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Abstract We consider the fractal Burgers equation (that is to say the Burgers equation to which is
added a fractional power of the Laplacian) and we prove that, if the power of the Laplacian involved
is lower than 1/2, then the equation does not regularize the initial condition: on the contrary to what
happens if the power of the Laplacian is greater than 1/2, discontinuities in the initial data can persist
in the solution and shocks can develop even for smooth initial data. We also prove that the creation of
shocks can occur only for sufficiently “large” initial conditions, by giving a result which states that, for
smooth “small” initial data, the solution remains at least Lipschitz continuous.
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1 Introduction and main results

We consider the fractal Burgers equation

∂tu(t, x) + ∂x

(

1

2
u2

)

(t, x) + g[u(t, ·)](x) = 0, (t, x) ∈]0, +∞[×R, (1.1)

u(0, x) = u0(x), x ∈ R, (1.2)

where u0 is bounded and g is the non-local operator defined through the Fourier transform by

F(g[ϕ])(ξ) = |ξ|λF(ϕ)(ξ) with λ ∈]0, 1[,

i.e. g is the fractional power of order λ/2 of the Laplacian.

This equation is involved in many different physical problems, such as overdriven detonation in gas [6]
or anomalous diffusion in semiconductor growth [14], and has been studied in a number of papers, such
as [3, 4, 7, 8, 1].
It is well known that the pure Burgers equation (i.e. (1.1) without g[u]) can give rise to shocks: even
for some smooth initial data, the solution can become discontinuous in finite time. On the other hand,
the parabolic regularization of the Burgers equation (i.e. (1.1) with λ = 2, that is to say g[u] = −∆u up
to a positive multiplicative constant depending on the definition of the Fourier transform) avoids such
situations and has smooth solutions, even for merely bounded initial data. It has been proved in [7] that,
if λ > 1, then (1.1) has the same behaviour as the parabolic regularization: for any bounded initial data,
the solution is smooth in {t > 0}, i.e. there is a regularizing effect. Before the analysis of [7], it had been
proved that the regularity of the initial condition persists if λ > 3/2 [13] or if λ > 1/2 under an additional
smallness assumption on the initial condition [3] (notice however that these are results of persistence of
regularity, not results of regularizing effect as in [7]).
If λ ≤ 1, the regularity of the solution is not completely clear; for example, in [3], insights are given on
the fact that, if λ < 1, the solution may exhibit shocks (but no proof of this fact is made: the insight
for the creation of shocks is just that, if λ < 1, no bounded traveling wave solution exists). To our best
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knowledge, there does not exist any proof that smooth initial data can give rise to discontinuous solutions
to (1.1) if λ ∈]0, 1].
One of the difficulties to study (1.1)-(1.2) for λ ≤ 1 is that uniqueness of weak solutions is not obvious
(precisely because they lack regularity); if the initial data is regular and small enough, some uniqueness
results of the weak solution exist in [3], but for general bounded initial data, one has to use the notion of
entropy solution developed in [1] in order to ensure existence and uniqueness of the (possibly irregular)
solution. The question which interests us here is the following: is this solution really irregular? For
smooth initial data and λ < 1, does (1.1) create shocks?

It is quite simple to see that the pure fractal equation ∂tv + g[v] = 0 has, even for λ ≤ 1, a regularizing
effect: bounded initial data give rise to smooth solutions (see the properties of the kernel of g in Section
2.3 below). Hence, if shocks occur in (1.1), they result from the hyperbolic part of the equation; since
the Burgers equation gives rise to shocks only for initial data which are somewhere decreasing, these are
the ones we must consider in order to observe shocks in the solution to (1.1) (in fact, from the splitting
method used in [7, 1], it is easy to see that, for non-decreasing smooth initial data, the solution to (1.1)
remains Lipschitz continuous).
Our main assumption on the initial data is the following (1):

u0 : R → R is bounded, odd on R and convex on R
+ (1.3)

(notice that u0 is then locally Lipschitz continuous, non-increasing and non-positive on R
+
∗ ). These initial

data can be smooth on R or discontinuous at x = 0. One can remark that the Riemann initial condition
which gives rise to an entropy shock for the Burgers equation, i.e. u0(x) = +1 if x < 0 and u0(x) = −1
if x > 0, satisfies (1.3).
The fractal and hyperbolic operators in (1.1) are then competitors: the first one tends to regularize
the solution, whereas the second one tends to create shocks. We will indeed light up this competition,
by showing that, depending on the “size” of the initial data, in some cases the hyperbolic operator
dominates and shocks occur, whereas in some cases the regularizing effect is stronger and the solution
remains Lipschitz continuous. Let us now precisely describe our results.

The first theorem states that an initial discontinuity cannot instantly disappear (the operator g is not
regularizing enough if λ < 1).

Theorem 1.1 (Preservation of initial shock) Let λ ∈]0, 1[. Assume that u0 satisfies (1.3) and is discon-
tinuous at x = 0. Then, for small times, the unique entropy solution u to (1.1)-(1.2) (see Definition 2.2)
remains discontinuous along the axis {x = 0}.
More precisely, u ∈ Cb([0, +∞[×R∗) is odd and non-increasing with respect to the space variable and
there exist ε > 0 such that

inf
t∈[0,0+ε[

{u(t, 0−) − u(t, 0+)} > 0 , (1.4)

where u(t, 0±) denote the limits limx→0± u(t, x).

The second result is somewhat stronger, since it shows that, for some smooth initial data, a shock occurs
in the solution.

Theorem 1.2 (Creation of shock) Let λ ∈]0, 1[. There exists S(λ) > 0 such that, if u0 satisfies (1.3)
and

∃x∗ > 0 such that u0(x∗) < −S(λ)x1−λ
∗ , (1.5)

then the unique entropy solution u to (1.1)-(1.2) (see Definition 2.2) develops a line of discontinuities in
finite time along the axis {x = 0}.

1For space-variable sets, we use the notations R
+ = [0,+∞[, R

+
∗ =]0,+∞[ and R

−
∗ =]−∞, 0[. Notice also that we write

open intervals as ]a, b[ instead of (a, b), in order to avoid confusion with couples of points.

2



More precisely, u ∈ Cb([0, +∞[×R∗) is odd and non-increasing with respect to the space variable and
there exist 0 ≤ t∗ < +∞ and ε > 0 such that

inf
t∈[t∗,t∗+ε[

{u(t, 0−) − u(t, 0+)} > 0 , (1.6)

where u(t, 0±) denote the limits limx→0± u(t, x).

Remark 1.3 One can take S(λ) = 21−λGλ

λ(1−λ)2 where Gλ is defined by (2.2) (see Lemma 3.6) and the shock

then occurs before the time t = x∗

−u0(x∗)−S(λ)x1−λ
∗

.

In the last result, we state a counterpart of Theorem 1.2: if the initial data and its derivative are not
simultaneously large, then no shock is created and the solution remains at least Lipschitz continuous.

Theorem 1.4 (No creation of shock) Let λ ∈]0, 1[. Define Gλ by (2.2) and take L > 0 and M > 0 such
that

L1−λMλ <
Gλ

2λλ
. (1.7)

If u0 ∈ W 1,∞(R) satisfies (1.3), ||u0||L∞(R) ≤ M and ||u′
0||L∞(R) ≤ L, then the entropy solution u

to (1.1)-(1.2) (see Definition 2.2) belongs to W 1,∞(]0, +∞[×R) and satisfies ||u(t, ·)||L∞(R) ≤ M and
||∂xu(t, ·)||L∞(R) ≤ L for all t ≥ 0.

It is easy to check that if u0 ∈ W 1,∞(R) satisfies (1.5) with S(λ) as in Remark 1.3 and if u0(0) = 0
(which is the case if (1.3) holds), then M = ||u0||L∞(R) and L = ||u′

0||L∞(R) cannot satisfy (1.7) (2).
Notice however that, for all A > 0 and all S > 0, there exists u0 ∈ W 1,∞(R) which satisfies (1.3) and
such that u0(x) ≥ −Sx1−λ for all x ∈ R and ||u′

0||
1−λ
L∞(R)||u0||

λ
L∞(R) ≥ A (i.e. the opposites of (1.5) and

(1.7) simultaneously hold, with free constants).
Relations (1.5) and (1.7) are therefore two “ordered” thresholds on the relative sizes of the initial data
and its derivative; under the lower threshold (1.7), the solution to (1.1)-(1.2) remains Lipschitz continuous
and, above the upper threshold (1.5), this solution develops shocks. For initial data which are between
the two thresholds, it is not clear if shocks occur or not. Our results are thus of the same kind as in [12],
where two such thresholds are given in the case where g[u] in (1.1) is replaced by a zero-order convolution
term.

The paper is organized as follows. In Section 2, we recall some basic facts about fractal operators and
fractal conservation laws. Section 3 is devoted to the proof of Theorems 1.1 and 1.2: we first show that
the fractal Burgers equation preserves (1.3) (if the initial data satisfies this property, then the solution
too), and we then introduce a method of characteristics for (1.1) which allows to prove the theorems. In
Section 4, we prove Theorem 1.4 by showing that, during the splitting method which consists in separately
solving the Burgers equation and the fractal equation, the fractal equation “compensates” the tendency
of the Burgers equation to create shocks. We have gathered some lemmas, used throughout the paper,
in an appendix in Section 5.

2 Preliminary results

We recall here some facts concerning the fractal operator g and the associated equations.

2Indeed, from (1.5) we clearly have M ≥ S(λ)x1−λ
∗ and L ≥ |u0(x∗)−u0(0)|

x∗
≥ S(λ)x−λ

∗ , so that L1−λMλ ≥ S(λ) =

21−λ
Gλ

λ(1−λ)2
= 2

(1−λ)2
Gλ

2λλ
> Gλ

2λλ
.
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2.1 Integral representation of g

It is proved (in [8] for example) that, if λ ∈]0, 1[, the operator g can be written in another way: for all
Schwartz function ϕ, we have

g[ϕ](x) = −Gλ

∫

R

ϕ(x + z) − ϕ(x)

|z|1+λ
dz (2.1)

where

Gλ =
λΓ(1+λ

2 )

2π
1
2
+λΓ(1 − λ

2 )
> 0 (2.2)

(Γ is Euler’s function). On the basis of this formula, by a partition of the domain of integration as the
union of {|z| < β} and {|z| ≥ β}, one proves the following lemma.

Lemma 2.1 Let λ ∈]0, 1[, A be an interval of R and ϕ : R → R. Suppose that there exists β > 0, R1

and R2 such that ||ϕ||L∞(R) ≤ R1 and ||ϕ′||L∞(A+]−β,β[) ≤ R2. Then g[ϕ] is defined and bounded on A
and, more precisely,

||g[ϕ]||L∞(A) ≤ 2Gλ
β1−λ

1 − λ
R2 + 4Gλ

β−λ

λ
R1.

Thanks to (2.1) and to the theorem of continuity under the integral sign, we can also consider that g is
an operator

g : Cb([0, +∞[×R∗) ∩ W 1,∞
loc ([0, +∞[×R∗) → C([0, +∞[×R∗) (2.3)

(the variable in [0, +∞[ being the time variable t).

2.2 Entropy solutions for fractal conservation laws

If one considers the general fractal conservation law

∂tu(t, x) + ∂x(f(u))(t, x) + g[u(t, ·)](x) = 0, (t, x) ∈]0, +∞[×R, (2.4)

u(0, x) = u0(x), x ∈ R, (2.5)

with f : R → R locally Lipschitz continuous, the integral representation (2.1) of g motivates the following
definition, from [1], of entropy solutions to (2.4)-(2.5).

Definition 2.2 (Entropy solution) Let λ ∈]0, 1[ and u0 ∈ L∞(R). An entropy solution to (2.4)-(2.5)
is a function u ∈ L∞(]0, +∞[×R) such that, for all non-negative ϕ ∈ C∞

c ([0, +∞[×R), for all smooth
convex function η : R → R, all φ : R → R such that φ′ = η′f ′ and all r > 0, we have

∫ ∞

0

∫

R

(η(u)∂tϕ + φ(u)∂xϕ) + Gλ

∫ ∞

0

∫

R

∫

|z|>r

η′(u(t, x))
u(t, x + z) − u(t, x)

|z|1+λ
ϕ(t, x) dtdxdz

+Gλ

∫ ∞

0

∫

R

∫

|z|≤r

η(u(t, x))
ϕ(t, x + z) − ϕ(t, x)

|z|1+λ
dtdxdz +

∫

R

η(u0)ϕ(0, ·) ≥ 0.

Remark 2.3 (see [1]) This definition can be extended to the case λ = 1 and to multidimensional equa-
tions, and provides existence and uniqueness of the solution to (2.4)-(2.5); moreover, this entropy solution
is bounded by ||u0||L∞(R).

The entropy solution to (2.4)-(2.5) can be constructed by using a splitting method.

Splitting method (see [7, 1]): for δ > 0, we construct uδ : [0, +∞[×R → R the following way: we let

uδ(0, ·) = u0 and, for all even p and all odd q, we define by induction
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(a) uδ on ]pδ, (p + 1)δ] × R as the solution to ∂tu
δ + 2g[uδ] = 0 with initial datum uδ(pδ, ·) (that is to

say uδ(t, x) = K(2(t − pδ), ·) ∗ uδ(pδ, ·)(x) where K is the kernel of g, see Section 2.3);

(b) uδ on ]qδ, (q + 1)δ]×R as the entropy solution to ∂tu
δ + 2∂x(f(uδ)) = 0 with initial datum uδ(qδ, ·).

As proved in [1], the function uδ thus constructed converges, as δ → 0 and in C([0, T ]; L1
loc(R)) for all

T > 0, to the unique entropy solution to (2.4)-(2.5). This is the only fact we will need concerning entropy
solutions to (2.4)-(2.5).

2.3 Kernel of g

The Fourier transform shows that the solution to ∂tv + g[v] = 0 with initial condition v0 is given by
v(t, x) = K(t, ·) ∗ v0(x) where

K(t, ·) = F−1(e−t|·|λ).

It can be shown (see e.g. [10, 7]) that the kernel of g satisfies the following properties (3).

K(1, ·) ∈ C∞
b (R) ∩ W∞,1(R) is even and non-negative ,

∫

R

K(1, x) dx = 1 ,

K(t, x) = t−
1
λ K(1, t−

1
λ x).

(2.6)

Another important feature of K is the following (a proof of this lemma is given in the appendix).

Lemma 2.4 If λ ∈]0, 2], then, for all t > 0, K(t, .) is non-increasing on R
+.

3 Preservation and creation of shock

This section is devoted to the proofs of Theorems 1.1 and 1.2.

3.1 Property (1.3) is preserved

The following result is central in the study of (1.1)-(1.2) for initial data which satisfy (1.3).

Lemma 3.1 Let λ ∈]0, 1[, u0 satisfy (1.3) and u be the entropy solution to (1.1)-(1.2). Then u ∈
Cb([0, +∞[×R∗) ∩ W 1,∞

loc ([0, +∞[×R∗) and, for all t > 0, u(t, ·) satisfies (1.3).

Remark 3.2 This lemma is also true for λ ∈ [1, 2], but will not be useful to us in this setting.

Proof of Lemma 3.1

The idea is to use the splitting method, as described in Section 2.2, by proving that both equations
∂tu + 2g[u] = 0 and ∂tu + 2∂x(1

2u2) = 0 preserve (1.3).

Step 1: conservation of (1.3) by the fractal equation.
Assume that u0 satisfies (1.3). Since u0 is locally Lipschitz continuous on R∗ and non-increasing, it has
a classical derivative u′

0 ∈ L∞
loc(R∗) which is non-negative and

∫ ∞

0

|u′
0(s)| ds = −

∫ ∞

0

u′
0(x) dx = lim

y→0
u0(y) − lim

y→+∞
u0(y) ≤ 2||u0||L∞(R).

3In fact, the integrability of the derivatives of K(1, ·) can be obtained by proving, as in [7], that they all are O(1/(1+|·|2)),
but, because λ < 1, the integrability of K(1, ·) itself cannot be deduced the same way. To see that K(1, ·) ∈ L1(R), one
can invoke the fact that the sequence (fn)n≥1 from the proof of Lemma 2.4 is bounded in L1(R) and converges in S′(R)
to K(c, ·) for some c > 0, so that K(c, ·) is necessarily a bounded measure on R: since it is a function, this shows that it is
integrable, and hence K(1, ·) also by homogeneity. This is the principle of the proof in [10].
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Since u0 is odd, this proves that u′
0 ∈ L1(R). From this, and denoting J = u0(0

+)−u0(0
−) ≤ 0 the jump

of u0 at x = 0, it is easy to see that the distributional derivative of u0 on R is Du0 = u′
0 + Jδ0.

Define now u(t, .) := K(2t, .) ∗ u0 for t > 0 (i.e. u is the solution to ∂tu + 2g[u] = 0 with initial data u0).
By the properties of K, u is a well-defined, bounded (by ||u0||L∞(R)) and smooth function (see also [7] or
[8, Lemma 2]). Since K(2t, ·) is even and u0 is odd, it is quite obvious that u(t, ·) is odd. Moreover, as
Du0 = u′

0 +Jδ0, it is easy to see that ∂xu(t, ·) = K(2t, ·)∗u′
0 +JK(2t, ·). By (1.3), we see that u′

0 is even,
non-positive on R and non-decreasing on R

+. From Lemma 2.4, Property (2.6), Lemma 5.1 (applied to
−u′

0) and the fact that J ≤ 0, we deduce that ∂xu(t, ·) is non-decreasing on R
+, and therefore that u(t, ·)

is convex on R
+. Hence, u(t, ·) is a smooth function which satisfies (1.3).

Step 2: conservation of (1.3) by the Burgers equation.

Let us solve the Burgers equation ∂tu + 2∂x(u2

2 ) = 0 by the classical method of characteristics. We
assume here that u0 is smooth (as we will see, this is not a loss of generality) and satisfies (1.3).
The characteristics for the Burgers equation with initial condition u0 are t → x0 + 2tu0(x0). Since u0 is
odd, the characteristics from x0 and −x0 are symmetric with respect to x = 0; in fact, by (1.3) we see
that u0 is negative on R

+
∗ and positive on R

−
∗ (unless it vanishes on R, a case where the conservation

of property (1.3) by the Burgers equation is obvious), and since u0 is non-increasing, the characteristics
behave as in Figure 1.

t

x

x0 y0

h(x0)

h(y0)

Figure 1: Characteristics for the Burgers equation in the case where u0 satisfies (1.3).

As suggested by this figure, we can prove that the characteristics coming from points x0 > 0 form a
partition of [0, +∞[×R

+
∗ : they do not intersect and cover this whole domain. Indeed, for x > 0 consider

h(x) = − x
2u0(x) > 0, the point on the t-axis where the characteristic t → x+2tu0(x) crosses this axis (recall

that, unless it completely vanishes, u0(x) < 0 for all x > 0). We have sgn(h′(x)) = sgn(xu′
0(x) − u0(x))

and, since (1.3) implies (4)
u0(x) ≤ x u′

0(x) for all x > 0, (3.1)

we deduce that h is non-decreasing on R
+
∗ . Hence, the only point where two characteristics originating

from x0 > 0 and y0 > 0 can intersect is at x = 0, and not in [0, +∞[×R
+
∗ . Let t ≥ 0 and y > 0; the

continuous function x → x + 2tu0(x) is equal to 0 at x = 0 (because u0(0) = 0 by (1.3)) and, since u0 is
bounded, has limit +∞ as x → +∞; hence, there exists x > 0 such that x + 2tu0(x) = y, which shows
that the characteristics cover the whole domain [0, +∞[×R

+
∗ .

4This is the classical slopes inequality for convex functions, between the points (0, 0) = (0, u0(0)) and (x, u0(x)).
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This proves that, in the domain [0, +∞[×R
+
∗ , the solution u to the Burgers equation stays smooth

and can be computed thanks to the characteristics. Let t > 0 and x0 > 0 such that t < h(x0) (i.e.
(t, x0 + 2tu0(x0)) ∈ [0, +∞[×R

+
∗ ); we have u(t, x0 + 2tu0(x0)) = u0(x0) and we can differentiate with

respect to x0 (the set of x0 such that t < h(x0) is open); by (3.1), we have 1 + 2tu′
0(x0) ≥ 1 − t

h(x0)
> 0

and thus

∂xu(t, x0 + 2tu0(x0)) =
u′

0(x0)

1 + 2tu′
0(x0)

. (3.2)

Let t ≥ 0, x > y > 0 and take x0 > 0 and y0 > 0 such that t < h(x0), t < h(y0), x0 + 2tu0(x0) = x
and y0 + 2tu0(y0) = y (this is possible because the characteristics originating from positive points cover
[0, +∞[×R

+
∗ ). The preceding reasoning shows that z → z + 2tu0(z) is increasing on the interval {z >

0 | t < h(z)} (its derivative 1 + 2tu′
0(z) is positive), and therefore x0 > y0. Since u′

0 is non-decreasing on
R

+
∗ and p → p

1+2tp is non-decreasing on the interval {p | 1 + 2tp > 0}, we deduce from (3.2) applied to

x0 and y0 that ∂xu(t, x) ≥ ∂xu(t, y), and therefore that u(t, ·) is convex on R
+
∗ . Since u is obviously odd

with respect to the space variable (because −u(·,−·) is another entropy solution of the Burgers equation,
and is therefore equal to u) and non-positive on [0, +∞[×R

+
∗ (the characteristics show that the values

of u on this set are given by values of u0 on R
+
∗ ), the convexity of u(t, ·) on R

+
∗ entails its convexity on

R
+ (u is null at x = 0), and this concludes the proof that, if the initial condition is regular and satisfies

(1.3), then the solution of the Burgers equation is regular in [0, +∞[×R∗ and satisfies (1.3) at any time.

Step 3: conclusion.
Consider now u0 bounded which satisfies (1.3). For δ > 0, construct uδ using the splitting method
presented in Section 2.2. By the preceding steps, we know that uδ ∈ Cb([0, +∞[×R∗)∩W 1,∞

loc ([0, +∞[×R∗)
(it stays smooth outside x = 0) and that, for all t ≥ 0, uδ(t, .) satisfies (1.3) (notice that, in the splitting
method, all the Burgers problems we solve have regular initial data, coming from the resolution of the
fractal equation at the preceding time step).
The fractal and the hyperbolic equations do not increase the L∞ norm, therefore uδ is bounded inde-
pendently of δ (by ||u0||L∞(R)). For a fixed β > 0, this bound on uδ, together with Lemma 5.2, gives a

bound ‖∂xuδ(t, ·)‖L∞([β,+∞[) ≤ R(β) independent on δ or t ≥ 0. For ranges of time such that uδ solves

the fractal equation ∂tu = −2g[u], Lemma 2.1 applied to uδ(t, ·) with R1 = ||u0||L∞(R), R2 = R(β) and
A = [2β, +∞[ gives a bound

‖∂tu
δ(t, ·)‖L∞([2β,+∞[) ≤ C(β)

independent on δ or t. For ranges of time such that uδ solves the conservation law ∂tu + 2∂x(u2/2) = 0,
i.e. ∂tu = −2u∂xu outside x = 0, we have the bound

‖∂tu
δ(t, ·)‖L∞([2β,+∞[) ≤ 2||u0||L∞(R)R(β)

independent on δ or t.
Consequently, given Q a compact subset of R

+
∗ , uδ is Lipschitz continuous on [0, +∞[×Q with a Lipschitz

constant which does not depend on δ > 0. By the Ascoli-Arzela theorem, the family {uδ : δ > 0} is
relatively compact in C([0, T ] × Q), for all T > 0 and all Q compact subset of R

+
∗ . Since uδ converges

in C([0, T ]; L1
loc(R)), for all T > 0 and as δ → 0, to the entropy solution u to (1.1)-(1.2), and since uδ is

odd with respect to x, we deduce that uδ converges to u locally uniformly on [0, +∞[×R∗ and that u is
locally Lipschitz continuous on [0, +∞[×R∗.
The proof is concluded by recalling that, for all t ≥ 0, uδ(t, ·) satisfies (1.3) so that its convergence on R∗

implies that u(t, ·) also satisfies (1.3) (5).

3.2 The generalized characteristic method

In the following, we take u0 which satisfies (1.3) and we denote u the entropy solution to (1.1)-(1.2). By
the regularity of u in Lemma 3.1 and the Cauchy-Lipschitz theorem, for all x0 ∈ R∗ there exists a unique

5u(t, ·) is not necessarily well defined at x = 0 but, in this case, we of course take the representative of u(t, ·) which
satisfies u(t, 0) = 0.
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maximal solution x : I0,x0
⊂ [0, +∞[ → R∗ to

{

x′(t) = u(t, x(t)) , t ∈ I0,x0
,

x(0) = x0
(3.3)

(the notation I0,x0
for the interval of definition of the maximal solution is generalized as It0,x0

if the initial
time is taken at t = t0, see (3.4) below). Notice that, since we are not sure that u is regular at x = 0,
it is natural to consider only solutions with values in R∗, and the maximality property is subordinate to
this condition x(t) ∈ R∗.

Definition 3.3 Let λ ∈]0, 1[, u0 satisfy (1.3) and u be the entropy solution to (1.1)-(1.2). A generalized
characteristic of (1.1)-(1.2) originating from x0 ∈ R∗ is the maximal solution x : I0,x0

→ R∗ to (3.3).

Remark 3.4 Since u is odd with respect to the space variable, the graphs of the generalized characteristics
originating for x0 and −x0 are, as in the case of pure Burgers equation, symmetric with respect to x = 0.

Let us first give some basic properties on the generalized characteristics.

Lemma 3.5 Let λ ∈]0, 1[, u0 satisfy (1.3) and u be the entropy solution to (1.1)-(1.2). The generalized
characteristics satisfy the following properties.

i) The graphs of the generalized characteristics originating from points x0 > 0 form a partition of
[0, +∞[×R

+
∗ .

ii) Let x0 ∈ R∗ and x(t) be the generalized characteristic originating from x0. If I0,x0
6= [0, +∞[, then

I0,x0
= [0, t∗[ with t∗ < +∞ and limt→t−∗

x(t) = 0.

iii) u is continuously differentiable along the generalized characteristics and, for all generalized charac-
teristic x : I0,x0

→ R∗,

d

dt
u(t, x(t)) = −g[u(t, ·)](x(t)) for all t ∈ I0,x0

.

Proof of Lemma 3.5

For classical results on ODE that are used during the proof, we refer the reader to [5] or [2].
Let us first prove Item i). For (t0, y0) ∈ [0, +∞[×R

+
∗ , we consider the maximal solution y : It0,y0

→ R
+
∗

to the Cauchy problem
{

y′(t) = u(t, y(t)), t ∈ It0,y0
,

y(t0) = y0
(3.4)

and we want to show that 0 ∈ It0,y0
. Since u is non-positive on [0, +∞[×R

+
∗ , we have 0 ≥ y′(t) ≥

−||u0||L∞(R) for all t ∈ It0,y0
. By integrating, we deduce that y is non-increasing on It0,y0

and bounded
from above by y0 + ||u0||L∞(R)(t0 − t) for t ∈ It0,y0

∩ [0, t0]. The limit lim
t

>
→inf It0,y0

y(t) = x0 then exists

and belongs to [y0, y0 + ||u0||L∞(R)t0] ⊂ R
+
∗ . By maximality of y, this means that inf It0,y0

= 0 (or else y
can be extended beyond this infimum, since u is locally Lipschitz continuous on [0, +∞[×R

+
∗ ) and that

y is equal to the generalized characteristic x originating from x0. Hence, the graphs of the generalized
characteristics originating from points in R

+
∗ cover the whole domain [0, +∞[×R

+
∗ . The Cauchy-Lipschitz

theorem ensures that these graphs never cross, and this concludes the proof of i).

Item ii) is easy to prove. Indeed, let x0 > 0 (by symmetry, there is no loss of generality in assuming this)
and suppose that the supremum of the interval I0,x0

is t∗ < +∞; since u is non-positive on [0, +∞[×R
+
∗ ,

we have 0 ≥ x′(t) so that x is non-increasing and has a limit in [0, x0] as t → t−∗ . If this limit were positive,
then u being locally Lipschitz continuous on [0, +∞[×R

+
∗ (see Lemma 3.1), the maximal solution x(t) to

(3.3) could be extended beyond the time t∗, which is a contradiction; hence, limt→t−∗
x(t) = 0.
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Let us now prove Item iii). Let U = {(t, x0) ∈ [0, +∞[×R∗ , t ∈ I0,x0
} and φ : (t, x0) ∈ U → (t, x(t)) ∈

[0, +∞[×R∗, where x : I0,x0
→ R∗ is the generalized characteristic originating from x0. Classical results

on ODE imply that U is an open subset of [0, +∞[×R∗ and that φ is a locally Lipschitz continuous
homeomorphism (it is bijective thanks to Item i) of the lemma and the symmetry of the characteristics
with respect to x = 0), differentiable with respect to the time variable on U with ∂t(π ◦ φ) = u ◦ φ,
where π denotes the projection on the second factor of [0, +∞[×R∗. By Lemma 3.1, u is locally Lipschitz
continuous on [0, +∞[×R∗ (and therefore a.e. differentiable); the distributional derivatives of u ◦ φ are
thus equal to its a.e. derivatives, which can be computed by means of the chain rule since φ−1 preserves
sets of null Lebesgue measure (it is locally Lipschitz continuous). Moreover, Lemma 3.1 and (2.3) imply
that g[u] ∈ C([0, +∞[×R∗) and, since the entropy solution to (1.1)-(1.2) is also a weak solution (see [1]),
this means that u satisfies (1.1) in the classical sense a.e. on ]0, +∞[×R. From all this we deduce, in the
distributional sense on U ,

∂t(u ◦ φ) = ∂tu ◦ φ + (∂xu ◦ φ)(∂t(π ◦ φ)) = ∂tu ◦ φ + (∂xu ◦ φ)(u ◦ φ) = −g[u] ◦ φ. (3.5)

Since g[u] ◦φ is continuous on U , this implies that u ◦φ is in fact continuously differentiable with respect
to the time variable everywhere on U , and (3.5) concludes the proof of the lemma.

Solutions to (3.3) are called “generalized characteristics” of (1.1)-(1.2) because, as in the case of pure
scalar conservation law, we can establish some behaviour of the solution along these characteristics.

Lemma 3.6 Let λ ∈]0, 1[, u0 satisfy (1.3) and u be the entropy solution to (1.1)-(1.2). If x0 > 0 and x
is the generalized characteristic originating from x0 then

u(t, x(t)) ≤ u0(x0) + S(λ)x1−λ
0 − S(λ)x(t)1−λ for all t ∈ I0,x0

,

where S(λ) = 21−λGλ

λ(1−λ)2 and Gλ is given by (2.2).

Proof of Lemma 3.6

By Item iii) in Lemma 3.5 and (2.1),

d

dt
u(t, x(t)) = Gλ

∫

R

u(t, x(t) + z) − u(t, x(t))

|z|1+λ
dz.

Let us cut this integral sign in three parts: z < −2x(t), −2x(t) ≤ z ≤ 0 and z > 0. We let P1, P2 and P3

denote the respective parts, so that

d

dt
u(t, x(t)) = P1 + P2 + P3. (3.6)

By (3.3),

P1 = Gλ

∫ −2x(t)

−∞

u(t, x(t) + z) − u(t, x(t))

|z|1+λ
dz

= Gλ

∫ −2x(t)

−∞

−2u(t, x(t))

|z|1+λ
dz + Gλ

∫ −2x(t)

−∞

u(t, x(t) + z) + u(t, x(t))

|z|1+λ
dz

= −
21−λGλ

λ

x′(t)

x(t)λ
+ Gλ

∫ −2x(t)

−∞

u(t, x(t) + z) + u(t, x(t))

|z|1+λ
dz. (3.7)

Let Q1 denote this last integral term. Changing the variable by z = −2x(t) − z′ and since u(t, ·) is odd
(see Lemma 3.1), we get

Q1 = Gλ

∫ +∞

0

u(t,−x(t) − z′) + u(t, x(t))

|2x(t) + z′|1+λ
dz′ = Gλ

∫ +∞

0

−u(t, x(t) + z′) + u(t, x(t))

|2x(t) + z′|1+λ
dz′.
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Using the fact that u(t, .) is non-increasing on R
+
∗ and that x(t) > 0, we have−u(t, x(t)+z′)+u(t, x(t)) ≥ 0

and |2x(t) + z′|−(1+λ) ≤ |z′|−(1+λ) for all z′ > 0. This implies Q1 + P3 ≤ 0 and (3.7) gives

P1 + P3 ≤ −
21−λGλ

λ

x′(t)

x(t)λ
. (3.8)

Moreover, since λ < 1 and still using (3.3),

P2 = Gλ

∫ 0

−2x(t)

u(t, x(t) + z) − u(t, x(t))

|z|1+λ
dz

= Gλ

∫ 0

−2x(t)

u(t,x(t))
x(t) z

|z|1+λ
dz + Gλ

∫ 0

−2x(t)

u(t, x(t) + z) − u(t, x(t)) − u(t,x(t))
x(t) z

|z|1+λ
dz

= −
21−λGλ

1 − λ

x′(t)

x(t)λ
+ Gλ

∫ 0

−2x(t)

u(t, x(t) + z) − u(t, x(t)) − u(t,x(t))
x(t) z

|z|1+λ
dz. (3.9)

Let us cut the last integral sign in two pieces: z < −x(t) and z ≥ −x(t); we let Q2 and Q3 denote the
respective parts. We have, thanks to the change of variable z = −2x(t)−z′ and using the fact that u(t, ·)
is odd,

Q2 = Gλ

∫ −x(t)

−2x(t)

u(t, x(t) + z) − u(t, x(t)) − u(t,x(t))
x(t) z

|z|1+λ
dz

= Gλ

∫ 0

−x(t)

u(t,−x(t) − z′) − u(t, x(t)) + u(t,x(t))
x(t) (2x(t) + z′)

|2x(t) + z′|1+λ
dz′

= Gλ

∫ 0

−x(t)

−u(t, x(t) + z′) + u(t, x(t)) + u(t,x(t))
x(t) z′

|2x(t) + z′|1+λ
dz′.

Let z′ ∈] − x(t), 0[; the slopes inequality applied to the convex function u(t, ·) (on R
+) with the points

(0, u(t, 0)) = (0, 0), (x(t) + z′, u(t, x(t) + z′)) and (x(t), u(t, x(t)) gives

−u(t, x(t) + z′) + u(t, x(t)) +
u(t, x(t))

x(t)
z′ ≥ 0. (3.10)

If −x(t) < z′ < 0 then |z′| < x(t) < 2x(t) + z′ and thus |2x(t) + z′|−(1+λ) ≤ |z′|−(1+λ); with (3.10), this

gives Q2 + Q3 ≤ 0. Inequality (3.9) then implies that P2 ≤ − 21−λGλ

1−λ
x′(t)
x(t)λ and, by (3.6) and (3.8), we

deduce d
dtu(t, x(t)) ≤ − 21−λGλ

λ(1−λ)
x′(t)
x(t)λ for t ∈ I0,x0

. Integrating this inequality between 0 and t, the proof

is complete.

3.3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1

Notice that u ∈ Cb([0, +∞[×R∗) is odd and non-increasing with respect to the space variable thanks to
Lemma 3.1.
Since u0 satisfies (1.3) and has a discontinuity at x = 0, we have u0(0

+) = −2ρ < 0; then there exists
x∗ > 0 such that, for all 0 < x0 ≤ x∗, u0(x0) + S(λ)x1−λ

0 ≤ u0(0
+) + S(λ)x1−λ

∗ ≤ −ρ (where S(λ) is as
in Lemma 3.6). The characteristic originating from x∗ divides the space I0,x∗

× R
+
∗ in two parts; we let

E denote the left part (see Figure 2).
Item i) of Lemma 3.5 implies that E is included in the union of the graphs of the generalized characteristics
originating from 0 < x0 < x∗ (in fact E is equal to this union) and from Lemma 3.6 and the choice of x∗

we deduce that supE u ≤ −ρ. For all t ∈ I0,x∗
, there exists (t, yn) ∈ E such that yn → 0+ (because the
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t

x

x∗

t

x

x∗

E
E

t∗

I0,x∗ = [0, t∗[

I0,x∗ = [0, +∞[

Figure 2: Division of the plane by the generalized characteristic originating from x∗, in the two possible
cases I0,x∗

= [0, +∞[ or I0,x∗
= [0, t∗[ with t∗ < +∞.

generalized characteristic originating from x∗ is positive at time t), and therefore u(t, 0+) ≤ supE u ≤ −ρ.
We therefore obtain supt∈I0,x∗

u(t, 0+) ≤ −ρ and, since u is odd with respect to the space variable, we
deduce (1.4) with ε = sup I0,x∗

> 0.

Proof of Theorem 1.2

Lemma 3.1 still shows that u ∈ Cb([0, +∞[×R∗) is odd and non-increasing with respect to the space
variable. To prove Theorem 1.2, it suffices to show that there exists 0 < t∗ < +∞ such that u(t∗, ·) is
discontinuous at x = 0, since Theorem 1.1 then states that the discontinuity persists a little while after
t∗ (because u(t∗, ·) satisfies (1.3) by Lemma 3.1).
Taking S(λ) as in Lemma 3.6, (1.5) gives x∗ > 0 such that u0(x∗) + S(λ)x1−λ

∗ =: −ρ < 0 and we
deduce that the generalized characteristic x(t) originating from x∗ is bounded from above by x∗ − ρt
for all t ∈ I0,x∗

; its graph therefore crosses the axis x = 0 before the time t = x∗/ρ. This generalized
characteristic thus cannot be defined on [0, +∞[ and, by Item ii) in Lemma 3.5, we have I0,x∗

= [0, t∗[
with t∗ ≤ x∗/ρ < +∞ and limt→t−∗

x(t) = 0. If y > 0 then, for all t < t∗ close to t∗, we have x(t) < y

and, since u(t, ·) is non-increasing on R
+
∗ , we deduce u(t, y) ≤ u(t, x(t)) ≤ −ρ by Lemma 3.6. Since

u is continuous on [0, +∞[×R∗, we can let t
<
→ t∗ with y > 0 fixed to find u(t∗, y) ≤ −ρ. Hence,

sup
R

+
∗

u(t∗, ·) ≤ −ρ and, since u(t∗, ·) is odd, this concludes the proof that it has a discontinuity at x = 0.

Remark 3.7 Since S(λ) used above has a finite limit as λ → 0, the preceding proofs (and thus Theorems

1.1 and 1.2) are also valid with λ = 0, in which case (1.1) is reduced to ∂tu + ∂x(u2

2 ) + u = 0 (see also
Remark 4.2).

4 No creation of shock

In this section, we prove Theorem 1.4. The idea is to show that the approximations uδ constructed by
the splitting method remain Lipschitz continuous in space, with a Lipschitz constant not depending on δ.

It is known that the hyperbolic parts of the splitting method (i.e. ∂tu
δ +2∂x( (uδ)2

2 ) = 0) have tendencies
to make the Lipschitz constant of the solution explode; the key point is that, in this case, the fractal
parts (i.e. ∂tu

δ + 2g[uδ] = 0) reduce the Lipschitz constant, and thus compensate for the explosion in
the hyperbolic parts. This is what the following lemma states.
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Lemma 4.1 Let λ ∈]0, 1[ and L > 0 and M > 0 satisfy (1.7). Let U0 : R → R be a smooth function which
satisfies (1.3), and assume that ||U0||L∞(R) ≤ M and ||U ′

0||L∞(R) ≤ L. There exists δ0 = δ0(λ, M, L) > 0
such that, for all δ ≤ δ0, if U : [0, 2δ] × R → R is constructed the following way:

• on [0, δ] × R, U is the entropy solution to ∂tU + 2∂x(U2

2 ) = 0 with initial condition U0,

• on [δ, 2δ] × R, U is the solution to ∂tU + 2g[U ] = 0 with initial condition U(δ, ·),

then U satisfies

||∂xU(t, ·)||L∞(R) ≤
L

1 − 2Lδ
for all t ∈ [0, 2δ], (4.1)

and
||∂xU(2δ, ·)||L∞(R) ≤ L. (4.2)

Proof of Lemma 4.1

On the time interval where U solves the Burgers equation, by the method of characteristics, one has
U(t, x0 + 2tU0(x0)) = U0(x0) as long as t < 1/2||U ′

0||L∞(R), and this relation completely defines U on
[0, 1/2||U ′

0||L∞(R)[×R (all the points in this set can be written as (t, x0 + 2tU0(x0)) with x0 ∈ R). In
particular, for all t < 1/2L and all x0 ∈ R, we have

|∂xU(t, x0 + 2tU0(x0))| =

∣

∣

∣

∣

U ′
0(x0)

1 + 2tU ′
0(x0)

∣

∣

∣

∣

≤
L

1 − 2tL
.

Hence, if δ < 1/2L, the function U remains regular on [0, δ] × R and we have ||∂xU(t, ·)||L∞(R) ≤
L

1−2Lδ
for all t ∈ [0, δ], i.e. (4.1) is satisfied for t ∈ [0, δ].
For t ∈]δ, 2δ] × R, we have U(t, ·) = K(2(t − δ), ·) ∗ U(δ, ·) and thus ∂xU(t, ·) = K(2(t − δ), ·) ∗ ∂xU(δ, ·).
Since K(s, ·) has a L1 norm equal to 1 for all s > 0, we deduce that ||∂xU(t, ·)||L∞(R) ≤ ||∂xU(δ, ·)||L∞(R)

(i.e. the fractal equation does not increase the Lipschitz semi-norm), and (4.1) is therefore also satisfied
for t ∈]δ, 2δ].

It remains to prove (4.2). As seen above, the fractal equation does not increase the Lipschitz semi-norm
so that if ||∂xU(t, ·)||L∞(R) ≤ L for some t ∈]δ, 2δ] then (4.2) is obvious. We can therefore assume that

||∂xU(t, ·)||L∞(R) ≥ L for all t ∈]δ, 2δ]. (4.3)

It has been shown in the proof of Lemma 3.1 that both the hyperbolic and the fractal equations preserve
(1.3); hence, for all t ∈ [0, 2δ], U(t, ·) satisfies (1.3). This means in particular that ∂xU(t, ·) is non-
positive on R and has its absolute maximum value at x = 0. Let γ(t) = ||∂xU(t, ·)||L∞(R) = −∂xU(t, 0).
On ]δ, 2δ]×R we have ∂tU = −2g[U ]; since g and ∂x commute, this implies ∂t(∂xU) = −2g[∂xU ], and in
particular

γ′(t) = −2g[−∂xU(t, ·)](0) = 2Gλ

∫

R

−∂xU(t, z) + ∂xU(t, 0)

|z|1+λ
dz for all t ∈]δ, 2δ]. (4.4)

For all z ∈ R, since −∂xU(t, 0) = ||∂xU(t, ·)||L∞(R) we have −∂xU(t, 0) ≥ −∂xU(t, z) and, therefore, for
all R > 0,

γ′(t) ≤ 2Gλ

∫

|z|≥R

−∂xU(t, z) + ∂xU(t, 0)

|z|1+λ
dz. (4.5)

Since U(t, ·) satisfies (1.3) and is bounded by ||U0||L∞(R) ≤ M (because the hyperbolic and the fractal
equations do not increase the L∞ norm), Lemma 5.2 in the appendix shows that |∂xU(t, z)| ≤ L/2 for
all |z| ≥ M

L/2 , which implies in particular, by (4.3),

−∂xU(t, z) = |∂xU(t, z)| ≤
1

2
||∂xU(t, ·)||L∞(R) = −

1

2
∂xU(t, 0) for all t ∈]δ, 2δ] and all |z| ≥ 2M

L .

12



Hence, taking R = 2M
L in (4.5) we find

γ′(t) ≤ ∂xU(t, 0)Gλ

∫

|z|≥2M/L

dz

|z|1+λ
= −γ(t)

2Gλ

λ

(

2M

L

)−λ

.

Defining P = P (λ, M, L) = 2Gλ

λ(2M)λ Lλ, Gronwall’s lemma then gives γ(t) ≤ e−P (t−δ)γ(δ) for all t ∈]δ, 2δ].

With t = 2δ and thanks to (4.1), this leads to

||∂xU(2δ, ·)||L∞(R) ≤
e−Pδ

1 − 2Lδ
L.

The lemma is proved if we can show that, for δ small enough, we have e−Pδ ≤ 1 − 2Lδ. Since e−Pδ =
1 − Pδ + O(δ2), this comes down to demanding that P −O(δ) ≥ 2L for δ small enough and, since (1.7)
states that P > 2L, this concludes the proof.

The proof of Theorem 1.4 is now easy.
Proof of Theorem 1.4

Let L > 0 and M > 0 which satisfy (1.7) and δ0 = δ0(λ, M, L) given by Lemma 4.1. Let u0 satisfy (1.3),
be bounded by M and with derivative bounded by L; for δ ≤ δ0, let uδ be constructed by the splitting
method as in Section 2.2. By the proof of Lemma 3.1, we know that, for all t > 0, uδ(t, ·) satisfies (1.3),
and it is quite obvious that uδ remains bounded by M (because both fractal and hyperbolic equations
do not increase the L∞ norm).
On ]0, δ]× R, since we solve the fractal equation, we see that uδ is smooth and that ∂xuδ stays bounded
by L. From Lemma 4.1 with U0 = uδ(δ, ·), we deduce that

||∂xuδ(t, ·)||L∞(R) ≤
L

1 − 2Lδ
for t ∈ [δ, 3δ], (4.6)

and
||∂xuδ(t, ·)||L∞(R) ≤ L for t = 3δ. (4.7)

This last estimate shows that uδ(3δ, ·), which is smooth since we have solved the fractal equation on
]2δ, 3δ] × R, satisfies the assumptions on U0 in Lemma 4.1; this allows to see that (4.6) is also satisfied
for t ∈ [3δ, 5δ] and that (4.7) is also satisfied for t = 5δ, which allows in return to apply Lemma 4.1
with U0 = uδ(5δ, ·), etc... . By induction, we conclude that (4.6) is satisfied for all t ≥ 0 (it was clearly
satisfied on [0, δ]) and that (4.7) is satisfied for all t = qδ with q odd.
As δ → 0, uδ converges to the entropy solution u to (1.1)-(1.2) in C([0, T ]; L1

loc(R)) for all T > 0; hence
u is (as uδ) bounded by M and, by letting δ → 0 in (4.6) satisfied for all t ≥ 0, we deduce that u is
Lipschitz continuous with respect to the space variable and that ||∂xu(t, ·)||L∞(R) ≤ L for all t ≥ 0. By
Lemma 2.1 applied with A = R, we deduce that g[u(t, ·)] is bounded independently of t. Since u is also a

weak solution to (1.1), ∂tu = −∂x(u2

2 ) − g[u] = −u∂xu − g[u] in the distributional sense on ]0, +∞[×R;
therefore, the time derivative of u is bounded, and u belongs to W 1,∞(]0, +∞[×R).

Remark 4.2 Since Gλ

λ has a positive limit as λ → 0, the preceding proof also works if λ = 0; in this
case, Theorem 1.4 gives back known results on dissipative conservation laws (see e.g. [11]): under a
smallness assumption on the Lipschitz constant of the initial data (and no assumption on its L∞ norm),

the solution to ∂tu + ∂x(u2

2 ) + u = 0 does not develop shocks.
Notice that, as explained in Remark 3.7, if the initial data is “too large” then shocks indeed occur in the

solution to ∂tu + ∂x(u2

2 ) + u = 0.

Remark 4.3 Theorem 1.4 is also valid for λ = 1 ((1.7) is then a condition only on the L∞ norm of the
initial data). In this case, Formula (2.1) for g must be slightly modified: if λ = 1, then

g[ϕ](x) = −G1

∫

|z|<1

ϕ(x + z) − ϕ(x) − ϕ′(x)z

|z|2
dz − G1

∫

|z|≥1

ϕ(x + z) − ϕ(x)

|z|2
dz (4.8)
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and there is a notion of entropy solution to the fractal Burgers equation (see [1]). From the proof of
Lemma 3.1, it is quite obvious that (1.1) preserves (1.3) even if λ = 1; we can therefore apply the
technique in the proof of Lemma 4.1 to estimate γ(t) = −∂xU(t, 0) and, as 0 is an extremum of ∂xU(t, ·),
we have ∂x(∂xU(t, ·))(0) = 0; hence, when using (4.8) in (4.4), the new term involving ϕ′(x) with x = 0
and ϕ = −∂xU(t, ·) disappears and the proof of the estimates on ∂xU follows as in the case λ < 1.

5 Appendix

We first give the proof of Lemma 2.4. Although several results already exist on the kernel K in the
context of the analysis of infinitely divisible laws (see e.g. [9]), the monotony property of K does not
seem straightforwardly stated as such, and we have therefore chosen to include here a self-contained proof.
Proof of Lemma 2.4

For λ = 2 it is well-known that K is a Gaussian function, which implies the result. Assume now that
λ ∈]0, 2[. The non-negativity of the kernel can be proved by approximating K by a sequence of functions
known to be non-negative (see [10] or [7, Lemma 2.1]). To prove that K(t, ·) is non-increasing on R

+, we
slightly modify this sequence of functions so that they are also non-increasing on R

+ (and, in fact, the
proof that follows also shows that K ≥ 0).
Let f(x) = A

(

|x|−1−λ1R\]−1,1[(x) + 1]−1,1[(x)
)

, with A > 0 such that
∫

R
f = 1. Since f is even with

integral equal to 1, we have

F(f)(ξ) = 1 +

∫

R

(cos(2πxξ) − 1)f(x)dx

= 1 + A|ξ|λ
∫

|y|≥|ξ|

cos(2πy) − 1

|y|1+λ
dy + A|ξ|−1

∫

|y|≤|ξ|

(cos(2πy) − 1)dy.

Since cos(2πy) − 1 = O(|y|2) in a neighborhood of 0, the last term of this inequality equals O(|ξ|2).
Moreover, as λ < 2, the dominated convergence theorem gives

∫

|y|≥|ξ|

cos(2πy) − 1

|y|1+λ
dy → I :=

∫

R

cos(2πy) − 1

|y|1+λ
dy < 0 as ξ → 0.

Then F(f)(ξ) = 1 − c|ξ|λ(1 + ω(ξ)) with c = −AI > 0 and limξ→0 ω(ξ) = 0. Define fn(x) = n1/λf ∗
· · · ∗ f(n1/λx), the convolution product being taken n times. By the properties of Fourier transform with
respect to the convolution product, we have, for all ξ ∈ R,

F(fn)(ξ) =
(

F(f)(n−1/λξ)
)n

=
(

1 − cn−1|ξ|λ(1 + ω(n−1/λξ))
)n

→ e−c|ξ|λ as n → +∞.

Since (F(fn))n≥1 is bounded by 1 (the L1 norm of fn for all n ≥ 1), this convergence also holds in S ′(R).
Taking the inverse Fourier transform, we see that fn → K(c, .) in S′(R) as n → +∞.
The function f ∈ L1(R) is even, non-negative on R and non-increasing on R

+. Arguing by induction,
Lemma 5.1 allows to prove that fn also satisfies these properties; it is quite simple to see that the
convergence in S′(R) preserves these properties, which shows in particular that K(c, .) is non-increasing
on R

+. By the homogeneity property of K mentioned in (2.6), the proof of the lemma is complete.

The two following lemmas are simple results, we give their short proofs for the sake of completeness.

Lemma 5.1 Let f, h ∈ L1(R) be even, non-negative on R and non-increasing on R
+. Then f ∗h ∈ L1(R)

also satisfies these properties.

Proof of Lemma 5.1

By definition of the convolution product, it is obvious that f ∗ h is non-negative and even. To show that
f ∗ h is non-increasing on R

+, let us first assume that h ∈ C1
c (R). In this case, we have, since h′ is odd,

(f ∗ h)′(x) =

∫ ∞

0

h′(y)(f(x − y) − f(x + y)) dy. (5.1)
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If x, y ≥ 0, then 0 ≤ |x − y| ≤ x + y and thus f(|x − y|) ≥ f(x + y). Since f is even, we have
f(x− y) = f(|x− y|) ≥ f(x + y) which proves with (5.1) that (f ∗ h)′(x) ≤ 0 for all x ≥ 0, and concludes
the proof if h is regular. In the case where h is not regular, then it suffices to approximate it in L1(R)
by regular functions hn which are even, non-negative on R and non-increasing on R

+.

Lemma 5.2 Let ϕ : R → R be bounded by M > 0 and satisfy (1.3). Let A > 0. If |x| ≥ M
A then

|ϕ′(x)| ≤ A.

Proof of Lemma 5.2

Since ϕ′ is even, it is enough to prove the result for x ≥ M
A . The slopes inequality applied to the convex

function ϕ on R
+ with the points (0, ϕ(0)) = (0, 0) and (x, ϕ(x)) gives ϕ′(x) ≥ ϕ(x)

x ≥ −M
x . Since ϕ′ ≤ 0

on R
+
∗ , we deduce that |ϕ′(x)| = −ϕ′(x) ≤ M

x ≤ A and the proof is concluded.
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