s formula w.r.tz, we proved in Prop. 7 thdt,« is a mild solution of Equation (1)
derivated w.r.t. tac:

Opulto +t,-) = K(t,-) * Opulto, -) — /Ot O (t — s,-) % (uByu)(to + s, -)ds.

Moreover, taking any, € (0,7] as initial time, we know that the initial datud.u(to,-) € L*(R);
hence, we argue as in Prop. 9 to prove that € C((to, T]; H*(R)) N CY2((tp, T] x R). Sincety is
arbitrary in(0, 7], we deduce that

dpu € C((0,T]; H*(R)) N CH2((0,T] x R).

We can do the same for the second derivadigeu which is a mild solution of Eq. (1) derivated twice,
see Equation (35). By induction, we extend this to all the spatial derigabive:

vneN, 0%ue C((0,T];L*R))NCH(0,T] x R).
Second step:C%>°-regularity. Let us pay attention on the regularity of the non-local term. Let us
recall that the second item of Remark 3 implies that
Z[u] € C((0,T]; L*(R)) N C((0, T] x R).

Moreover, we have:
0. Z[u] = Z[0zu). (39)

Indeed, observe that for € H3(R), (4) and classical formula on Fourier transform give:
F (0:11¢]) = 2im - F (Z]g]) = 2im - pFo = pF (Oup) ,

wherev is given by (5). This implies thad, Z[y] = Z[0,¢]. Since the first step implies, in particular,
thatw is continuous in time with values iff®, we deduce that (39) holds true. Using again the second
item of Remark 3, it follows that

0 Zu] € C((0,T]; L*(R)) N C((0,T] x R).

Since, from the first stepy € C((0,77]; H"(R)), ¥n € N, by induction we get the same result for the
spatial derivatives of [u] of any order:

Vn eN, 9%Zu] e C(0,T]; L*(R))NC((0,T] x R).
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Sincedyu = —0,, (%) — T[u] + 02,u holds in the classical sense by Prop. 8 we deduce that

VneN, 0%0ue C((0,T]; L*(R)) NC((0,T] x R).

Now we show that
8131[’&] = I[@tu] € C((O,T] X R),

indeed,0,u is sufficiently regular in order to apply the theorems of continuity and divivainder the
integral sign to Formula (3). Arguing by induction on the the spatial devieatdfu, we see that

VneN, 000Tu| = 0 Z[0hu] = Z[0:0mu] € C((0,T] x R).

T

We deduce that
Vn €N, 9%Zu] e C((0,T); L*(R))NC((0,T] x R).

xn

Using again the fact that Equation (1) holds in the classical sense, we get:
Vn €N, 0%owu e C(0,T]; L*(R)) N C((0,T] x R).

Moreover, we have seen in the first step that € C'2((0,T] x R); hence, the following equation
holds true in the classical sense:

O10pu + (Opu)? + ud? u + T[0pu] — 02, u = 0.

rxrxr

Performing the second step withreplaced by, u, we obtain:
VYneN, 9%00,u e C((0,T]; L*(R)) N C*((0,T] x R).
We then can iterate this for all the spatial derivatives @ind we get finally the following regularity:
Vn,m €N, 9%.0;0mu € C((0,T); L*(R)) N C'((0,T] x R).

Henceu € C%°°((0,T] x R) with all mixed derivatives up to orddrin time continuous with values in
L2,

Conclusion. Now, we can derivate Equation (1) w.rt.and argue as previously to prove that
C3°°((0,T] x R) with all mixed derivatives up to orderin time continuous with values ih?. Arguing
by induction, we conclude thatis C*°((0,T] x R) with all derivatives continuous with values .
This is the desired regularity in Theorem 1. |

To finish with, we prove thé.?-stability stated in Proposition 1.

Proof of Proposition 1 .Let (u, v) be solutions to (1) with respectivie? initial data(ug, vo). letT > 0
andt € [0, T]. Substracting

u(t,) = K(t,-) *xug — ;/0 0. K(t —s,-) xu?(s,-)ds

and .
u(t,.) = K(t,-) *vg — ;/ DK (t —s,-) xv%(s, )ds
0
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we get

u(t,-) —v(t,-) = K(t,-) * (up — vo) — ;/0 DK (t —s,-) * (u*(s,-) — v*(s,))ds. (40)

Hence, by (12) of Remark 4 and Young inequality

[u(t, ) —v(t, 2w < BWOT||UOUO||L2(R)+;/: 10K (t=s, )| L2y l[e?(s, ) =02 (s, )| 1wy ds.
Taking
M = max (||ulloqo.r22®): [Vl cqorr2my) < €7 max (|[uol|L2), [vollz2w)) » bY (37)
we can bound
Jut,) = vt M@ < €T lluo — voll2m)
+M /Ot 10K (t = s, )| L2l luls, ) — v(s, )|z ds
< el = iy + Ko [ (6= ) (o, = oG5, ey ds

thanks to (8). With Lemma 3 in Appendix, the proof is finished. |

6 Failure of the maximum principle

We now investigate the proof of Theorem 2, which is an immediate consegudrtbe integral for-
mula (3).

Proof of Theorem 2Propositions 8 and 2 imply that the solutiarto (1) is C'*? up to timet = 0 and
that

O ug(a, +2) — uola) — uh(x)

’2‘7/3

ue (0, 24) + uo (T )uh(my) + CZ/ ®dz— ug () = 0.

—0o0

It follows that
O wo(zy + 2)

\z]7/3 dz < 0.

w(0,2,) = —Cr /

—00

There then exists, > 0 such thatu(¢,, z.) < 0. The proof of Theorem 2 is now complete. [ |

7 Numerical simulations

The aim of this part is to show some numerical simulations for (1). An expligtelization gives results
in line with the theoretical study (see Remark 2).
We write (1) with a viscous coefficieat> 0 as follows:

2
0w + Oy <uz + E[u]) —ed?u=0, (41)
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where for anyy € S(R) andz € R,

“+o00 1
Clol() = / 5@ - Q).

The viscous coefficient is taken sufficiently small, in order to magnify theiegceffect of the non-local
term. The new definition of the non-local ter@[¢| = 0, L][u]) follows [5], which interprete<[u] as
a flow. Notice that in [5, 6], the bottom is, in fact(t,z) = u(t,x + ¢’(1)t), wheregq is the bedload
transport of sediments; for the sake of simplicity, we continue to work with

To shed light on the effect of the nonlocal term, we compare the evolutidneo$olution of (41)
with the solution of the viscous Burgers equation:

u?

Opu + Oy < 5 ) —ed?u=0. (42)

7.1 Maximum principle for the viscous Burgers equation

It is well-known that (42) satisfies the maximum principle: for any initial date&e L>°(R), ess-infug <
u < ess-supuy. As a consequence, (42) cannot take into account erosion pheaof@simulate the
evolution ofu, we define a regular discretization [0f L] with a spatial steg\z such thatL = M Az,
and a discretization df), '] with a time stepA¢ such thatl’ = NAt. We letz;, t,, andu]" respectively
denote the pointAz, the timenAt¢ and the computed solution at the po{mtAt¢, :Az). We use the
following explicit centered scheme:

1(ur ) = (@ y)? ul g — 2ul +ul
n—i—l — At |—= i+1 i—1 i+1 7 i—1 43
i it 2 2Ax te Az? (43)
It is well-known that this scheme is stable under the CFL-Peclet condition:
A Az?
At < min _ar , o . (44)
max; [ul'|’ 2e

To convince the reader, let us simulate the evolution of the well-known follpwivelling waves of

(42) fore = 1:
ult,z) = % [1 _ tanh (111 (:c _ ;t))] .

Remark 7. Equation(1) also admits travelling wave solutions, see [1].

We expose in Figure 3 both analytic and numerical solutions. We obsereg@rof the order of
10~ between these solutions. Let us now take, as an initial dune, the followirtysmqdar perturbation
on the bottom:

-1

_(z— L2 e L L

uO(x): el~(==3) |f§—1.<x<5+1, (45)
0 otherwise

We describe its evolution in Figure 4. The dune propagates, but as mehéibaee the erosion phenom-
ena are not taken into account sinceemains positive (because of the maximum principle).
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—— numerical solution
3.5F - - - analytic solution |

w
T

2.51

N
T

1.5r

[N
T

0.5

20

Figure 3: Numerical and analytic travelling waves of the viscous Burggraten.

/o

e /00075

/02025
/T 0.1575
/ ot125

/” 0.0225

Figure 4: Evolution of the solution of (42) witly, defined in (45) . = 30, M = 4001 ande = 0.1).

7.2 Erosive effect of the nonlocal term

Let us return to the study of (41). We add the discretization of the non-bpeaator, to the explicit
centered scheme (43). It is natural to consider the following discretization

oo L ul .+1—un.1

. _ 1t i—j—

clu)~ Y ljdaf - )
J=0
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Then we obtain the discretization for (41):

1) — (ur)?  Llu? ] —Lluy]  uly —2u? 4+ ul
n+1 — At - i+1 i—1 _ i+1 i—1 i+1 ) i—1 . 47
v = 2 DN N te A2 (47)

The initial dune

(L/2')—1 L2 (|_/2')+1

Figure 5: The initial dune defined in (45).

Remark 8. Taking into account the explicit discretization (46), we see fl{af’| only depends on
for j < i+ 1, therefore, in (47)u§”rl does not depend o} for k& > i + 2 :

n+l _  n n n n o, n n
wg T =+ A F(ul o, uig, ug ugg, g, ).

Now, take any integed > 1, assume thati(z) = 0, Va < AAuz, then by induction we have
ul =0, Vi < (A — 2n), therefore£ can be computedsing only a finite number of terms

]_{0 ifi<A—2n

. _ . 1l 7’!1,,?7 . .
ST AR T AL =EL ifnot.

To take advantage of the previous remark, we take again the initial dajutefined in (45), which
satisfies supfuy) CC (0, L) (see Figure 5), and we use the explicit scheme (47) and (48). Camgern
the stability condition, one can numerically see that (44) is still ensuring stalblitgrhall Az. The
evolution of the initial dune (45) is given in Picture 6. Like the solutions of ikeaus Burgers equation,
the dune is propagated downstream but we now observe an eroseespibehind the dune: the bottom
is eroded downstream from the dune, as shown in Remark 2.

(48)

Let us make a final remark. We are aware of that the fact that these icairgmulations are a first
crude attempt. To tackle rigorously the non local term would need furthdy,stthich will be reported
elsewhere.

A Some technical lemmas.

We first recall a classical generalization of Gronwall's lemma proved eld].in

Lemma 3. Letg : [0,7] — R, be a measurable function and suppose that there are positive constants
C,Aand6f > 0 such that, forallt < T,

g(t) < A+ C/o (t — )P Lg(s) ds.
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0.2025

0.1575

= 0.1125

0.0075

0.025

Figure 6: Evolution of an initial dune, by using the non-local model (41)~ 30, M = 4001 and
e =0.1).

Then,
sup g(t) S CTA7
0<t<T

where constanf does not depend oA.

Lemma 4. Let f, g € L?(R). Then,f x g € C(R) and for allz,y € R,

[fxg(x) = 9@ <T@y — fllezmw)llgll2m)-
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Proof. The result is immediate if andg are smooth; indeed,

(z — 2)g(2)dz — /R f(y — 2)g(2)dz

[ 1@ =2) = ru=2)a(c)ld,
< NTa—y)f = fllezw 9l 2w
The result for generaf andg only L?, is then obtained by density. |

|frglx)—fxgly)| =

IN

Lemma5. Letu € C([0, T]; 2(R)). Thensup;co -y |15 (u(t, ) — u(t, || 2y — 0, ash — 0.

Proof. The functionu is uniformly continuous with values ih? as a continuous function on a compact
set[0, T']. For anye > 0, there then exist finite a sequerte- ¢ty < t; < ... < ty = T such that for
anyt € [0,77, there existg € {0,..., N — 1} with

lult, ) —ulty, Nz <e.

Moreover,
T (u(t, ) — ult, )lrzw) < [Za(ult, ) — Taulty, )llrzm)
| Zn(ulty, ) = ulty, 2wy + llulty, ) — wt, )2 m)-
Since|| 7y (u(t, ")) — Tn(u(t;, )l|z2@®) = llult, ) — u(t;, )|l z2®), We get:

1T (ult; ) = w(t, )l 2wy [T (ults, ) —
) -

< (tj,- HL2(R + 2[|u(t;, ) — U(E')HL?(R);
< [ 7n(u (tg,)

(tjv )HLQ( + 2e.
By the continuity of the translation if?(R), || 7, (u(t;, ) — u(t;,

R)

)
limsup [[7(u(t, ) — u(t,)|[L2m) < 2.
h—0

||L2 — 0, ash — 0. Then,

Taking the infimum w.r.te > 0 implies the result. |
Lemma 6. Letu € C ([0, T]; L?(R)) such that is continuous w.r.t. the variable uniformly int. Then,
u e C([0,T] x R).
Proof. Let (t9,z0) € [0,7] x R. Lete > 0. By the regularity ofu w.r.t. the space variable, we know
that there existg > 0 such that for any € [0, 7] and allz,y € [zo — n, zo + 7],

|u(to, zo) —u(t, )| < |u(to, o) — ulto, y)| + |ulto, y) — u(t,y)| + [u(t, y) — u(t, )],

< e+ ‘U(to,y) - U(t,y)’ te.

If we integrate w.r.ty € [xg — 0,z + 7], then we get:

xo+n 1
2nlu(to, o) — u(t, z)| < den + / [u(to, y) — u(t, y)ldy < den(2n)2||u(to, ) — ult, )|[L2(r)-

xo—n
By the continuity ofu with values inL?,

limsup |u(to, o) — u(t, x)| < 2e.
(t,x)—(to,z0)

Taking the infimum w.r.te > 0 completes the proof. |
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