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ABSTRACT. We investigate a non-local non linear conservation law, first introducedby A.C. Fowler to describe
morphodynamics of dunes, see [5, 6]. A remarkable feature is the violation of the maximum principle, which
allows for erosion phenomenon. We prove well-posedness for initial data inL

2 and give explicit counterexample
for the maximum principle. We also provide numerical simulations corroborating our theoretical results.
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1 Introduction

We investigate the following Cauchy problem:

{
∂tu(t, x) + ∂x

(
u2

2

)
(t, x) + I[u(t, .)](x) − ∂2

xxu(t, x) = 0 t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x) x ∈ R,
(1)

whereT is any given positive time,u0 ∈ L2(R) andI is a non-local operator defined as follows: for any
Schwartz functionϕ ∈ S(R) and anyx ∈ R,

I[ϕ](x) :=

∫ +∞

0
|ζ|− 1

3ϕ′′(x− ζ)dζ.

Remark 1. Equation(1) can also be written in conservative form

∂tu+ ∂x

(
u2

2
+ L[u] − ∂xu

)
= 0

where

L[ϕ](x) :=

∫ +∞

0
|ζ|− 1

3ϕ′(x− ζ)dζ.
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Equation (1) appears in the work of Fowler [5, 6] on the evolution ofdunes; the term dunes refers
to instabilities in landforms, which occur through the interaction of a turbulent flow with an erodible
substrate. Equation (1) is valid for a river flow (from left to the right) over a erodible bottomu(t, x) with
slow variation. For more details on the physical background, we refer thereader to [5, 6].

Roughly speaking,I[u] is a weighted mean of second derivatives ofu with the bad sign; hence, this
term has a deregularizing effect and the main consequence is probably the fact that (1) does not satisfy
the maximum principle (see below for more details). Nevertheless, one can see that the diffusive operator
−∂2

xx controls the instabilities produced byI and ensures the existence and the uniqueness of a smooth
solution for positive times. The starting point to establish these facts is the derivation of a new formula
for the operatorI, namely (3). This result allows to show easily thatI − ∂2

xx is a pseudo-differential
operator with symbolψI(ξ) = 4π2ξ2 − aI |ξ|

4
3 + i bIξ|ξ|

1
3 , whereaI andbI are positive constants

(see (4)). The symbol4π2ξ2 corresponds to the diffusive operator−∂2
xx and−aI |ξ|

4
3 + i bIξ|ξ|

1
3 is the

symbol of the nonlocal operatorI. Notice that−aI |ξ|
4
3 corresponds to a fractional anti-diffusion and

i bIξ|ξ|
1
3 to a fractional drift. Because of the fact that the fractional anti-diffusion is of order43 , the real

part ofψI(ξ) behaves asξ2, up to a positive multiplicative constant, as|ξ| → +∞. A consequence
is that Equation (1) has a regularizing effect on the initial data: even ifu0 is only L2, the solutionu
becomesC∞ for positive times. The uniqueness of aL∞((0, T );L2) solution is obtained by the use of
a mild formulation (see Definition 1) based on Duhamel’s formula (13), in which appears the kernelK
of I − ∂2

xx. The use of such a formula also allows to prove local-in-time existence with the help of a
contracting fixed point theorem. Such an approach is quite classical; we refer the reader, for instance, to
the book of Pazy [8] and the references therein on the application of the theory of semigroups of linear
operators to partial differential equations. We also refer the reader to the work of Droniouet al. in [3]
for fractal conservation laws of the form

∂tu+ ∂x(f(u)) + (−∂2
xx)

λ
2 [u] = 0, (2)

wheref is locally Lipschitz continuous andλ ∈ (1, 2], and to the work of Tadmor [9] on the Kuramoto-
Sivashinsky equation:

∂tu+
1

2
|∂xu|2 − ∂2

xxu = (−∂2
xx)

2[u].

In fact, fractal conservation law (2) is monotone and the global existenceof aL∞ solution is based on the
fact that theL∞ norm ofu does not increase. In our case, this is not true and we have to use a classical
energy estimate to get a globalL2 estimate. The regularizing effect on the initial data are first proved by
a fixed point theorem on the Duhamel’s formula to getH1 regularity in space and next by a bootstrap
method to get further regularity. This technique has already been used in [3].

On the other hand, one of our main result is probably the proof of the failure of the maximum
principle for (1): more precisely, we exhibit positive dunes which take negative values in finite time,
since we establish that the bottom is eroded downstream from the dune. We also give some numerical
results that illustrate this fact (for more precision, see Remark 2 and Section7). The proof of the failure
of the maximum principle is based on the integral formula (3), which roughly speaking means thatI
is a Lévy operator with a bad sign, see [2]. Notice that the Kuramoto-Sivashinsky equation is also
non-monotone, but no proof of the failure of the maximum principle is given in[9].

The paper is organized as follows. In Section 2, we give the integral andpseudo-differential formula
for I; we also establish the properties on the kernelK of I − ∂2

xx that will be needed. In Section 3, we
define the notion of mild solution for (1). Sections 4 and 5 are, respectively, devoted to the proof of the
uniqueness and the existence of a mild solution; Section 5 also contains the proof of the regularity of the
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solution. The proof of the failure of the maximum principle is given in Section 6.Finally, we give in
Section 7 some numerical simulations that illustrate the theory of the preceding sections.

Here are our main results.

Theorem 1. LetT > 0 andu0 ∈ L2(R). There exists a unique mild solutionu ∈ L∞((0, T );L2(R)) of
(1) (see Definition 1). Moreover,

i) u ∈ C∞((0, T ] × R) and for all t0 ∈ (0, T ], u and all its derivatives belong toC([t0, T ];L2(R)).

ii) u satisfies∂tu + ∂x(
u2

2 ) + I[u] − ∂2
xxu = 0, on (0, T ] × R, in the classical sense (I[u] being

properly defined by(3) and (4)).

iii) u ∈ C([0, T ];L2(R)) andu(0, .) = u0 almost everywhere (a.e. for short).

Proposition 1 (L2-stability). Let (u, v) be solutions to(1) with respectiveL2 initial data (u0, v0). We
have: ||u− v||C([0,T ];L2(R)) ≤ C

(
T, ||u0||L2(R), ||v0||L2(R)

)
||u0 − v0||L2(R).

Theorem 2(Failure of the maximum principle). Assume thatu0 ∈ C2(R) ∩H2(R) is nonnegative and
such that there existx∗ ∈ R with u0(x∗) = u′0(x∗) = u′′0(x∗) = 0 and

∫ 0

−∞

u0(x∗ + z)

|z|7/3 dz > 0.

Then, there existst∗ > 0 with u(t∗, x∗) < 0.

Remark 2. Hypothesis of the theorem above are satisfied, for instance, for non-negativeu0 ∈ C2(R) ∩
H2(R) such that there existsx∗ ∈ R with u0(x∗) = u′0(x∗) = u′′0(x∗) = 0 and

∀x ≤ x∗, u0(x) ≥ 0 and ∃x0 < x∗ s.t.u0(x0) > 0.

A simple example of such an initial dune is shown in Figure 1. Observe that the bottom is eroded
downstream from the dune (recall that the nonlinear convective term propagates a positive dune from the
left to the right).

time t=0

x
*

time t=t∗

x
*

Figure 1: Evolution of a dune, att = 0 and t = t∗. We can observe thatu(t∗, x∗) < 0 and that∫
u(t, x) dx remains constant.

3



Notations: In the following, we letF denote the Fourier transform defined forf ∈ L1(R) by: for
all ξ ∈ R,

Ff(ξ) :=

∫

R

e−2i πxξf(x)dx.

We also letF define the extension of the preceding operator fromL2 to L2. In the sequel, we only
consider Fourier transform with respect to (w.r.t. for short) the space variable; in order to simplify the
presentation, for anyu ∈ C([0, T ];L2(R)), we letFu ∈ C([0, T ];L2(R,C)) denote the function

t ∈ [0, T ] → F(u(t, ·)) ∈ L2(R,C).

2 Preliminaries

In Subsection 2.1, we give the integral and the pseudo-differential formula forI and in Subsection 2.2
we give the properties on the kernel ofI − ∂2

xx.

2.1 Integral formula for I
Proposition 2. For all ϕ ∈ S(R) and allx ∈ R,

I[ϕ](x) = CI

∫ 0

−∞

ϕ(x+ z) − ϕ(x) − ϕ′(x)z

|z|7/3 dz, (3)

withCI = 4
9 .

Proof. The proof is an easy consequence of Taylor-Poisson’s formula and Fubini’s Theorem; notice that
the regularity ofϕ ensures the validity of the computations that follow. We have:

∫ 0

−∞

ϕ(x+ z) − ϕ(x) − ϕ′(x)z

|z|7/3 dz =

∫ 0

−∞
|z|− 7

3

(∫ 1

0
(1 − τ)ϕ′′(x+ τz)z2dτ

)
dz,

=

∫ 1

0
(1 − τ)

(∫ 0

−∞
|z|− 1

3ϕ′′(x+ τz)dz

)
dτ,

=

∫ 1

0
(1 − τ)τ−

2
3

(∫ +∞

0
|ζ|− 1

3ϕ′′(x− ζ)dζ

)
dτ,

thanks to the change of variableτz = −ζ. Then,

∫ 0

−∞

ϕ(x+ z) − ϕ(x) − ϕ′(x)z

|z|7/3 dz =

∫ 1

0
(1 − τ)τ−

2
3dτ I[ϕ](x) =

9

4
I[ϕ](x).

The proof is now complete. �

Corollary 1. There are positive constantsaI andbI such that for allϕ ∈ S(R) and all ξ ∈ R,

F
(
I[ϕ] − ϕ′′) (ξ) = ψI(ξ)Fϕ(ξ), (4)

whereψI(ξ) = 4π2ξ2 − aI |ξ|
4
3 + i bIξ|ξ|

1
3 .
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Proof. We have

F (I[ϕ]) (ξ) = CI

∫

R

∫ 0

−∞
e−2iπxξϕ(x+ z) − ϕ(x) − ϕ′(x)z

|z|7/3 dzdx.

Notice that Proposition 2 ensures that forϕ ∈ S(R), I[ϕ] ∈ L1(R) and thus its Fourier transform is
well-defined. By Fubini’s theorem, we can first integrate w.r.tx to deduce that

F (I[ϕ]) (ξ) = CI

∫ 0

−∞

F (T−zϕ) (ξ) −Fϕ(ξ) −F(ϕ′)(ξ)z

|z|7/3 dz,

where we letT−zϕ denote the (translated) functionx → ϕ(x + z). Classical formulae on Fourier
transform imply thatF (I[ϕ]) (ξ) = ψ(ξ)Fϕ(ξ), where

ψ(ξ) = CI

∫ 0

−∞

e2iπξz − 1 − 2iπξz

|z|7/3 dz.

Simple computations show that

ψ(ξ) = CI

∫ 0

−∞

cos (2πξz) − 1

|z|7/3 dz + i CI

∫ 0

−∞

sin (2πξz) − 2πξz

|z|7/3 dz.

It is immediate that the real part ofψ(ξ) is even, non-positive, non-identically equal to0 and homoge-
neous of degree43 (the last property can be seen by changing the variable byz′ = ξz). Moreover, the
imaginary part ofψ(ξ) is odd, negative and homogeneous of degree4

3 on R
−
∗ . There then exist positive

constantsaI andbI such that
ψ(ξ) = −aI |ξ|

4
3 + i bIξ|ξ|

1
3 (5)

and, in particular,F (I[ϕ]) (ξ) =
(
−aI |ξ|

4
3 + i bIξ|ξ|

1
3

)
Fϕ(ξ). SinceF(−ϕ′′)(ξ) = 4π2ξ2Fϕ(ξ),

the proof of Corollary 1 is complete. �

Remark 3. 1. SinceI[ϕ] =
(
1R+ | · |−

1
3

)
∗ϕ′′,we haveF(I[ϕ]) = F(1R+ |·|−

1
3 )·(−4π2|ξ|2)·F(ϕ).

Elementary computations giveF(1R+ | · |−
1
3 ) = Γ(2

3)
(

1
2 − i sign(ξ)

√
3

2

)
|ξ|− 2

3 . HenceaI =

Γ(2
3)1

2 andbI = Γ(2
3)

√
3

2 .

2. Lets ∈ R. If ϕ ∈ Hs(R), one can also defineI[ϕ] through its Fourier transform by

F(I[ϕ])(ξ) := −4π2Γ(
2

3
)

(
1

2
− i sign(ξ)

√
3

2

)
|ξ| 43 · F(ϕ)

Thus,ifϕ ∈ Hs, we have thatI[ϕ] ∈ Hs− 4
3 and ||I[ϕ]||

Hs− 4
3
≤ 4π2Γ(2

3)||ϕ||Hs . This implies in

particular thatI : H2(R) → Cb(R)∩L2(R), since by Sobolev embeddingH
2
3 →֒ Cb(R)∩L2(R).

3. Corollary 1 implies thatI − ∂2
xx : C2(R) ∩H2(R) → C(R) ∩ L2(R) with I which satisfies both

Formula(3) and (4).
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2.2 Main properties on the kernelK of I − ∂2
xx

By Corollary 1, we see that the semi-group generated byI − ∂2
xx is formally given by the convolution

with the kernel (defined fort > 0 andx ∈ R)

K(t, x) = F−1(e−tψI )(x).

Proposition 3. K(t, ·) is aL1 real valued continuous function.

Proof. K(t, ·) is aL1 real valued continuous function as inverse Fourier transform of aW 2,1 function
with an even real part and an odd imaginary part. �

In the sequel, we only consider real valued solution of (1). We expose inFigure 2 the evolution of
K(t, ·) for different times. Note thatK(t, ·) is not compactly supported but thatK(t, x) ≤ C(t)

x2 , for
|x| ≥ 1 with C(t) = 1

4π2 ||∂2
ξξF(K(t, .))(ξ)||L1

Figure 2: The kernel ofI − ∂2
xx for t = 0.05, 0.1 and0.5 s.

Proposition 4. The kernelK has a non-zero negative part.

Proof. Let us assume thatK is nonnegative, then

|e−tψI(ξ)| ≤ ||F−1(e−tψI )||L1(R) =

∫

R

|K(t, .)|

=

∫

R

K(t, .) = F
(
F−1(e−tψI )

)
(0) = e−tψI(0) = 1

for all ξ ∈ R; hence, since|e−tψI(ξ)| = e−t(4π
2|ξ|2−aI |ξ|

4
3 ) > 1 for 0 < |ξ| < a

3
2
I

8π3 , this gives us a
contradiction. �
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The main consequence of this is the failure of the maximum principle for the equation

∂tu+ I[u] − ∂2
xxu = 0; (6)

that is to say, there exists a non-negative initial conditionu0 such that, for somet > 0, u(t, .) :=
K(t, .) ∗ u0 has a non-zero negative part, see section 6 below. Nevertheless,K enjoys many properties
similar than those one satisfied by the kernel of the heat equation and that ensure that Equation (6) has
a regularizing effect on the initial condition: ifu0 ∈ Lp(R) for somep ∈ [1,+∞), thenu is C∞ for
positive times, see section 5.

Let us precise here the properties that will be needed in this paper. SinceK(t, ·) ∈ L1(R), the family
of bounded linear operators

{
u0 ∈ L2(R) → K(t, ·) ∗ u0 ∈ L2(R)

}
t>0

is well-defined. Moreover, it is
a strongly continuous semi-group of convolution, that is to say:

∀t, s > 0, K(s, ·) ∗K(t, ·) = K(s+ t, ·),
∀u0 ∈ L2(R), limt→0K(t, ·) ∗ u0 = u0 in L2(R).

(7)

Next, the kernelK is smooth on(0,+∞) × R and we have:

∀T > 0, ∃K0 s.t.∀t ∈ (0, T ], ||∂xK(t, .)||L2(R) ≤ K0t
− 3

4 , (8)

∀T > 0, ∃K1 s.t.∀t ∈ (0, T ], ||∂xK(t, .)||L1(R) ≤ K1t
− 1

2 , (9)

∀t, s > 0, K(s, ·) ∗ ∂xK(t, ·) = ∂xK(s+ t, ·). (10)

Proof of these properties.The semi-group property (7) and (10) are immediate consequences of Fourier
formula. Let us prove the strong continuity. By Plancherel’s formula,

||K(t, ·) ∗ u0 − u0||2L2(R) = ||F(K(t, ·) ∗ u0) −Fu0||2L2(R)

= ||e−tψIFu0 −Fu0||2L2(R) =

∫

R

|e−tψI − 1|2 |Fu0|2. (11)

The function|e−tψI − 1|2 |Fu0|2 converges pointwise to0 on R, ast → 0. Using thatmin Re(ψI) is
finite, we infer that|e−tψI −1|2 |Fu0|2 ≤ C|Fu0|2 and the dominated convergence theorem implies that
the last term of (11) tends to0 ast→ 0. This completes the proof of (7). Let us now prove the estimates
on the gradient. The smoothness ofK is an immediate consequence of the theorem of derivation under
the integral sign applied to the definition ofK by Fourier transform. We get in particular:

∂xK(t, ·) = ∂xF−1(e−tψI ) = F−1
(
ξ → 2iπξe−tψI(ξ)

)
.

Since the functionξ → 2iπξe−tψI(ξ) isL2, ∂xK(t, ·) isL2 and we have:

||∂xK(t, .)||2L2(R) =

∫

R

4π2ξ2|e−tψI(ξ)|2dξ =

∫

R

4π2ξ2e−2t(4π2|ξ|2−aI |ξ|
4
3 )dξ.

Let us change the variable byξ′ = t
1
2 ξ. We get:

||∂xK(t, .)||2L2(R) = t−
3
2

∫

R

4π2|ξ′|2e−2(4π2|ξ′|2−t
1
3 aI |ξ′|

4
3 )dξ′,

≤ t−
3
2

∫

R

4π2|ξ′|2e−2(4π2|ξ′|2−T
1
3 aI |ξ′|

4
3 )dξ′,
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for all t ∈ (0, T ]. The proof of (8) is now complete. To prove (9), we have to derive a ”homogeneity-like”
property forK. Easy computations show that

K(t, x) =

∫

R

e2i πxξe−tψI(ξ)dξ,

=

∫

R

e2i πxξe−t(4π
2|ξ|2−aI |ξ|

4
3 +i bIξ|ξ|

1
3 )dξ,

= t−
1
2

∫

R

e2i π(t−
1
2 x)ξ′e−(4π2|ξ′|2−t

1
3 aI |ξ′|

4
3 +i t

1
3 bIξ

′|ξ′|
1
3 )dξ′,

by changing the variable byξ′ = t
1
2 ξ. Then,

K(t, x) = t−
1
2

∫

R

e2i π(t−
1
2 x)ξ′e−(4π2|ξ′|2−aI |ξ′|

4
3 +i bIξ

′|ξ′|
1
3 )e−(1−t

1
3 )(aI |ξ′|

4
3 −i bIξ′|ξ′|

1
3 )dξ′,

= t−
1
2

∫

R

e2i π(t−
1
2 x)ξ′e−ψI(ξ′)e−(1−t

1
3 )(aI |ξ′|

4
3 −i bIξ′|ξ′|

1
3 )dξ′.

For t < 1, defineG((1 − t
1
3 ), ·) := F−1

(
ξ → e−(1−t

1
3 )(aI |ξ|

4
3 −i bIξ|ξ|

1
3 )

)
. It is readily seen thatG is

L1 as inverse Fourier transform of aW 2,1 function. Moreover, fort0 ∈ (0, 1) and allt ∈ (0, t0],

||G((1 − t
1
3 ), ·)||L1(R) ≤ C

∣∣∣∣
∣∣∣∣e

−(1−t
1
3 )(aI |·|

4
3 −i bI ·|·|

1
3 )

∣∣∣∣
∣∣∣∣
W 2,1(R,C)

≤ C(t0),

whereC(t0) only depends ont0. Classical formula on Fourier transform then gives:

K(t, x) = t−
1
2

(
K(1, ·) ∗G((1 − t

1
3 ), ·)

)
(t−

1
2x).

Observe now that∂xK(1, ·) = F−1
(
ξ → 2i ξπe−ψI(ξ)

)
is L1 as inverse Fourier transform of aW 2,1

function. Then,
∂xK(t, x) = t−1

(
∂xK(1, ·) ∗G((1 − t

1
3 ), ·)

)
(t−

1
2x)

isL1 and itsL1 norm can be computed by the change of variablex′ = t−
1
2x as follows:

||∂xK(t, ·)||L1(R) = t−
1
2 ||∂xK(1, ·) ∗G((1 − t

1
3 ), ·)||L1(R) ≤ t−

1
2 ||∂xK(1, ·)||L1(R)C(t0),

for anyt ∈ (0, t0]. Since

||∂xK(t, ·)||L1(R) ≤ C||ξ → 2i ξπe−tψI(ξ)||W 2,1(R,C) ≤ C(t0, T ),

for all t ∈ [t0, T ], the proof of (9) is now complete. �

Remark 4. For anyu0 ∈ L2(R) andt > 0,

||K(t, ·) ∗ u0||L2(R) ≤ eω0t||u0||L2(R), (12)

whereω0 = −min Re(ψI) > 0.

Proof. This is readily established with Plancherel’s formula, like in (11). �
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3 Duhamel’s formula

Using Fourier transform and Corollary 1, we formally see that any solutionto (1) satisfies Duhamel’s
formula (13). This observation is the starting point of the definition of mild solution below.

Definition 1. LetT > 0 andu0 ∈ L2(R). We say thatu ∈ L∞((0, T );L2(R)) is a mild solution to(1)
if for a.e. t ∈ (0, T ),

u(t, ·) = K(t, ·) ∗ u0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ u2(s, ·)ds. (13)

The following proposition shows that all the terms in (13) are well-defined and that Equation (1)
generates a (non-linear) semi-group.

Proposition 5. LetT > 0, u0 ∈ L2(R) andv ∈ L∞((0, T );L1(R)). Then, the function

u : t ∈ (0, T ] → K(t, ·) ∗ u0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ v(s, ·)ds ∈ L2(R), (14)

is well-defined and belongs toC([0, T ];L2(R)) (being extended att = 0 by the valueu(0, .) = u0).
(Semi-group property) Moreover, for allt0 ∈ (0, T ) and all t ∈ [0, T − t0],

u(t0 + t, .) = K(t, ·) ∗ u(t0, ·) −
1

2

∫ t

0
∂xK(t− s, ·) ∗ v(t0 + s, ·)ds.

Proof. By (7), it is classical that the functiont ∈ (0, T ] → K(t, ·) ∗ u0 ∈ L2(R) is continuous and can
be continuously extended by the valueu(0, ·) = u0 at t = 0. What is left to prove is thus the continuity
of the function

w : t ∈ [0, T ] →
∫ t

0
∂xK(t− s, ·) ∗ v(s, ·)ds ∈ L2(R).

Let us extend∂xK andv for all times the following way:

H(t, ·) :=

{
∂xK(t, ·) if t > 0,

0 if not
and V(t, ·) :=

{
v(t, ·) if t ∈ (0, T ),

0 if not.

Then we have

w(t, ·) =

∫

R

H(t− s, ·) ∗ V(s, ·)ds.

It is immediate thatV ∈ L∞(R;L1(R)). Moreover, (8) implies that

||H(t, ·)||L2(R) ≤ 1{0<t<T}K0t
− 3

4 (15)

and it follows thatH ∈ L1(R;L2(R)). Young’s Inequalities imply that for allt ∈ R

∫

R

||H(t− s, ·) ∗ V(s, ·)||L2(R)ds ≤
∫

R

||H(t− s, ·)||L2(R)||V(s, ·)||L1(R)ds,

≤ ||H||L1(R;L2(R)) ||V||L∞(R;L1(R)). (16)

9



This implies, in particular, that the functionw is well-defined. Let us now taket, s ∈ R and define

I :=

∣∣∣∣
∣∣∣∣
∫

R

H(t− τ, ·) ∗ V(τ)dτ −
∫

R

H(s− τ, ·) ∗ V(τ)dτ

∣∣∣∣
∣∣∣∣
L2(R)

.

We have

I ≤
∫

R

||(H(t− τ, ·) −H(s− τ, ·)) ∗ V(τ)||L2(R) dτ,

≤
∫

R

||H(t− τ, ·) −H(s− τ, ·)||L2(R)||V(τ)||L1(R)dτ,

thanks to Young’s Inequalities. It follows that

I ≤
∫

R

||H(t− τ, ·) −H(s− τ, ·)||L2(R)dτ ||V||L∞(R;L1(R)).

Since the translation are continuous inL1(R;L2(R)), we see thatI → 0 as|t − s| → 0. In particular,
the functionw is continuous and this completes the proof of the continuity ofu.

Let us now prove the semi-group property. By (7) and (10), we infer that

u(t0 + t, ·) = K(t, ·) ∗K(t0, ·) ∗ u0 −
1

2

∫ t0

0
∂xK(t+ t0 − s, ·) ∗ v(s, ·)ds

−1

2

∫ t+t0

t0

∂xK(t+ t0 − s, ·) ∗ v(s, ·)ds,

= K(t0, ·) ∗K(t, ·) ∗ u0 −
1

2

∫ t0

0
K(t, ·) ∗ ∂xK(t0 − s, ·) ∗ v(s, ·)ds

−1

2

∫ t

0
∂xK(t− s′, ·) ∗ v(t0 + s′, ·)ds′,

thanks to the change of variables′ = s− t0 to compute the last integral term. Then,

u(t0 + t, ·) = K(t, ·) ∗K(t0, ·) ∗ u0 −K(t, ·) ∗ 1

2

∫ t0

0
∂xK(t0 − s, ·) ∗ v(s, ·)ds

−1

2

∫ t

0
∂xK(t− s′, ·) ∗ v(t0 + s′, ·)ds′,

= K(t, ·) ∗
(
K(t0, ·) ∗ u0 −

1

2

∫ t0

0
∂xK(t0 − s, ·) ∗ v(s, ·)ds

)

−1

2

∫ t

0
∂xK(t− s′, ·) ∗ v(t0 + s′, ·)ds′,

= K(t, ·) ∗ u(t0, ·) −
1

2

∫ t

0
∂xK(t− s′, ·) ∗ v(t0 + s′, ·)ds′.

The proof of the semi group property is now complete. �

Remark 5. For v ∈ L∞((0, T );L1(R)), u ∈ C([0, T ];L2(R)) defined in(14)satisfies:

||u||C([0,T ];L2(R)) ≤ eω0T ||u0||L2(R) + 2K0T
1
4 ||v||L∞((0,T );L1(R)). (17)

Proof. Indeed, with (15) and (16), we estimate the integral term of (14) and with (12), we estimate the
L2 norm ofK(t, ·) ∗ u0. �
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4 Uniqueness of a solution

Let us state a lemma that will be needed later.

Lemma 1. Let T > 0, u0 ∈ L2(R). For i = 1, 2, let vi ∈ L∞((0, T );L1(R)) and defineui ∈
C([0, T ];L2(R)) as in Proposition 5 by

ui(t, ·) := K(t, ·) ∗ u0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ vi(s, ·)ds.

Then we have the estimate

||u1 − u2||C([0,T ];L2(R)) ≤ 2K0T
1
4 ||v1 − v2||L∞((0,T );L1(R)). (18)

Proof. For all t ∈ [0, T ], we have

u1(t, ·) − u2(t, ·) = −1

2

∫ t

0
∂xK(t− s, ·) ∗ (v1(s, ·) − v2(s, ·))ds.

Hence,

||u1(t, ·) − u2(t, ·)||L2(R) =
1

2

∣∣∣∣
∣∣∣∣
∫ t

0
∂xK(t− s, ·) ∗ (v1(s, ·) − v2(s, ·))ds

∣∣∣∣
∣∣∣∣
L2(R)

,

≤ 1

2

∫ t

0
||∂xK(t− s, .) ∗ (v1(s, .) − v2(s, .))||L2(R) ds. (19)

By (8),

||∂xK(t− s, .) ∗ (v1(s, ·) − v2(s, ·))||L2(R) ≤ ||∂xK(t− s, ·) ||L2(R)||v1(s, ·) − v2(s, ·)||L1(R)

≤ K0(t− s)−
3
4 ||v1(s, ·) − v2(s, ·)||L1(R).

Inequality (19) then gives

||u1(t, ·) − u2(t, ·)||L2(R) ≤ K0

2

∫ t

0
(t− s)−

3
4ds ||v1 − v2||L∞((0,t);L1(R)),

= 2K0t
1
4 ||v1 − v2||L∞((0,t);L1(R)).

In particular, for alls ∈ [0, t]

||u1(s, ·) − u2(s, ·)||L2(R) ≤ 2K0s
1
4 ||v1 − v2||L∞((0,s);L1(R)) ≤ 2K0t

1
4 ||v1 − v2||L∞((0,t);L1(R))

and we have proved that

||u1 − u2||C([0,t];L2(R)) ≤ 2K0t
1
4 ||v1 − v2||L∞((0,t);L1(R)). (20)

�

Proposition 6. LetT > 0 andu0 ∈ L2(R). There exists at most oneu ∈ L∞((0, T );L2(R)) which is a
mild solution to(1).
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Proof. Let u, v ∈ L∞((0, T );L2(R)) be two mild solutions. Lett ∈ [0, T ]. With Lemma 1 applied to
v1 = u2 andv2 = v2, we get

||u− v||C([0,t];L2(R)) ≤ 2K0t
1
4 ||u2 − v2||L∞((0,t);L1(R)). (21)

Since||u2−v2||L∞((0,t);L1(R)) ≤M ||u−v||C([0,t];L2(R)) withM = ||u||C([0,T ],L2(R))+||v||C([0,T ],L2(R)),
we get:

||u− v||C([0,t];L2(R)) ≤ 2MK0t
1
4 ||u− v||C([0,t];L2(R)).

We then have established thatu = v on [0, t] for any t ∈ (0, T ] such thatt < (2MK0)
−4. Notice that

sinceu andv are continuous with values inL2, u = v on [0, T∗] with T∗ = (2MK0)
−4 > 0. To prove

thatu = v on [0, T ], let us definet0 := sup{t ∈ (0, T ] s.t.u = v on [0, t]} and let us assume thatt0 < T .
The continuity ofu andv implies thatu(t0, ·) = v(t0, ·). The semi-group property of Proposition 5 thus
implies thatu(t0 + ·, ·) andv(t0 + ·, ·) are mild solutions of (1)with the same initial condition; that is to
sayu(t0 + 0, ·) = v(t0 + 0, ·). The first step of the proof then implies thatu(t0 + ·, ·) = v(t0 + ·, ·) on
[0, T∗]; hence, we get a contradiction with the definition oft0 and we deduce thatt0 = T . The proof of
the uniqueness is now complete. �

5 Existence of a regular solution

This section is devoted to the proof of the existence of a classical solutionu to (1). As far as the
regularity is concerned, we show thatu ∈ C1,2((0, T ] × R), that is to say∂tu ∈ C((0, T ] × R) and
∂xu, ∂

2
xxu ∈ C((0, T ] × R) and for the sake of simplicity we only give the main ideas to get further

regularity.

We first need the following technical result:

Lemma 2. Letu0 ∈ L2(R) andT > 0. Letv ∈ C([0, T ];L1(R)) ∩ C((0, T ];W 1,1(R)) that satisfies

sup
t∈(0,T ]

t
1
2 ||∂xv(t, ·)||L1(R) < +∞. (22)

Letu ∈ C([0, T ];L2(R)) be the function defined in(14). Then,u ∈ C((0, T ];H1(R)) with

sup
t∈(0,T ]

t
1
2 ||∂xu(t, ·)||L2(R) ≤ K1||u0||L2(R) +

K0I

2
T

1
4 sup
t∈(0,T ]

t
1
2 ||∂xv(t, ·)||L1(R), (23)

whereI is a constant equal to
∫ 1
0 (1 − s)−

3
4 s−

1
2ds = B(1/2, 1/4),B being the beta function.

Moreover, letvi ∈ C([0, T ];L1(R))∩C((0, T ];W 1,1(R)) satisfy(22)and defineui by (14) (with u and
v replaced, respectively, byui andvi) for i = 1, 2. Then,

sup
t∈(0,T ]

t
1
2 ||∂x(u1 − u2)(t, ·)||L2(R) ≤

K0I

2
T

1
4 sup
t∈(0,T ]

t
1
2 ||∂x(v1 − v2)(t, ·)||L1(R). (24)

Proof. Recall that Proposition 5 ensures thatu ∈ C([0, T ];L2(R)). It is easy to check that the distribu-
tion derivative ofu w.r.t. the space variable satisfies: for anyt ∈ (0, T ],

∂xu(t, ·) = ∂xK(t, ·) ∗ u0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ ∂xv(s, ·)ds.

12



Let us verify that all the terms are well-defined inL2. Since∂xK(t, ·) ∈ L1(R), it is obvious that
∂xK(t, ·) ∗ u0 ∈ L2(R). Moreover, define

w(t, ·) :=
1

2

∫ t

0
∂xK(t− s, ·) ∗ ∂xv(s, ·)ds.

Young’s Inequalities and (8) give

||∂xK(t− s, ·) ∗ ∂xv(s, ·)||L2(R) ≤ ||∂xK(t− s, ·)||L2(R)||∂xv(s, ·)||L1(R),

= ||∂xK(t− s, ·)||L2(R)s
− 1

2 s
1
2 ||∂xv(s, ·)||L1(R),

≤ K0(t− s)−
3
4 s−

1
2 sup
τ∈(0,T ]

τ
1
2 ||∂xv(τ, ·)||L1(R). (25)

Since
∫ t
0 (t − s)−

3
4 s−

1
2 ds < ∞, by (22) we deduce thatw(t, ·) is well-defined inL2 and thus for all

t ∈ (0, T ], ∂xu(t, ·) ∈ L2(R). Let us now prove that∂xu is continuous on(0, T ] with values inL2. For
δ > 0 andt ∈ (0, T ], define

wδ(t, ·) :=
1

2

∫ t

0
∂xK(t− s, ·) ∗

(
1{s>δ}∂xv(s, ·)

)
ds.

Since1{s>δ}∂xv(s, ·) ∈ L∞([0, T ];L1(R)), Proposition 5 ensures thatwδ is continuous on[0, T ] with
values inL2. Moreover, for anyt0 ∈ (0, T ], δ ≤ t0 andt ∈ [t0, T ],

||w(t, ·) − wδ(t, ·)||L2(R) ≤ 1

2

∫ δ

0
||∂xK(t− s, ·) ∗ ∂xv(s, ·)||L2(R)ds,

≤ K0

2

∫ δ

0
(t− s)−

3
4 s−

1
2ds sup

s∈(0,T ]
s

1
2 ||∂xv(s, ·)||L1(R) by (25),

≤ K0

2

∫ δ

0
(t0 − s)−

3
4 s−

1
2ds sup

s∈(0,T ]
s

1
2 ||∂xv(s, ·)||L1(R).

It follows that

sup
t∈[t0,T ]

||w(t, ·) − wδ(t, ·)||L2(R) ≤
K0

2

∫ δ

0
(t0 − s)−

3
4 s−

1
2ds sup

s∈(0,T ]
s

1
2 ||∂xv(s, ·)||L1(R) → 0,

asδ → 0. We deduce thatw ∈ C((0, T ];L2(R)) as local uniform limit of continuous functions. More-
over,

∂xK(t, ·) ∗ u0 = F−1
(
ξ → 2i πξe−tψI(ξ)Fu0(ξ)

)
.

The dominated convergence theorem immediately implies that for anyt0 > 0,
∫

R

4π2|ξ|2
∣∣∣e−tψI(ξ) − e−t0ψI(ξ)

∣∣∣
2
|Fu0(ξ)|2dξ → 0, ast→ t0.

This means thatt > 0 →
(
ξ → 2i πξe−tψI(ξ)Fu0

)
∈ L2(R) is continuous and, sinceF is an isometry

of L2, we deduce thatt > 0 → ∂xK(t, ·) ∗ u0 ∈ L2(R) is continuous. We then have established that
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∂xu ∈ C((0, T ];L2(R)). Let us now estimate how theL2 norm of∂xu can explode att = 0. By (25),

||w(t, ·)||L2(R) ≤
K0

2

∫ t

0
(t− s)−

3
4 s−

1
2ds sup

τ∈(0,T ]
τ

1
2 ||∂xv(τ, ·)||L1(R)

=
K0I

2
t−

1
4 sup
τ∈(0,T ]

τ
1
2 ||∂xv(τ, ·)||L1(R),

whereI =
∫ 1
0 (1 − s′)−

3
4 s′−

1
2ds′ = B(1/2, 1/4); notice that the last integral term has been computed

with the help of the change of variables′ = s
t . Moreover, (9) and Young’s Inequalities imply that

||∂xK(t, ·) ∗ u0||L2(R) ≤ K1t
− 1

2 ||u0||L2(R).

We deduce that for anyt ∈ (0, T ],

||∂xu(t, ·)||L2(R) ≤ K1t
− 1

2 ||u0||L2(R) +
K0I

2
t−

1
4 sup
s∈(0,T ]

s
1
2 ||∂xv(s, ·)||L1(R),

which implies immediately (23).
Let us now prove (24). For anyt ∈ (0, T ],

||∂x(u1 − u2)(t, ·)||L2(R) ≤ 1

2

∫ t

0
||∂xK(t− s, .) ∗ ∂x(v1 − v2)(s, ·)||L2(R)ds,

≤ K0

2

∫ t

0
(t− s)−

3
4 s−

1
2ds sup

s∈(0,T ]
s

1
2 ||∂x(v1 − v2)(s, ·)||L1(R),

=
K0I

2
t−

1
4 sup
s∈(0,T ]

s
1
2 ||∂x(v1 − v2)(s, ·)||L1(R),

which implies immediately (24). �

Remark 6. Letu0, T, v andu that satisfy assumptions of Lemma 2. Then, we have established that for
anyt ∈ (0, T ],

∂xu(t, ·) = ∂xK(t, ·) ∗ u0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ ∂xv(s, ·)ds.

With Lemma 2 in hand, we can prove the local-in-time existence.

Proposition 7. Let u0 ∈ L2(R). There existsT∗ > 0 that only depends on||u0||L2(R) such that(1)
admits a (unique) mild solutionu ∈ C([0, T∗];L2(R)) ∩ C((0, T∗];H2(R)) on (0, T∗) such that

sup
t∈(0,T∗]

t
1
2 ||∂xu(t, ·)||L2(R) < +∞ and sup

t∈(0,T∗]
t||∂2

xxu(t, ·)||L2(R) < +∞.

Proof. We use a contracting fixed point theorem. Foru ∈ C([0, T∗];L2(R))∩C((0, T∗];H1(R)), define
the norm

|||u||| := ||u||C([0,T∗];L2(R)) + sup
t∈(0,T∗]

t
1
2 ||∂xu(t, ·)||L2(R). (26)

Define the space

X :=
{
u ∈ C([0, T∗];L

2(R)) ∩ C((0, T∗];H
1(R)) s.t.u(0, ·) = u0 and|||u||| < +∞

}
.
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It is readily seen thatX is a complete metric space endowed with the distance induced by the norm||| · |||.
Foru ∈ X, define the function

Θu : t ∈ [0, T∗] → K(t, ·) ∗ u0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ u2(s, ·)ds ∈ L2(R). (27)

By Proposition 5,Θu ∈ C([0, T∗];L2(R)) and satisfiesΘu(0, ·) = u0. Definev := u2. We have
∂xv = 2u∂xu. Therefore thatv ∈ C([0, T∗];L1(R)) ∩ C((0, T∗];W 1,1(R)) and that (22) holds true.
By Lemma 2, we deduce thatΘu ∈ X. Let us takeR > ||u0||L2(R) + K1||u0||L2(R) and assume that
|||u||| ≤ R. Since||u2||L∞((0,T∗);L1(R)) = ||u||2C([0,T∗];L2(R)), estimate (17) of Remark 5 implies that

||Θu||C([0,T∗];L2(R)) ≤ eω0T∗ ||u0||L2(R) + 2K0T
1
4∗ ||u||2C([0,T∗];L2(R)),

≤ eω0T∗ ||u0||L2(R) + 2K0T
1
4∗ R2. (28)

Estimate (23) of Lemma 2, implies that

sup
t∈(0,T∗]

t
1
2 ||∂x(Θu(t, ·))||L2(R) ≤ K1||u0||L2(R) +

K0I

2
T

1
4∗ sup
t∈(0,T∗]

t
1
2 ||∂x(u2)(t, ·)||L1(R),

≤ K1||u0||L2(R) + K0I T
1
4∗ R

2,

by Cauchy-Schwarz inequality. Adding this inequality with (28), we get:

|||Θu||| ≤ eω0T∗ ||u0||L2(R) + K1||u0||L2(R) + (2 + I)K0T
1
4∗ R

2.

ForT∗ ∈ (0, T ] sufficiently small such that

eω0T∗ ||u0||L2(R) + K1||u0||L2(R) + (2 + I)K0T
1
4∗ R

2 ≤ R, (29)

we deduce that|||Θu||| ≤ R. To sum-up, we have established that for anyT∗ ∈ (0, T ] such that (29)
holds true,Θ (defined by (27)) mapsBR into itself, whereBR denotes the ball ofX (endowed with
the ||| · ||| norm) centered at the origin and of radiusR. Let us now prove thatΘ is a contraction. For
u, v ∈ BR, Estimate (18) of Lemma 1 implies that

||Θu− Θv||C([0,T∗];L2(R)) ≤ 4RK0T
1
4∗ ||u− v||C([0,T∗];L2(R)), (30)

where we again used

||u2 − v2||C([0,T∗];L1(R)) ≤ (||u||C([0,T∗],L2(R)) + ||v||C([0,T∗],L2(R)))||u− v||C([0,T∗];L2(R)).

Moreover, Estimate (24) of Lemma 2 implies that

sup
t∈(0,T∗]

t
1
2 ||∂x(Θu− Θv)(t, ·)||L2(R) ≤ K0IT

1
4∗ sup
t∈(0,T∗]

t
1
2 ||(u∂xu− v∂xv)(t, ·)||L1(R).
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Since

t
1
2 ||(u∂xu− v∂xv)(t, ·)||L1(R) ≤ t

1
2 ||∂xv(t, ·)||L2(R)||(u− v)(t, ·)||L2(R)

+t
1
2 ||u(t, ·)||L2(R)||∂x(u− v)(t, ·)||L2(R),

≤ |||v||| ||(u− v)(t, ·)||L2(R)

+|||u||| t 1
2 ||∂x(u− v)(t, ·)||L2(R),

≤ R|||u− v|||,

we get

sup
t∈(0,T∗]

t
1
2 ||∂x(Θu− Θv)(t, ·)||L2(R) ≤ RK0IT

1
4∗ |||u− v|||.

Adding this inequality with (30), we find that

|||Θu− Θv||| ≤ (4 + I)RK0T
1
4∗ |||u− v|||.

Consequently, for anyT∗ > 0 sufficiently small such that (29) holds true and(4 + I)RK0T
1
4∗ < 1, Θ is

a contraction fromBR into itself. The Banach fixed point theorem then implies thatΘ admits a (unique)
fixed pointu ∈ C([0, T∗];L2(R)) ∩ C((0, T∗];H1(R)) which is, of course, a mild solution to (1).

To prove theH2 regularity of u, we have to use again a contracting fixed point theorem. But,
this is now the gradient of the solution which is searched as a fixed point. Lett0 ∈ (0, T∗) and, for
t ∈ (0, T∗ − t0], define:

u(t, ·) := u(t0 + t, ·).
Let T ′

∗ ∈ (0, T∗ − t0] and define the complete metric space

X ′ :=
{
v ∈ C([0, T ′

∗];L
2(R)) ∩ C((0, T ′

∗];H
1(R)) s.t.v(0, ·) = v0 and|||v||| < +∞

}
,

wherev0 := ∂xu(0, ·) and ||| · ||| is defined in (26) withT∗ replaced byT ′
∗. For v ∈ X ′, define the

function

Θ′v : t ∈ [0, T ′
∗] → K(t, ·) ∗ v0 −

∫ t

0
∂xK(t− s, ·) ∗ (uv)(s, ·)ds ∈ L2(R). (31)

Arguing as in the first step of the proof, we claim that Proposition 5, Remark5, Lemmas 1 and 2 imply
thatΘ′ mapsX ′ into itself with: for anyu, v ∈ X ′,

|||Θ′v||| ≤ eω0T ′
∗ ||v0||L2(R) + K1||v0||L2(R) + CT

′ 1
4∗ |||v|||, (32)

|||Θ′v − Θ′w||| ≤ CT
′ 1
4∗ |||v − w|||,

for some nonnegative constantC that only depends onK0 and||u||C([t0,T∗];H1(R)). Let us takeR′ such
that

R′ > eω0T ′
∗ ||v0||L2(R) + K1||v0||L2(R).

If T ′
∗ > 0 satisfies

eω0T ′
∗ ||v0||L2(R) + K1||v0||L2(R) + CT

′ 1
4∗ R′ ≤ R′ and CT

′ 1
4∗ < 1,
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thenΘ′ mapsBR′(X ′) into itself and is a contraction. Letv denote its unique fixed point. Observe now
thatΘ′∂xu = ∂xu, thanks to Remark 6. But, using the same argument as in Proposition 6, one can easily
prove that there is at most one functionw ∈ L∞((0, T ′

∗);L
2(R)) which is a fixed point ofΘ′. It follows

that∂xu = v ∈ X ′ on(0, T ′
∗) and thus thatu ∈ C((t0, t0 +T ′

∗];H
2(R)). Recalling thatt0 is an arbitrary

time in (0, T∗], we see thatu is continuous on(0, T∗] with values inH2.

We now provesupt∈(0,T∗] t||∂2
xxu(t, ·)||L2(R) < +∞. From (32), sinceCT

′ 1
4∗ < 1 andΘ′v = v, we get

that|||v||| ≤ C||v0||L2 , for some constantC. This yields

sup
t∈(0,T ′

∗]
t

1
2 ||∂xv||L2(R) ≤ C||v0||L2

i.e. ∀t ∈ (t0, T∗], ||∂2
xxu(t, .)||L2(R) ≤ C(t− t0)

− 1
2 ||v0||L2(R). Sinceu ∈ X,

sup
t∈(0,T∗]

t
1
2 ||∂xu(t, ·)||L2(R) <∞,

then we have||v0||L2(R) ≤ Ct
− 1

2
0 . Therefore∀t ∈ (t0, T∗], ||∂2

xxu(t, .)||L2(R) ≤ C(t− t0)−
1
2 t

− 1
2

0 . Taking
t0 = t/2, we get

||∂2
xxu(t, .)||L2(R) ≤ Ct−1.

The proof of Proposition 7 is complete. �

Let us now prove the regularity of the solution. We also establish the regularity up to timet = 0
whenu0 isC2 ∩H2, since this will be nedeed in the proof of the maximum principle failure.

Proposition 8. Let u0 ∈ H2(R) andT > 0. Assume thatu is a mild solution to(1) that satisfies the
regularity of Proposition 7 up to timeT . Then,u belongs in fact toC([0, T ];H2(R))∩C1,2((0, T ]×R)
and satisfies(1) in the classical sense.
Moreover, ifu0 ∈ C2(R), thenu ∈ C1,2([0, T ] × R) and satisfies the PDE up to timet = 0.

Proof. First, we leave it to the reader to verify that the continuity with values inH2 up to the timet = 0
can be proved again by the use of a contracting fixed point theorem. Note that the regularity ofu0 allows
to work in a space of continuous functions with values inH2 up to timet = 0; more precisely, we argue
as in the proof of Proposition 7, but we can directly use theC([0, T∗];H2) norm instead of the||| · |||
norm defined in (26). Let us now give the proof of theC1,2-regularity in three steps: first, we prove that
u satisfies the PDE (1) in the distribution sense; next, we prove theC2-regularity in space that implies
theC1,2-regularity, thanks to the equation.

First step: u is a distribution solution. Taking the Fourier transform w.r.t. the space variable in
(13), we get: for allt ∈ [0, T ],

F(u(t, ·)) = e−tψIFu0 −
∫ t

0
i π · e−(t−s)ψIF(u2(s, ·))ds. (33)

Sinceu2 ∈ C([0, T ];L1(R)), we know thatF(u2) ∈ C([0, T ];Cb(R,C)) ⊂ C([0, T ] × R,C). The
function

w(t, ξ) := −
∫ t

0
i πξe−(t−s)ψI(ξ)F(u2(s, ·))(ξ)ds

17



is thus continuous on[0, T ] × R; moreover, classical results on ODE imply thatw is derivable w.r.t. the
time variable with∂tw ∈ C([0, T ] × R,C) and

∂tw(t, ξ) + ψI(ξ)w(t, ξ) = −i πξF(u2(t, ·))(ξ) = −F
(
∂x

(
u2

2

)
(t, ·)

)
(ξ). (34)

Let us prove that all these terms are continuous with values inL2. First,u ∈ C([0, T ];H1(R)) therefore
∂x(u

2) ∈ C([0, T ];L2(R)) and we deduce thatF(∂x(
u2

2 )) is continuous with values inL2. Moreover,
Equation (33) implies that

ψI w(t, ·) = ψI
(
F(u(t, ·)) − e−tψIFu0

)
.

Sinceu ∈ C([0, T ];H2(R)) andψI behaves at infinity as| · |2, we clearly have that the functiont ∈
[0, T ] → ψI w(t, ·) ∈ L2(R,C) is continuous. Finally, we have proved that all the terms in (34) are
continuous with values inL2. In particular,∂tw ∈ C([0, T ];L2(R,C))∩C([0, T ]×R,C) and it follows
thatw ∈ C1([0, T ];L2(R,C)) with

d

dt
(w(t, ·)) + ψI w(t, ·) = −F

(
∂x

(
u2

2

)
(t, ·)

)
.

Moreover, it is easy to see thatt ∈ [0, T ] → e−tψIFu0 ∈ L2(R,C) isC1 with

d

dt

(
e−tψIFu0

)
+ ψIe

−tψIFu0 = 0.

From Equation (33), we infer thatFu isC1 on [0, T ] with values inL2 with

d

dt
(F(u(t, ·))) = −ψIw(t, ·) − ψIe

−tψIFu0 −F
(
∂x

(
u2

2

)
(t, ·)

)

= −ψIF(u(t, ·)) −F
(
∂x

(
u2

2

)
(t, ·)

)
.

SinceF is an isometry ofL2, we deduce thatu ∈ C1([0, T ];L2(R)) and that

d

dt
(u(t, .)) = −∂x

(
u2

2

)
(t, ·) −F−1 (ψIF(u(t, ·))) ,

= −∂x
(
u2

2

)
(t, ·) − I[u(t, ·)] + ∂2

xxu(t, ·),

where we used Corollary 1 to compute the pseudo-differential term. In particular,u satisfies the PDE (1)
in the distribution sense.

Second step:C2-regularity in space. Differentiating (13) two times w.r.t. the space variable, we
get: for anyt ∈ [0, T ],

∂2
xxu(t, ·) = K(t, ·) ∗ u′′0 −

∫ t

0
∂xK(t− s, ·) ∗ v(s, ·)ds. (35)

where v = (∂xu)
2 + u∂2

xxu. By the Sobolev imbeddingH2(R) →֒ C1
b (R), we know thatv ∈

C([0, T ];L1(R) ∩ L2(R)). By Lemma 4 in Appendix, we know that for allx, y ∈ R,

|∂xK(t−s, ·)∗v(s, ·)(x)−∂xK(t−s, ·)∗v(s, ·)(y)| ≤ ||∂xK(t−s)||L2(R)||T(x−y)(v(s, ·))−v(s, ·)||L2(R).
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By (8), we deduce that for allt ∈ [0, T ] and allx, y ∈ R,

∣∣∣∣
∫ t

0
∂xK(t− s, ·) ∗ v(s, ·)(x)ds−

∫ t

0
∂xK(t− s, ·) ∗ v(s, ·)(y)ds

∣∣∣∣

≤
∫ t

0
K0(t− s)−

3
4 ||T(x−y)(v(s, ·))− v(s, ·)||L2(R)ds ≤ 4T

1
4 sup
s∈[0,T ]

||T(x−y)(v(s, ·))− v(s, ·)||L2(R).

By Lemma 5 in Appendix, we deduce that the second term of (35) is continuous w.r.t. the space variable
uniformly in the time variable (equicontinuity w.r.t. the time variable). Moreover, wealready know that
this term is continuous on[0, T ] with values inL2 (by Proposition 5) and Lemma 6 in Appendix implies
that it is continuous w.r.t. the couple(t, x) on [0, T ] × R. We now leave it to the reader to verify that
(t, x) → K(t, ·) ∗ u′′0(x) is continuous on(0, T ]×R whenu0 ∈ H2(R). By Formula (35), we then have
proved that∂2

xxu ∈ C((0, T ] × R).

Conclusion:C1,2-regularity. By the first step, the terms∂tu and−∂x
(
u2

2

)
−I[u] + ∂2

xxu have the

same regularity; by the second step, it is enough to establish the continuity ofI[u] w.r.t. the space-time
variable. To do this, we recall thatu ∈ C([0, T ];H2(R)) and we use the second item of Remark 3. We
conclude thatI[u] ∈ C([0, T ] × R) and thusu ∈ C1,2((0, T ] × R). This completes the proof when
u0 ∈ H2(R).

To finish with, we prove the regularity up to timet = 0 whenu0 ∈ C2(R) ∩ H2(R). We leave
it to the reader to verify that(t, x) → K(t, ·) ∗ u′′0(x) is continuous up to timet = 0. Moreover, we
already have seen in the second step that the integral term of (35) is continuous on[0, T ] × R. We
deduce that∂2

xxu ∈ C([0, T ] × R). But, we also have seen above thatI[u] ∈ C([0, T ] × R); hence,
Equation (1) implies that∂tu ∈ C([0, T ]×R) and thusu ∈ C1,2([0, T ]×R). The proof of Proposition 8
is complete. �

We can finally prove the global-in-time existence.

Proposition 9. Letu0 ∈ L2(R) andT > 0. There exists a (unique) mild solutionu ∈ C([0, T ];L2(R))∩
C((0, T ];H2(R)) to (1) such that

sup
t∈(0,T ]

t
1
2 ||∂xu(t, ·)||L2(R) < +∞ and sup

t∈(0,T ]
t||∂2

xxu(t, ·)||L2(R) < +∞.

Moreover,u belongs toC1,2((0, T ] × R) and satisfies the PDE(1) in the classical sense.

Proof. First step: a priori estimate. We begin by deriving aL2 estimate on aa priori solution of (1)
with regularity:u ∈ C([0, T ];L2(R))∩C((0, T ];H2(R))∩C1,2((0, T ]×R). Multiplying (1) byu and
integrating w.r.t. the space variable, we get:

d

dt

1

2

∫

R

u2dx+

∫

R

(I[u] − ∂2
xxu)udx = 0. (36)

Indeed, the following computations show that the nonlinear term equals0:

∫

R

∂x

(
u2

2

)
udx = −

∫

R

u2

2
∂xudx = −1

2

∫

R

u(u∂xu)dx = −1

2

∫

R

u ∂x

(
u2

2

)
dx;
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notice that “there is no boundary term from the infinity”, becauseu(t, ·) andu2(t, ·) belong toH1(R),
for all t ∈ (0, T ], sinceu(t, ·) ∈ H2(R) . But, Corollary 1 implies that

∫

R

(I[u] − ∂2
xxu)udx =

∫

R

F−1(ψIFu)udx =

∫

R

ψI |Fu|2dξ =

∫

R

Re(ψI)|Fu|2dξ,

since
∫

R
(I[u] − ∂2

xxu)udx is real. It follows that,

∫

R

(I[u] − ∂2
xxu)udx ≥ min Re(ψI)

∫

R

|Fu|2dξ,

= min Re(ψI)

∫

R

u2dx,

thanks to Plancherel’s Equality. Equation (36) then implies that

d

dt

1

2

∫

R

u2dx ≤ ω0

∫

R

u2dx

and by Gronwall’s Lemma, we deduce that for allt ∈ [0, T ],

||u(t, ·)||L2(R) ≤ eω0t||u0||L2(R). (37)

Conclusion.With this estimate, we can prove the global-in-time existence. Define

t0 := sup{t > 0 s.t. there exists a (unique) mild solutionu to (1)

on (0, t) that satisfies the regularity of Proposition 9}.

We have to prove thatt0 ≥ T . To do so, we assume the contraryt0 < T and we seek a contradiction.
Let us first verify thatt0 > 0. By Proposition 7, Equation (1) admits a local-in-time mild solution
u ∈ C([0, T∗];L2(R)) ∩ C((0, T∗];H2(R)) on (0, T∗). Applying Proposition 8 witht1 ∈ (0, T∗) as
initial time, we see thatu ∈ C1,2((t1, T∗] × R) for all t1 ∈ (0, T∗). Finally, we infer thatu has the
following regularity:u ∈ C([0, T∗];L2(R))∩C((0, T∗];H2(R))∩C1,2((0, T∗]×R), which implies that
t0 ≥ T∗ > 0. Using again Propositions 7 and 8, there existsT ′

∗ > 0 such that for any initial datav0 that
satisfy

||v0||L2(R) ≤ eω0t0 ||u0||L2(R), (38)

Equation (1) admits a regular mild solutionv on (0, T ′
∗) with initial datumv0. Since (37) implies that

v0 := u(t0 − T ′
∗/2) satisfies (38), we infer that (1) admits such a solutionv. Using the uniqueness and

the semi-group property, we see thatu(t0 − T ′
∗/2 + t, ·) = v(t, ·) for all t ∈ [0, T ′

∗/2). Finally, definẽu
by ũ = u on [0, t0) andũ(t0 − T ′

∗/2 + t, ·) = v(t, ·) for t ∈ [T ′
∗/2, T

′
∗]. Then,ũ is still a mild solution

to (1) that satisfies the regularity of Proposition 9. Since the solutionũ lives on[0, t0 + T ′
∗/2], this gives

us a contradiction. We conclude thatt0 ≥ T and this completes the proof of the global existence of a
C1,2-solution. �

For the sake of completeness, we give the main ideas to get further regularity. The proof follows
closely the one given in [3].
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Sketch of the proof of theC∞-regularity. We use a bootstrap method. Let us first introduce some no-
tations. Forn ∈ N, ∂nxnu denotes the spatial partial derivatives ofu of ordern. We also say that
u ∈ Cn,∞((0, T ]×R) if all the mixed derivatives ofu up to ordern in time are continuous on(0, T ]×R.
The proof follows in three steps. First, we prove the spatial regularity at any order and the temporal reg-
ularity of order one by derivating the equation w.r.t.x. Next, we win one degree of regularity in time in
order to derivate the equations w.r.t.t. Finally, we conclude by induction.

First step: C1-regularity of the spatial derivatives. Up to this point, we know that

u ∈ C((0, T ];H2(R)) ∩ C1,2((0, T ] × R).

Derivating Duhamel’s formula w.r.t.x, we proved in Prop. 7 that∂xu is a mild solution of Equation (1)
derivated w.r.t. tox:

∂xu(t0 + t, ·) = K(t, ·) ∗ ∂xu(t0, ·) −
∫ t

0
∂xK(t− s, ·) ∗ (u ∂xu)(t0 + s, ·)ds.

Moreover, taking anyt0 ∈ (0, T ] as initial time, we know that the initial datum∂xu(t0, ·) ∈ L2(R);
hence, we argue as in Prop. 9 to prove that∂xu ∈ C((t0, T ];H2(R)) ∩ C1,2((t0, T ] × R). Sincet0 is
arbitrary in(0, T ], we deduce that

∂xu ∈ C((0, T ];H2(R)) ∩ C1,2((0, T ] × R).

We can do the same for the second derivative∂2
xxu which is a mild solution of Eq. (1) derivated twice,

see Equation (35). By induction, we extend this to all the spatial derivatives ofu:

∀n ∈ N, ∂nxnu ∈ C((0, T ];L2(R)) ∩ C1((0, T ] × R).

Second step:C2,∞-regularity. Let us pay attention on the regularity of the non-local term. Let us
recall that the second item of Remark 3 implies that

I[u] ∈ C((0, T ];L2(R)) ∩ C((0, T ] × R).

Moreover, we have:
∂xI[u] = I[∂xu]. (39)

Indeed, observe that forϕ ∈ H3(R), (4) and classical formula on Fourier transform give:

F (∂xI[ϕ]) = 2iπ · F (I[ϕ]) = 2iπ · ψFϕ = ψF (∂xϕ) ,

whereψ is given by (5). This implies that∂xI[ϕ] = I[∂xϕ]. Since the first step implies, in particular,
thatu is continuous in time with values inH3, we deduce that (39) holds true. Using again the second
item of Remark 3, it follows that

∂xI[u] ∈ C((0, T ];L2(R)) ∩ C((0, T ] × R).

Since, from the first step,u ∈ C((0, T ];Hn(R)), ∀n ∈ N, by induction we get the same result for the
spatial derivatives ofI[u] of any order:

∀n ∈ N, ∂nxnI[u] ∈ C((0, T ];L2(R)) ∩ C((0, T ] × R).

21



Since∂tu = −∂x
(
u2

2

)
− I[u] + ∂2

xxu holds in the classical sense by Prop. 8 we deduce that

∀n ∈ N, ∂nxn∂tu ∈ C((0, T ];L2(R)) ∩ C((0, T ] × R).

Now we show that
∂tI[u] = I[∂tu] ∈ C((0, T ] × R);

indeed,∂tu is sufficiently regular in order to apply the theorems of continuity and derivation under the
integral sign to Formula (3). Arguing by induction on the the spatial derivatives ofu, we see that

∀n ∈ N, ∂t∂
n
xnI[u] = ∂tI[∂nxnu] = I[∂t∂

n
xnu] ∈ C((0, T ] × R).

We deduce that
∀n ∈ N, ∂nxnI[u] ∈ C((0, T ];L2(R)) ∩ C1((0, T ] × R).

Using again the fact that Equation (1) holds in the classical sense, we get:

∀n ∈ N, ∂nxn∂tu ∈ C((0, T ];L2(R)) ∩ C1((0, T ] × R).

Moreover, we have seen in the first step that∂xu ∈ C1,2((0, T ] × R); hence, the following equation
holds true in the classical sense:

∂t∂xu+ (∂xu)
2 + u∂2

xxu+ I[∂xu] − ∂3
xxxu = 0.

Performing the second step withu replaced by∂xu, we obtain:

∀n ∈ N, ∂nxn∂t∂xu ∈ C((0, T ];L2(R)) ∩ C1((0, T ] × R).

We then can iterate this for all the spatial derivatives ofu and we get finally the following regularity:

∀n,m ∈ N, ∂nxn∂t∂
m
xmu ∈ C((0, T ];L2(R)) ∩ C1((0, T ] × R).

Hence,u ∈ C2,∞((0, T ] × R) with all mixed derivatives up to order1 in time continuous with values in
L2.

Conclusion. Now, we can derivate Equation (1) w.r.t.t and argue as previously to prove thatu ∈
C3,∞((0, T ]×R) with all mixed derivatives up to order2 in time continuous with values inL2. Arguing
by induction, we conclude thatu is C∞((0, T ] × R) with all derivatives continuous with values inL2.
This is the desired regularity in Theorem 1. �

To finish with, we prove theL2-stability stated in Proposition 1.

Proof of Proposition 1 .Let (u, v) be solutions to (1) with respectiveL2 initial data(u0, v0). let T > 0
andt ∈ [0, T ]. Substracting

u(t, ·) = K(t, ·) ∗ u0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ u2(s, ·)ds

and

v(t, .) = K(t, ·) ∗ v0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ v2(s, ·)ds
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we get

u(t, ·) − v(t, ·) = K(t, ·) ∗ (u0 − v0) −
1

2

∫ t

0
∂xK(t− s, ·) ∗ (u2(s, ·) − v2(s, ·))ds. (40)

Hence, by (12) of Remark 4 and Young inequality

||u(t, ·)−v(t, ·)||L2(R) ≤ eω0T ||u0−v0||L2(R)+
1

2

∫ t

0
||∂xK(t−s, ·)||L2(R)||u2(s, ·)−v2(s, ·)||L1(R) ds.

Taking

M = max
(
||u||C([0,T ];L2(R)), ||v||C([0,T ];L2(R))

)
≤ eω0T max

(
||u0||L2(R), ||v0||L2(R)

)
, by (37),

we can bound

||u(t, ·) − v(t, ·)||L2(R) ≤ eω0T ||u0 − v0||L2(R)

+M

∫ t

0
||∂xK(t− s, ·)||L2(R)||u(s, ·) − v(s, ·)||L2(R) ds

≤ eω0T ||u0 − v0||L2(R) +MK0

∫ t

0
(t− s)−

3
4 ||u(s, ·) − v(s, ·)||L2(R) ds,

thanks to (8). With Lemma 3 in Appendix, the proof is finished. �

6 Failure of the maximum principle

We now investigate the proof of Theorem 2, which is an immediate consequence of the integral for-
mula (3).

Proof of Theorem 2.Propositions 8 and 2 imply that the solutionu to (1) isC1,2 up to timet = 0 and
that

ut(0, x∗) + u0(x∗)u
′
0(x∗) + CI

∫ 0

−∞

u0(x∗ + z) − u0(x∗) − u′0(x∗)z

|z|7/3 dz − u′′0(x∗) = 0.

It follows that

ut(0, x∗) = −CI

∫ 0

−∞

u0(x∗ + z)

|z|7/3 dz < 0.

There then existst∗ > 0 such thatu(t∗, x∗) < 0. The proof of Theorem 2 is now complete. �

7 Numerical simulations

The aim of this part is to show some numerical simulations for (1). An explicit discretization gives results
in line with the theoretical study (see Remark 2).

We write (1) with a viscous coefficientε > 0 as follows:

∂tu+ ∂x

(
u2

2
+ L[u]

)
− ε∂2

xxu = 0, (41)
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where for anyϕ ∈ S(R) andx ∈ R,

L[ϕ](x) :=

∫ +∞

0
|ζ|− 1

3ϕ′(x− ζ)dζ.

The viscous coefficient is taken sufficiently small, in order to magnify the erosive effect of the non-local
term. The new definition of the non-local term (I[u] = ∂xL[u]) follows [5], which interpretesL[u] as
a flow. Notice that in [5, 6], the bottom is, in fact,s(t, x) = u(t, x + q′(1)t), whereq is the bedload
transport of sediments; for the sake of simplicity, we continue to work withu.

To shed light on the effect of the nonlocal term, we compare the evolution ofthe solution of (41)
with the solution of the viscous Burgers equation:

∂tu+ ∂x

(
u2

2

)
− ε∂2

xxu = 0. (42)

7.1 Maximum principle for the viscous Burgers equation

It is well-known that (42) satisfies the maximum principle: for any initial datau0 ∈ L∞(R), ess-infu0 ≤
u ≤ ess-supu0. As a consequence, (42) cannot take into account erosion phenomena. To simulate the
evolution ofu, we define a regular discretization of[0, L] with a spatial step∆x such thatL = M∆x,
and a discretization of[0, T ] with a time step∆t such thatT = N∆t. We letxi, tn anduni respectively
denote the pointi∆x, the timen∆t and the computed solution at the point(n∆t, i∆x). We use the
following explicit centered scheme:

un+1
i = uni + ∆t

[
−1

2

(uni+1)
2 − (uni−1)

2

2∆x
+ ε

uni+1 − 2uni + uni−1

∆x2

]
. (43)

It is well-known that this scheme is stable under the CFL-Peclet condition:

∆t ≤ min

(
∆x

maxi |uni |
,
∆x2

2ε

)
. (44)

To convince the reader, let us simulate the evolution of the well-known following travelling waves of
(42) forε = 1:

u(t, x) :=
1

2

[
1 − tanh

(
1

4

(
x− 1

2
t

))]
.

Remark 7. Equation(1) also admits travelling wave solutions, see [1].

We expose in Figure 3 both analytic and numerical solutions. We observe anerror of the order of
10−4 between these solutions. Let us now take, as an initial dune, the following small regular perturbation
on the bottom:

u0(x) =

{
e

−1

1−(x−L
2 )2 if L

2 − 1 < x < L
2 + 1,

0 otherwise.
(45)

We describe its evolution in Figure 4. The dune propagates, but as mentioned above the erosion phenom-
ena are not taken into account sinceu remains positive (because of the maximum principle).

24



0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
numerical solution
analytic solution

Figure 3: Numerical and analytic travelling waves of the viscous Burgers equation.

Figure 4: Evolution of the solution of (42) withu0 defined in (45) (L = 30,M = 4001 andε = 0.1).

7.2 Erosive effect of the nonlocal term

Let us return to the study of (41). We add the discretization of the non-local operatorL to the explicit
centered scheme (43). It is natural to consider the following discretization:

L[uni ] ≈
+∞∑

j=0

|j∆x|− 1
3

uni−j+1 − uni−j−1

2∆x
, (46)
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Then we obtain the discretization for (41):

un+1
i = uni + ∆t

[
−1

2

(uni+1)
2 − (uni−1)

2

2∆x
− L[uni+1] − L[uni−1]

2∆x
+ ε

uni+1 − 2uni + uni−1

∆x2

]
. (47)

(L/2)−1 (L/2) (L/2)+1

0

The initial dune

Figure 5: The initial dune defined in (45).

Remark 8. Taking into account the explicit discretization (46), we see thatL[uni ] only depends onunj
for j ≤ i+ 1, therefore, in (47),un+1

i does not depend onunk for k > i+ 2 :

un+1
i = uni + ∆t F (uni+2, u

n
i+1, u

n
i , u

n
i−1, . . . , u

n
i−j , . . .).

Now, take any integerA ≥ 1, assume thatu0(x) = 0, ∀x ≤ A∆x, then by induction we have
uni = 0, ∀i ≤ (A− 2n), thereforeL can be computedusing only a finite number of terms:

L[uni ] =

{
0 if i < A− 2n
∑i+2n−A

j=0 |j∆x|− 1
3
un

i−j+1−un
i−j−1

2∆x if not.
(48)

To take advantage of the previous remark, we take again the initial datumu0 defined in (45), which
satisfies supp(u0) ⊂⊂ (0, L) (see Figure 5), and we use the explicit scheme (47) and (48). Concerning
the stability condition, one can numerically see that (44) is still ensuring stability for small∆x. The
evolution of the initial dune (45) is given in Picture 6. Like the solutions of the viscous Burgers equation,
the dune is propagated downstream but we now observe an erosive process behind the dune: the bottom
is eroded downstream from the dune, as shown in Remark 2.

Let us make a final remark. We are aware of that the fact that these numerical simulations are a first
crude attempt. To tackle rigorously the non local term would need further study, which will be reported
elsewhere.

A Some technical lemmas.

We first recall a classical generalization of Gronwall’s lemma proved e.g. in[4].

Lemma 3. Let g : [0, T ] → R+ be a measurable function and suppose that there are positive constants
C,A andθ > 0 such that, for allt ≤ T ,

g(t) ≤ A+ C

∫ t

0
(t− s)θ−1g(s) ds.
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Figure 6: Evolution of an initial dune, by using the non-local model (41) (L = 30, M = 4001 and
ε = 0.1).

Then,
sup

0≤t≤T
g(t) ≤ CTA,

where constantCT does not depend onA.

Lemma 4. Letf, g ∈ L2(R). Then,f ∗ g ∈ C(R) and for allx, y ∈ R,

|f ∗ g(x) − f ∗ g(y)| ≤ ||T(x−y)f − f ||L2(R)||g||L2(R).
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Proof. The result is immediate iff andg are smooth; indeed,

|f ∗ g(x) − f ∗ g(y)| =

∣∣∣∣
∫

R

f(x− z)g(z)dz −
∫

R

f(y − z)g(z)dz

∣∣∣∣ ,

≤
∫

R

|f(x− z) − f(y − z)g(z)|dz,

≤ ||T(x−y)f − f ||L2(R)||g||L2(R).

The result for generalf andg onlyL2, is then obtained by density. �

Lemma 5. Letu ∈ C([0, T ];L2(R)). Then,supt∈[0,T−h] ||Th(u(t, ·)) − u(t, ·)||L2(R) → 0, ash→ 0.

Proof. The functionu is uniformly continuous with values inL2 as a continuous function on a compact
set[0, T ]. For anyε > 0, there then exist finite a sequence0 = t0 < t1 < . . . < tN = T such that for
anyt ∈ [0, T ], there existsj ∈ {0, . . . , N − 1} with

||u(t, ·) − u(tj , ·)||L2(R) ≤ ε.

Moreover,

||Th(u(t, ·)) − u(t, ·)||L2(R) ≤ ||Th(u(t, ·)) − Th(u(tj , ·))||L2(R)

+ ||Th(u(tj , ·)) − u(tj , ·)||L2(R) + ||u(tj , ·) − u(t, ·)||L2(R).

Since||Th(u(t, ·)) − Th(u(tj , ·))||L2(R) = ||u(t, ·) − u(tj , ·)||L2(R), we get:

||Th(u(t, ·)) − u(t, ·)||L2(R) ≤ ||Th(u(tj , ·)) − u(tj , ·)||L2(R) + 2||u(tj , ·) − u(t, ·)||L2(R),

≤ ||Th(u(tj , ·)) − u(tj , ·)||L2(R) + 2ε.

By the continuity of the translation inL2(R), ||Th(u(tj , ·)) − u(tj , ·)||L2(R) → 0, ash→ 0. Then,

lim sup
h→0

||Th(u(t, ·)) − u(t, ·)||L2(R) ≤ 2ε.

Taking the infimum w.r.t.ε > 0 implies the result. �

Lemma 6. Letu ∈ C([0, T ];L2(R)) such thatu is continuous w.r.t. the variablex uniformly int. Then,
u ∈ C([0, T ] × R).

Proof. Let (t0, x0) ∈ [0, T ] × R. Let ε > 0. By the regularity ofu w.r.t. the space variable, we know
that there existsη > 0 such that for anyt ∈ [0, T ] and allx, y ∈ [x0 − η, x0 + η],

|u(t0, x0) − u(t, x)| ≤ |u(t0, x0) − u(t0, y)| + |u(t0, y) − u(t, y)| + |u(t, y) − u(t, x)|,
≤ ε+ |u(t0, y) − u(t, y)| + ε.

If we integrate w.r.t.y ∈ [x0 − η, x0 + η], then we get:

2η|u(t0, x0) − u(t, x)| ≤ 4εη +

∫ x0+η

x0−η
|u(t0, y) − u(t, y)|dy ≤ 4εη(2η)

1
2 ||u(t0, ·) − u(t, ·)||L2(R).

By the continuity ofu with values inL2,

lim sup
(t,x)→(t0,x0)

|u(t0, x0) − u(t, x)| ≤ 2ε.

Taking the infimum w.r.t.ε > 0 completes the proof. �
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