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1 Introduction

In recent years there has been an interest in developing viscosity solutions theory for parabolic
integro-PDEs. Particularly equations that occur in the theory of optimal control of jump-
diffusion (Lévy) processes [7, 14, 16, 2, 11, 13]. The use of viscosity solutions is appropriately
chosen because most of these equations are degenerate or fully nonlinear. In general, existence
is proved by Perron’s method with the help of a comparison principle. But in few other many
applications, like signal [4], there is no such a comparison principle. The equations are then
said to be nonmonotone. The notion of viscosity solution can still be used but existence must be
proved by classical fixed point methods. Our purpose is to find a general framework to treat these
difficulties that are degeneracy, nonlinearity, presence of nonlocal terms and nonmonotonicity.
For other recent works on nonmonotone equations, we refer the reader to [1, 3, 12] which study
equations that are involved in the theory of dislocation.

Let us present our mathematical framework. We are interested in existence, uniqueness and
regularity of viscosity solution of fully nonlinear degenerate parabolic integro-PDEs of the form

∂tu+ F (t, x, u,Du,D2u, g[u]) = 0 in QT , (1.1)

u(0, .) = u0 on RN , (1.2)

where QT :=]0, T [×RN , F : [0, T ] × RN × R × RN × SN × RM → R is a given functional
nonincreasing with respect to (w.r.t. for short) the D2u-variable and g[u] is a nonlocal term.
Here SN denotes the space of symmetric N × N real valued matrices. We investigate the case
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where no monotonicity assumption w.r.t. the nonlocality is assumed (see Remark 3.1 for more
details); this led us to consider a class of nonlocal term of order 0 satisfying a Lipschitz condition
of the form

sup
[0,t]×RN

|g[u] − g[v]|(τ, x) ≤ C sup
[0,t]×RN

|u− v|(τ, x), (1.3)

where C does not depend on t, u and v. Examples of nonlocal terms satisfying (1.3) are nonlinear
integral operators of the form

∫

RN

M(t, x, z, u(t, x), u(t, x+ z))dµt,x(z), (1.4)

where supQT
|µt,x|(RN ) < +∞ and M is Lipschitz w.r.t. its two last arguments. Further

examples are given by integral operators in both time and space variables such as

g[u](t) = S(t)v0 +

∫ t

0
S(t− τ)f(u(τ))dτ, (1.5)

where S(.) is a semigroup generated by a linear operator A, f : R → R is Lipschitz and v0 is
a given initial condition. Then, the Cauchy problem (1.1)-(1.2) is equivalent to the following
system:

∂tu+ F (t, x, u,Du,D2u, v) = 0 in QT ,

u(0, .) = u0 on RN ,

d

dt
v +Av = f(u) in ]0, T [,

v(0) = v0.

When A is the Laplacian operator, for example, the associated semigroup S(.) is defined by

S(t)v := G(t) ∗ v,

where ∗ designs the convolution product in RN and G(t)(x) is the Green Kernel.
As far as the Hamiltonian F is concerned, we first study the case where it is Lipschitz w.r.t.

the g[u]-variable and next the case where there is a coupling between g[u] and the derivatives
of u. The last one case can be seen as a generalization of [4] which treats the nonmonotone
equation

∂tu− f(DG ∗ u(t, .))tr
(
A(Du)D2u

)
= 0 in QT ,

for f > 0 Lipschitz-continuous, G which is a Gaussian function and A ≥ 0 bounded continuous
on RN − {0}. In fact, our technics combined with these ones used to treat the mean curvature
flow by the level set method could allow to treat discontinuous Hamiltonians at Du = 0 and
such that

F ∗(t, x, r, 0, 0, λ) = F∗(t, x, r, 0, 0, λ).

But, for the sake of clarity we have chosen to present only the continuous case. An illustrating
example of what kind of coupling can be considered is the following quasilinear Hamiltonian

F (t, x, r, p,X, λ) = H(t, x, r, p, λ) − tr
(
tσ(t, x, p, λ) σ(t, x, p, λ)X

)
, (1.6)

where H and σ are Lipschitz w.r.t. (x, λ) respectively locally and globally in p.

2



Another interest of this paper is a so-called continuous dependence estimate (see Theorem
4.1) for local parabolic equations which allow to obtain lots of needed a priori estimates. This can
be seen as a generalization of results of Souganidis [15, Proposition 1.4] for first-order equations
and of Jakobsen and Karlsen [10, Theorem 3.1] for second-order equations. Let us recall that
some of their applications are a priori Lipschitz and Hölder estimates. In our setting, their
results are not sufficient, in particular they do not permit to prove that the function is uniformly
continuous. This improved version seems to us of independent interest.

The rest of this paper is organized as follows: in Section 2, we introduce the definitions and
notations that will be used throughout this paper. In Section 3, we state our results and prove
them in Section 4. The last one section also contains our continuous dependance estimate for
local equations.

2 Preliminaries

Throughout the paper, we will use the notations that follow. For a, b ∈ R, we let a∨ b denote
the real max{a, b}. We let a+ denote the real a ∨ 0. Let k be an integer. For x ∈ Rk, we let |x|
denote the Euclidean norm of x. We let QT denote the cylinder ]0, T [×RN . We let MN denote
the space of N ×N real valued matrices and SN the space of such matrices which are symmetric.
For every X,Y ∈ SN , we say that X ≤ Y when 〈Xξ, ξ〉 ≤ 〈Y ξ, ξ〉 for all ξ ∈ RN . The notation
〈., .〉 is the Euclidean scalar product of RN . Let E be a metric space. The closed ball of E
centered at x and of radius R is denoted by BE(x,R).

Let us now introduce some functional vector spaces. Consider µ ∈]0, 1] and u : QT → Rk.
Define

||u||∞ := sup
t∈[0,T ],x∈RN

|u(t, x)|,

[u]µ := sup
t∈[0,T ],x,y∈RN ,x 6=y

|u(t, x) − u(t, y)|
|x− y|µ ,

||u||µ := ||u||∞ + [u]µ .

We let Cb(QT ,R
k) and C

0,µ
b (QT ,R

k) denote the spaces of continuous functions u : QT → Rk

such that ||u||∞ < +∞ and ||u||µ < +∞, respectively. We let BUC(QT , R
k) denote the space

of bounded uniformly continuous functions u. When k = 1, we let Cb(QT ), C0,µ
b (QT ) and

BUC(QT ) denote the preceding spaces. Consider a function h : O ⊆ Rk → R and a nonnegative
real α. We let ωα(h) denote the modulus of continuity of size α of h. That is to say,

ωα(h) = sup
x,y∈O, |x−y|≤α

|h(x) − h(y)|.

We call modulus a function m : R+ → R+ such that m is continuous, nondecreasing, m(0) = 0
and such that m(α1 + α2) ≤ m(α1) +m(α2) for all nonnegative reals α1 and α2.

Following [9], we now recall the notion of viscosity solution. This last one notion can be
defined for discontinuous locally bounded functions and Hamiltonians. Here, we only need the
continuous case. Consider the following general equation:

∂tu+G(t, x, u,Du,D2u) = 0 in QT , (2.1)
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where the Hamiltonian G : [0, T ] × RN × R × RN × SN → R is continuous and nonincreasing
w.r.t. its last argument. For each bounded continuous function u : QT → R and each subset O
of QT , we let P2,+(−)

O u(t, x) denote the second-order parabolic superjet (subjet) of u at (t, x) ∈ O
relatively to O. Let us recall that (a, p,X) ∈ P2,+(−)

O u(t, x) if and only if (iff for short)

u(s, y) ≤ (≥)u(t, x) + as+ 〈p, y − x〉 + 〈1
2
X(y − x), y − x〉 + o(|s− t| + |y − x|2)

as O ∋ (s, y) → (t, x). We let simply P2,+(−)u(t, x) denote the semijet P2,+(−)
QT

u(t, x).

Definition 2.1. Let u belong to C(QT ).

1. The function u is a viscosity subsolution of (2.1) iff for every (t, x) ∈ QT and (a, p,X) ∈
P2,+u(t, x),

a+G(t, x, u, p,X) ≤ 0.

2. The function is a u viscosity supersolution of (2.1) iff for every (t, x) ∈ QT and (a, p,X) ∈
P2,−u(t, x),

a+G(t, x, u, p,X) ≥ 0.

3. The function is a u viscosity solution of (2.1) iff it is both a viscosity sub- and supersolution
of (2.1).

Remark 2.1. Define the closure P2,+(−)
O u(t, x) as the set of (a, p,X) ∈ R × RN × SN such that,

there are (tn, xn) ∈ O and (an, pn, Xn) ∈ P2,+(−)
O u(tn, xn) such that u(tn, xn) → u(t, x) and

(tn, xn, an, pn, Xn) → (t, x, a, p,X). In fact, penalization technics used in [9] allow to prove that
the definitions above are still true by replacing QT by O :=]0, T ] × RN and P2,+(−)u(t, x) by

P2,+(−)
O u(t, x).

In a similar way, we can define the notion of continuous viscosity semisolution of the following
differential equation:

ḟ +G(f) = 0 in ]0, T [,

where f : [0, T ] → R is the unknown function, and G ∈ C([0, T ]) is given. Then, the notion of
parabolic semijet is replaced by the notion of first-order Fréchet semidifferential: for t ∈]0, T [
recall that a ∈ ∂1,+(−)f(t) iff

f(s) ≤ (≥)f(t) + as+ o(|s− t|),

as s→ t.
Let us now define the notion of viscosity solution of (1.1) which is used in our paper. Consider

a continuous Hamiltonian F and a nonlocal term g[.] : Cb(QT ) → C(QT ,R
M ). Let F (u) :

[0, T ] × RN × R × RN × SN → R denote the functional defined by

F (u)(t, x, r, p,X) = F (t, x, r, p,X, g[u]).

Note that F (u) is continuous when u is bounded continuous. Consider the following equation in
w:

∂tw + F (u)(t, x, w,Dw,D2w) = 0 in QT . (2.2)

Definition 2.2. A function u ∈ Cb(QT ) is a viscosity solution of (1.1) iff it is a viscosity solution
of (2.2).
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3 Main results

Let us state our main results. We first consider nonlocal term uncoupled with the derivatives
of u and next we study the case where there is a coupling. All the constants appearing in this
section are noted CF (resp. Cg) when depending on the Hamiltonian F (resp. the nonlocal term
g[.]) and CF

R when also depending on a real number R.

3.1 Uncoupled nonlocal term

Let us consider a class of nonlocal terms g[.] that satisfy the following conditions:

(H1) The operator g[.] is well-defined from Cb(QT ) into Cb(QT ,R
M ) (in particular, ||g[0]||∞ ≤

Cg < +∞).

(H2) If u is uniformly continuous w.r.t. x independently of t, then so is g[u].

(H3) There exists a constant Cg ≥ 0 such that for every u, v ∈ Cb(QT ) and t ∈ [0, T ],

sup
τ∈[0,t]

||g[u](τ, .) − g[v](τ, .)||∞ ≤ Cg sup
τ∈[0,t]

||u(τ, .) − v(τ, .)||∞.

As far as F is concerned, let us assume the following conditions:

(H4) The Hamiltonian F is continuous and for each R ≥ 0, F is uniformly continuous w.r.t. the
(Du,D2u)-variable, independently of the others, on [0, T ] × RN × [−R,R] × BRN (0, R) ×
BSN (0, R) ×BRM (0, R).

(H5) The Hamiltonian F is nondecreasing w.r.t. the u-variable.

There is a modulus mR(.), depending on a real number R, such that for every ε > 0, t ∈ [0, T ],
x, y ∈ RN , r ∈ [−R,R], X,Y ∈ SN and λ ∈ BRM (0, R),

(H6) if

−3

ε
≤
(
X 0
0 −Y

)
≤ 3

ε

(
I −I
−I I

)
(3.1)

then

F

(
t, y, r,

x− y

ε
, Y, λ

)
− F

(
t, x, r,

x− y

ε
,X, λ

)
≤ mR

(
|x− y| + |x− y|2

ε

)
.

(H7) The Hamiltonian F is Lipschitz w.r.t. the g[u]-variable, independently of the others, with
a Lipschitz constant that is denoted by CF .

(H8) supQT
|F (t, x, 0, 0, 0, 0)| ≤ CF < +∞.

Remark 3.1. Assumptions (H4)-(H6) and (H8) are classical when studying local equations (see
[9]). Monotonicity assumptions w.r.t. the nonlocality (see [14, 16, 2, 11] and remarks in Example
3.1 below) are replaced here by (H3) and (H7). Assumption (H2) is necessary to solve (1.1)-(1.2)
after having frozen the nonlocal part. If we strengthen (H4), then we can actually omit (H2) to
solve (1.1)-(1.2) in the space of bounded continuous functions (to see this, one could combine
technics used in [2] with our technics).
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Then we have the following result.

Theorem 3.1 (Existence, uniqueness and BUC-regularity). Assume (H1)-(H8). Let u0 belong
to BUC(RN ). Then there exists a unique u ∈ BUC(QT ) such that u is a viscosity solution of
(1.1)-(1.2). Moreover, for each t ∈ [0, T ]

||u(t, .)||∞ ≤ (||u0||∞ + Ct) eγ0t, (3.2)

where C = CF + CFCg and γ0 = CFCg.

Remark 3.2. This theorem is also a regularity result, since we get the uniform continuity of the
solution. Moreover, the assumptions (in particular (H2) and (H6)) seem to us quite general to
get this.

Example 3.1. Suitable assumptions under which nonlocal terms of the general form (1.4) or (1.5)
satisfy (H1)-(H3) can easily be determinate by the readers. Some simple illustrating examples
of such nonlocal terms are:

• convolution operators K ∗ u(t, .), where K ∈ L1(RN );

• Lévy operators of the form −
∫

RN u(t, x + z) − u(t, x)dµ(z), where µ is a bounded Borel
measure (under suitable assumptions to ensure (H2), µ can also depend on (t, x));

• Volterra operators of the form −
∫ t

0 B(t− s)u(s, x)ds, where B ∈ L1(0, T ).

Note that if the measure and the kernels above are nonnegative and if F is nondecreasing w.r.t.
the g[u]-variable, then (1.1) is monotone (see [16, 2, 11]); but, in the general case (1.1) can
become nonmonotone.

We are now interested in Hölder regularity of u w.r.t. x. For µ ∈]0, 1], let us consider the
following condition:

(H2)’ There exists a constant Cg ≥ 0 such that for every u ∈ C
0,µ
b (QT ) and t ∈ [0, T ],

sup
τ∈[0,t]

[g[u](τ, .)]µ ≤ Cg(1 + sup
τ∈[0,t]

||u(τ, .)||µ).

We let also

(H6)’ denote Assumption (H6) for mR

(
|x− y| + |x−y|2

ε

)
= CF

R

(
|x− y|µ + |x−y|2

ε

)
,

where CF
R is a nonnegative constant that depends on R. Let us state our regularity result.

Theorem 3.2 (Hölder regularity). Assume that (H1), (H2)’, (H3)-(H5), (H6)’, (H7) and (H8)
hold true for any µ ∈]0, 1]. Let u be the unique viscosity solution of (1.1)-(1.2). Define R = ||u||∞
and Rg = Cg(1 +R). Then for each t ∈ [0, T ],

[u(t, .)]µ ≤
(
4 [u0]µ e

µ

2
γt + CR

)
eγ1(t)t, (3.3)

where γ = 2(CF
R∨Rg + 1), γ1(t) =

(
4CFCge

µ

2
γt
) 2

2−µ
and CR =

(
CFCg

)−1 (
CF

R∨Rg + CFRg
)
.
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3.2 Nonlocal term coupled with the derivatives

Now, we strengthen (H2)’ by:

(H2)” There exists a constant Cg ≥ 0 such that for every u ∈ Cb(QT ) and t ∈ [0, T ],

sup
τ∈[0,t]

[g[u](τ, .)]1 ≤ Cg(1 + sup
τ∈[0,t]

||u(τ, .)||∞).

Assumptions (H6)’ and (H7) on F are relaxed by:

(H9) There exists a constant CF ≥ 0 such that for each R ≥ 0 there exists a constant CF
R ≥ 0

such that for every ε > 0, t ∈ [0, T ], x, y ∈ RN , |r| ≤ R, X,Y ∈ SN and |λ|, |µ| ≤ R, if
(3.1) holds true then

F

(
t, y, r,

x− y

ε
, Y, λ

)
− F

(
t, x, r,

x− y

ε
,X, µ

)
≤

CF
R

(
|x− y| + |x− y|2

ε

)
+ CF

(
|λ− µ| + |λ− µ| |x− y|

ε
+

|λ− µ|2
ε

)
.

Remark 3.3. Let us comment assumption (H9). Under (H6)’ (with µ = 1) and (H7), we have

F

(
t, y, r,

x− y

ε
, Y, λ

)
− F

(
t, x, r,

x− y

ε
,X, µ

)
≤ CF

R

(
|x− y| + |x− y|2

ε

)
+ CF |λ− µ|.

The role of the new term CF |λ − µ| |x−y|
ε

+ CF |λ−µ|2

ε
that appears in (H9) can be illustrate by

the following simple example of Hamiltonian:

F (t, x, r, p,X, λ) = λ|p| − tr (A(λ)X) ,

where A = tσσ and σ is Lipschitz.

Let us state our last result.

Theorem 3.3 (Existence, uniqueness and Lipschitz regularity). Let us assume (H1), (H2)”,
(H3)-(H5), (H8) and (H9). Then for each u0 ∈ W 1,∞(RN ) there exists a unique u ∈ Cb(QT )
such that u is a viscosity solution of (1.1) and (1.2). Moreover, defining R = ||u||∞ and Rg =
Cg(1 +R), Estimate (3.2) still holds true and for each t ∈ [0, T ]

[u(t, .)]1 ≤ (2[u0]1 + CRt) e
γ

2
t, (3.4)

where γ = 2
(
CF

R∨Rg + CFCg(1 + Cg +R+ CgR2)
)

+ 1 and CR =
(
CF

R∨Rg + CFRg
)
.

Example 3.2. Simple assumptions under which quasilinear Hamiltonians of the form (1.6)
satisfy (H9) are the following: there are nonnegative constants Ci (i = 1, 2) such that for each
R ≥ 0 there exists CR ≥ 0 such that:

1. For every t ∈ [0, T ], x ∈ RN , r ∈ R, p ∈ RN , λ ∈ RM ,

|∂λH(t, x, r, p, λ)| ≤ C1(1 + |p|) and |∂λσ(t, x, p, λ)| ≤ C2.

2. If |r|, |λ| ≤ R, then |∂xH(t, x, r, p, λ)| ≤ CR(1 + |p|) and |∂xσ(t, x, p, λ)| ≤ CR.
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4 Proofs of the results

In this section, we prove the preceding results. This section is organized as follows: in
Subsection 4.1, we state a technical result (Theorem 4.1). This result is proved in Subsection
4.4. Subsection 4.2 is devoted to the proofs of Theorems 3.1 and 3.2. Theorem 3.3 is proved in
Subsection 4.3.

4.1 Continuous dependence estimate for local parabolic equations

To state our technical result, we have to introduce some notations. Let us consider equations
of the form

∂tui +Gi(t, x, ui, Dui, D
2ui) = 0 in QT , (4.1)

where Gi : [0, T ]×RN ×R×RN ×SN → R is a given functional (i = 1, 2). We make the following
assumptions on Gi:

The Hamiltonian Gi is continuous and for each R ≥ 0, Gi is uniformly
continuous w.r.t. the (Dui, D

2ui)-variables, independently of the others, on

[0, T ] × RN × [−R,R] ×BRN (0, R) ×BSN (0, R).
(4.2)

There exists γ ≥ 0 such that for every t ∈ [0, T ], x ∈ RN , r, s ∈ R, p ∈ RN and X ∈ SN , if r ≥ s

then
Gi(t, x, r, p,X) ≥ Gi(t, x, s, p,X) + γ(r − s). (4.3)

For each R ≥ 0, there exists a modulus mR(.) such that for every ε > 0, t ∈ [0, T ], x, y ∈ RN ,
r ∈ [−R,R] and X,Y ∈ SN , if (3.1) holds true then

Gi

(
t, y, r,

x− y

ε
, Y

)
−Gi

(
t, x, r,

x− y

ε
,X

)
≤ mR

(
|x− y| + |x− y|2

ε

)
. (4.4)

Finally, we assume that for each R ≥ 0,

sup
(t,x,r)∈QT×[−R,R]

(G2(t, x, r, 0, 0) −G1(t, x, r, 0, 0)) < +∞. (4.5)

Let ui be a bounded continuous sub- and supersolution of (4.1) for respectively i = 1 and
i = 2, γ be a nonnegative constant (that will be appropriately chosen when using Theorem 4.1
in Subsection 4.2 and 4.3) and ε be a positive real. For t ∈ [0, T ], define

mε(t) := sup
(x,y)∈RN×RN

(
u1(t, x) − u2(t, y) − eγt |x− y|2

2ε

)+

,

σε(t) := inf
n∈N∗

sup
dn

ε (t)

(
G2

(
t, y, r, eγtp, eγtY

)
−G1

(
t, x, r, eγtp, eγtX

)
− γeγt |x− y|2

2ε

)+

,

where we let dn
ε (t) denote the set of (x, y, r, p,X, Y ) such that,





|r| ≤ ||u1(t, .)||∞ ∨ ||u2(t, .)||∞,
p = x−y

ε
,

Condition (3.1) holds true,
|x−y|2

4ε
≤ m2ε(t) −mε(t) + 1

n
.
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We also define

Σε(t) := sup
Dε(t)

(
G2

(
τ, y, r, eγτp, eγtY

)
−G1

(
τ, x, r, eγtp, eγτX

)
− γeγτ |x− y|2

2ε

)+

,

where we let Dε(t) denote the set of (τ, x, y, r, p,X, Y ) such that





τ ∈ [0, t],
|r| ≤ ||u1(τ, .)||∞ ∨ ||u2(τ, .)||∞,
p = x−y

ε
,

Condition (3.1) holds true.

Then, we have the following result.

Theorem 4.1. Assume that Gi satisfies (4.2)-(4.5) (i = 1, 2). Assume that ui ∈ Cb(QT ) is a
sub- and a supersolution of (4.1) for i = 1 and i = 2, respectively. Then:

i) For each ε > 0 the function σε(.) is measurable and for each t ∈ [0, T ],

mε(t) ≤ mε(0) +

∫ t

0
σε(τ)dτ.

ii) If moreover γ > 0, then for each t ∈ [0, T ], mε(t) ≤ mε(0) + 1
γ
Σε(t).

The proof of this result is given in Subsection 4.4.

4.2 Case of an uncoupled nonlocal term

Proof of Theorem 3.1. We use a contracting fixed point theorem. We leave it to the reader to
verify that for u ∈ BUC(QT ) the Hamiltonian F (u) satisfies (4.2)-(4.4). Under these assump-
tions, it is well-known that there is a comparison principle between semicontinuous semisolutions
of (2.2). Moreover, supQT

|F (u)(t, x, 0, 0, 0)| < +∞ and for u0 ∈ BUC(RN ) there exists a unique

bounded continuous solution of (2.2) such that (1.2) is satisfied; we let Θu denote this solution.
For a proof of these results we refer the reader to [9].

Let us first prove that Θ maps BUC(QT ) into itself. We let mε(.), σε(.) and dn
ε (.) denote the

functions introduced in Subsection 4.1 for ui = u, Gi = F (u) (i = 1, 2) and γ = 0. Let m
(u)
R (.)

denote the modulus deriving from (4.4). For ε > 0, t ∈ [0, T ] and (x, y, r, p,X, Y ) ∈ dn
ε (t),

F (u) (t, y, r, p, Y ) − F (u) (t, x, r, p,X) ≤ m
(u)
R

(
|x− y| + |x− y|2

ε

)
,

where R = ||Θu||∞. By the definition of dn
ε (t), we see that |x−y|2

4ε
≤ m2ε(t) −mε(t) + 1

n
. Thus

|x− y| + |x− y|2
ε

≤ 2
√
ε

√
m2ε(t) −mε(t) +

1

n
+ 4

(
m2ε(t) −mε(t) +

1

n

)
.

Let αn
ε (t) denote the right hand side of this inequality and define αε(t) := infn∈N∗ αn

ε (t). We get

F (u) (t, y, r, p, Y ) − F (u) (t, x, r, p,X) ≤ m
(u)
R (αn

ε (t)) .

9



Taking the supremum w.r.t. (x, y, r, p,X, Y ) ∈ dn
ε (t), we see that for all ε > 0 and all t ∈ [0, T ],

σε(t) ≤ inf
n∈N∗

m
(u)
R (αn

ε (t)) ≤ m
(u)
R (αε(t)) .

By the item i) of Theorem 4.1, we find that for all ε > 0 and all t ∈ [0, T ],

mε(t) ≤ mε(0) +

∫ T

0
m

(u)
R (αε(τ)) dτ. (4.6)

We let Iε denote the integral term of this inequality. Let us recall that for each τ ∈ [0, T ],
mε(τ) is nonnegative and nondecreasing w.r.t. ε. The limit lim

ε
>
→0

mε(τ) then exists and
lim

ε
>
→0

(m2ε(τ) −mε(τ)) = 0. Moreover, we know that mε(τ) ≤ 2||Θu||∞ and we infer that

the family of functions
(
m

(u)
R (αε(.))

)

ε>0
is uniformly bounded and converges to 0 pointwise as

ε
>→ 0. By Lebesgue’s convergence Theorem, we deduce that lim

ε
>
→0

Iε = 0. Since (4.6) implies
that

|Θu(t, x) − Θu(t, y)| ≤ mε(0) + Iε +
|x− y|2

2ε
,

for all t ∈ [0, T ], all x, y ∈ RN and all ε > 0, we have proved that Θu is uniformly continuous
w.r.t. x independently of t. The uniform continuity in both time and space variable is now a
consequence of the following result.

Proposition 4.1. For each ν > 0, there exists Cν ≥ 0 that only depends on the Hamiltonian F ,
||u||∞, ||Θu||∞ and the modulus of continuity w.r.t. the x-variable of Θu and that is such that,
for each α ≥ 0,

sup
x∈RN

ωα(Θu(., x)) ≤ inf
ν>0

{ν + Cνα}. (4.7)

The proof of Proposition 4.1 is well-known for local equations (see [6, Lemma 9.1]) and can easily
be adapted to nonlocal equations; for the reader’s convenience, a sketch of the proof of this result
is given in Appendix A. The proof of the fact that Θ maps BUC(QT ) into itself is complete.

Define now the space
E := {u ∈ BUC(QT ) : u(0, .) = u0}

that we endow with the distance dE(u, v) = ||(u1 − u2)γ ||∞, where γ := 2CFCg and

wγ(t, x) := e−γtw(t, x). (4.8)

We know that Θ(E) ⊆ E. Let us prove that Θ : E → E is a contraction. Let ui belong
to E (i = 1, 2). Define v := Θu2 + eγt

2 dE(u1, u2). Let (a, p,X) belong to P2,−v(t, x). Using
successively (H5), (H7) and (H3), we show that

a+ F (u1)(t, x, v, p,X) ≥ a+ F (t, x,Θu2, p,X, g[u1]),

≥ a+ F (t, x,Θu2, p,X, g[u2]) − CF |g[u1](t, x) − g[u2](t, x)|,
≥ a+ F (t, x,Θu2, p,X, g[u2]) − CFCg sup

τ∈[0,t]
||u1(τ, .) − u2(τ, .)||∞,

≥ a+ F (u2)(t, x,Θu2, p,X, ) − CFCgeγtdE(u1, u2).

Since
(
a− CFCgeγtdE(u1, u2), p,X

)
∈ P2,−Θu2(t, x), the viscosity inequalities applied to Θu2

(supersolution of (2.2) with u = u2) imply that v is a supersolution of (2.2) with u = u1. By
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the comparison principle, we infer that Θu1 ≤ v and (Θu1 − Θu2)γ ≤ 1
2dE(u1, u2). We can

argue similarly to get the other inequality and we conclude that Θ is a contraction. Since the
metric space (E, dE) is complete, Banach fixed point Theorem implies that the Cauchy problem
(1.1)-(1.2) admits a unique viscosity solution in BUC(QT ).

What is left to prove is Estimate (3.2). It will be a consequence of the following result.

Proposition 4.2. If u satisfies (3.2), then Θu also satisfies (3.2).

Proof. Let t ∈ [0, T [ and h > 0 be such that t + h ≤ T . A simple computation shows that the
function

s→ v(s) := sup
τ∈[0,t]

||Θu(τ, .)||∞ + (s− t) sup
(τ,x)∈Qt+h

|F (u)(τ, x, 0, 0, 0)|

is a supersolution of (2.2) in the domain ]t, t + h[×RN . Since Θu(t, .) ≤ v(t), the comparison
principle implies that

sup
Qt+h

Θu ≤ sup
τ∈[0,t]

||Θu(τ, .)||∞ + h sup
(τ,x)∈Qt+h

|F (τ, x, 0, 0, 0, g[u])|.

Using successively (H7), (H3) and (H1) and (H8), we deduce that for all (τ, x) ∈ Qt+h,

|F (τ, x, 0, 0, 0, g[u])| ≤ |F (τ, x, 0, 0, 0, 0)| + CF |g[u](τ, x)|,

≤ |F (τ, x, 0, 0, 0, 0)| + CF

(
||g[0]||∞ + Cg sup

τ ′∈[0,τ ]
||u(τ ′, .)||∞

)
,

≤ CF + CFCg(1 + sup
τ ′∈[0,t+h]

||u(τ ′, .)||∞),

= C + γ0 sup
τ ′∈[0,t+h]

||u(τ ′, .)||∞,

where C and γ0 are defined as in (3.2). We get

sup
Qt+h

Θu ≤ sup
τ∈[0,t]

||Θu(τ, .)||∞ + h

(
C + γ0 sup

τ∈[0,t+h]
||u(τ, .)||∞

)
.

We can argue similarly to get the other inequality and we deduce that for all 0 ≤ t ≤ t+ h ≤ T ,

sup
τ∈[0,t+h]

||Θu(τ, .)||∞ ≤ sup
τ∈[0,t]

||Θu(τ, .)||∞ + h

(
C + γ0 sup

τ∈[0,t+h]
||u(τ, .)||∞

)
.

Since Θu is uniformly continuous, the function

t ∈ [0, T ] → f(t) := sup
τ∈[0,t]

||Θu(τ, .)||∞

is continuous. Lemma 4.1 then implies that if u satisfies (3.2), then f is a continuous viscosity
subsolution of the following equation:

ḟ = C + γ0g in ]0, T [,

where g(t) is equal to the right hand side of (3.2). The comparison principle then completes the
proof of Proposition 4.2 �

11



Let us return to the proof of (3.2). Since {u ∈ E : (3.2) holds true} is a nonempty closed
subspace of E which is stable by Θ, we see that the unique fixed point of Θ belongs to this
subspace. This completes the proof of (3.2) and a fortiori the proof of Theorem 3.1. �

Proof of Theorem 3.2. Consider the space

Eµ := {u ∈ E : (3.2) and (3.3) hold true} ,

where R is any L∞ bound on Eµ. Let us prove that Θ(Eµ) ⊆ Eµ. Proposition 4.2 implies that
for all u ∈ Eµ, Θu satisfies (3.2) and ||Θu||∞ ≤ R. To prove the Hölder continuity of Θu, we
have to introduce some notations. For γ > 0, define

Fγ(t, x, r, p,X, λ) := e−γtF (t, x, eγtr, eγtp, eγtX,λ),

F (u)
γ (t, x, r, p,X) := Fγ(t, x, r, p,X, g[u]).

The function (Θu)γ , defined as in (4.8), is a viscosity solution of the following equation in w:

∂tw + γw + F (u)
γ (t, x, w,Dw,D2w) = 0 in QT .

Following [15] and [10], we derive an Hölder estimate on (Θu)γ . Theorem 4.1 item ii), applied to

Gi(t, x, r, p,X) = γr + F (u)
γ (t, x, r, p,X)

and ui = (Θu)γ (i = 1, 2), implies that for all ε > 0, all t ∈ [0, T ] and all x, y ∈ RN ,

(Θu)γ (t, x) − (Θu)γ (t, y) ≤ mε(0) +
1

γ
Σε(t) + eγt |x− y|2

2ε
. (4.9)

We have

mε(0) = sup
(x,y)∈RN×RN

(
u0(x) − u0(y) −

|x− y|2
2ε

)+

,

≤ sup
(x,y)∈RN×RN

(
[u0]µ|x− y|µ − |x− y|2

2ε

)+

,

≤ [u0]
2

2−µ
µ ε

µ

2−µ . (4.10)

Let us derive an upper bound on Σε(t). For (τ, x, y, r, p,X, Y ) ∈ Dε(t), define

I := F (u)
γ

(
τ, y, r, eγτp, eγτY

)
− F (u)

γ

(
τ, x, r, eγτp, eγτX

)
, (4.11)

= Fγ

(
τ, y, r, eγτ x− y

ε
, eγτY, g[u](τ, y)

)
− Fγ

(
τ, x, r, eγτ x− y

ε
, eγτX, g[u](τ, x)

)
.

Condition (H7) implies that

I ≤ Fγ

(
τ, y, r, eγτ x− y

ε
, eγτY, g[u](τ, x)

)
− Fγ

(
τ, x, r, eγτ x− y

ε
, eγτX, g[u](τ, x)

)

+ e−γτCF |g[u](τ, y) − g[u](τ, x)|.
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By (H1) and (H3), we see that |g[u](τ, x)| ≤ Rg where Rg is defined as in Theorem 3.2. By the
definition of Dε(t), we see that eγτ |r| ≤ eγτ ||(Θu)γ(τ, .)||∞ ≤ ||Θu||∞ ≤ R. Moreover, Condition
(3.1) holds true and (H6)’ then implies that

I ≤ e−γτCF
R∨Rg

(
|x− y|µ + e(γ+γ)τ |x− y|2

ε

)
+ e−γτCF |g[u](τ, y) − g[u](τ, x)|,

≤ CF
R∨Rg

(
|x− y|µ + eγτ |x− y|2

ε

)
+ CF e−γτ [g[u](τ, .)]µ|x− y|µ.

Using (H2)’, we get

I ≤ C1|x− y|µ + C2e
γτ |x− y|2

ε
, (4.12)

where C1 = CF
R∨Rg +CF

(
Rg + Cg sups∈[0,t][uγ(s, .)]µ

)
and C2 = CF

R∨Rg . Taking the supremum

w.r.t. (τ, x, y, r, p,X, Y ) ∈ Dε(t), we get

Σε(t) ≤ sup
τ∈[0,t],

x,y∈RN

(
C1|x− y|µ + C2e

γτ |x− y|2
ε

− γeγτ |x− y|2
2ε

)+

.

If we take γ = 2 (C2 + 1), then for all t ∈ [0, T ] and all ε > 0,

Σε(t) ≤ sup
r>0

(
C1r

µ − r2

ε

)+

≤ C
2

2−µ

1 ε
µ

2−µ . (4.13)

Inequalities (4.9) and (4.10) then imply that for all t ∈ [0, T ] and all x, y ∈ RN ,

(Θu)γ (t, x) − (Θu)γ (t, y) ≤ inf
ε>0






[u0]

2
2−µ
µ +

C
2

2−µ

1

γ


 ε

µ

2−µ + eγt |x− y|2
2ε



 ,

≤ 2


[u0]

2
2−µ
µ +

C
2

2−µ

1

γ




2−µ

2

e
µ

2
γt|x− y|µ,

≤ 2

(
[u0]µ +

C1

γ
2−µ

2

)
e

µ

2
γt|x− y|µ;

that is to say,

[
(Θu(t, .))γ

]

µ
≤ 2

(
[u0]µ +

C1

γ
2−µ

2

)
e

µ

2
γt

≤ 2

(
[u0]µ +

(CF
R∨Rg + CFRg)

γ
2−µ

2

)
e

µ

2
γt +

2CFCg

γ
2−µ

2

e
µ

2
γt sup

τ∈[0,t]
[uγ(τ, .)]µ.
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Recalling that γ > 0 is arbitrary, we can take γ = γ1(t) > 0 in this inequality, where γ1(t) is

such that 2CF Cg

γ1(t)
2−µ

2

e
µ

2
γt = 1

2 . We then have proved that for all u ∈ Eµ and all t ∈ [0, T ],

[
(Θu(t, .))γ1(t)

]

µ
≤ 2

(
[u0]µ +

(CF
R∨Rg + CFRg)

γ1(t)
2−µ

2

)
e

µ

2
γt +

1

2
sup

τ∈[0,t]
[uγ1(t)(τ, .)]∞,

≤ 1

2

(
4[u0]µe

µ

2
γt + CR

)
+

1

2
sup

τ∈[0,t]
[uγ1(t)(τ, .)]∞, (4.14)

where R is any L∞ bound on Eµ and γ1(t) and CR are defined as in Theorem 3.2. A simple
computation now completes the proof of the stability of Eµ by Θ. Since Eµ is a nonempty closed
subspace of E, we deduce that the unique fixed point of Θ belongs to Eµ. Thus, the unique
viscosity solution u of (1.1)-(1.2) is Hölder continuous and satisfies (3.3) (note that we have also
proved (4.14) for R = max{||u||∞, ||Θu||∞}). The proof of Theorem 3.2 is now complete.

�

4.3 Case of a coupled nonlocal term

Proof of Theorem 3.3. The proof is based on a contracting fixed point theorem. Note that for
each u ∈ Cb(QT ), the Hamiltonian F (u) satisfies (4.2)-(4.4) and supQT

|F u(t, x, 0, 0, 0)| < +∞;

hence, there still exists a unique bounded continuous viscosity solution Θu of (2.2) which satisfies
(1.2).

First step: a needed gradient estimate. We begin by the proof of the following property: for all
u ∈ Cb(QT ) and all t ∈ [0, T ]

[Θu(t, .)]1 ≤ (2[u0]1 + CRt) e
γ

2
t, (4.15)

where R = max{||u||∞, ||Θu||∞} and γ and CR are defined as in Theorem 3.3. The item i) of
Theorem 4.1 for Gi = F (u) and ui = Θu (i = 1, 2) implies that

Θu(t, x) − Θu(t, y) ≤ mε(0) + t sup
τ∈[0,t]

σε(τ) + eγt |x− y|2
2ε

,

≤ mε(0) + t Σε(t) + eγt |x− y|2
2ε

. (4.16)

Condition (H9) gives the following estimate on I (I being defined as in (4.11) with γ = 0): for
all ε > 0, t ∈ [0, T ] and all (τ, x, y, r, p,X, Y ) ∈ Dε(t),

I ≤ CF
R∨Rg |x− y|

(
1 + eγτ |x− y|

ε

)
+

CF |g[u](τ, y) − g[u](τ, x)|
(

1 + eγτ |x− y|
ε

+ eγτ |g[u](τ, y) − g[u](τ, x)|
ε

)
,

≤ CF
R∨Rg |x− y|

(
1 + eγτ |x− y|

ε

)
+

CF [g[u]]1|x− y|
(

1 + eγτ |x− y|
ε

+ eγτ [g[u]]1|x− y|
ε

)
,

≤
(
CF

R∨Rg + CF [g[u]]1
)
|x− y| +

(
CF

R∨Rg + CF [g[u]]1 + CF [g[u]]21
)
eγτ |x− y|2

ε
,
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where R := max{||u||∞, ||Θu||∞} and Rg is defined as in Theorem 3.3. By (H2)”, we get (4.12)
for µ = 1 and C1 which is now equal to CF

R∨Rg + CFRg. Inequalities (4.16), (4.10), (4.13) and
an optimization w.r.t. ε as in the precedent proof then complete the proof of (4.15) .

Second step: local-in-time solvability of (1.1)-(1.2). For t∗ ∈]0, T ], define the space

Et∗ :=
{
u ∈ Cb(Qt∗) : u satisfies (1.2) and (3.2)

}

endowed with the distance of the uniform convergence. We claim that Proposition 4.2 still
holds true under the assumptions of Theorem 3.3. This implies that Θ maps Et∗ into itself.
Let us prove that Θ : Et∗ → Et∗ is a contraction for t∗ sufficiently small. In what follows,
we let R denote a L∞ bound on Et∗ and we let R′ denote a bound on Θ(Et∗) for the [.]1-
seminorm. Such a number R′ exists, thanks to (4.15). Consider ui ∈ Et∗ (i = 1, 2). Define
N := supt∈[0,t∗]{Θu1(t, .) − Θu2(t, .)} and M := supt∈[0,t∗] ||u1(t, .) − u2(t, .)||∞. The item i) of

Theorem 4.1, applied to the functions Θui, the Hamiltonians F (ui) and γ = 0, implies that for
all ε > 0,

N ≤ mε(0) + t∗ sup
t∈[0,t∗]

σε(t) ≤
[u0]

2
1

2
ε+ t∗ sup

t∈[0,t∗]
σε(t) ≤

R′2

2
ε+ t∗ sup

t∈[0,t∗]
σε(t). (4.17)

Let us derive an upper bound on supt∈[0,t∗] σε(t). Consider t ∈ [0, t∗] and (x, y, r, p,X, Y ) ∈ dn
ε (t).

Condition (H9) implies that

F (u2) (t, y, r, p, Y ) − F (u1) (t, x, r, p,X) ≤

CF
R∨Rg |x− y|

(
1 +

|x− y|
ε

)
+ CF |λ− µ|

(
1 +

|x− y|
ε

+
|λ− µ|
ε

)
, (4.18)

where λ = g[u1](t, y) and µ = g[u2](t, x). By (H2)” and (H3),

|λ− µ| ≤ [g[u1](t, .)]1|x− y| + |g[u1](t, x) − g[u2](t, x)|,
≤ Cg(1 + sup

τ∈[0,t∗]
||u1(τ, .)||∞)|x− y| + CgM,

≤ Rg|x− y| + CgM. (4.19)

Using (4.18) and (4.19),

F (u2) (t, y, r, p, Y ) − F (u1) (t, x, r, p,X)

≤ C1|x− y|
(

1 +
|x− y|
ε

)
+ C2M

(
1 +

|x− y|
ε

+
M

ε

)
, (4.20)

where Ci only depends on CF , Cg, CF
R∨Rg and R (i = 1, 2). Let us prove that

|x− y| ≤ 2
√
ε

√
m2ε(t) −mε(t) +

1

n
≤ 2R′ε+ 2

√
ε
1

n
. (4.21)

If m2ε(t) = 0, then (4.21) is immediate (since x = y). In the other case, that is to say if
m2ε(t) > 0, we can deduce from (4.36) that the approximate supremum m2ε,η(t) (defined in
(4.25)) is positive for all η sufficiently small. If m2ε,η(t) is achieved at some (x, y) (by (4.24),
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such a maximal point always exists), then we see that x−y
2ε

∈ ∂1,+(Θu2(t, .))(y) and it follows

that |x − y| ≤ 2R′ε. By a simple computation, we get m2ε,η(t) −mε,η(t) ≤ |x−y|2

4ε
≤ R′2ε. The

limit as η
>→ 0 in this inequality then gives m2ε(t) −mε(t) ≤ R′2ε. Inequality (4.21) is now a

immediate consequence of the definition of dn
ε (t). By (4.20), it follows that

sup
t∈[0,t∗]

σε(t) ≤ C3ε+ C4M

(
1 +

M

ε

)
,

where Ci only depends on CF , Cg, CF
R∨Rg , R and R′ (i = 3, 4). Inequality (4.17) implies that

for all ε > 0,

N ≤ R′2

2
ε+ t∗

(
C3ε+ C4M

(
1 +

M

ε

))
= t∗C4M +

(
R′2

2
+ t∗C3

)
ε+ t∗C4

M2

ε
.

By taking the infimum w.r.t. ε, there exists a universal constant C ≥ 0 such that

sup
t∈[0,t∗]

{Θu1(t, .) − Θu2(t, .)} ≤
(
t∗C4 + C

(
R′2

2
+ t∗C3

) 1
2 √

t∗
√
C4

)
M.

By exchanging the role of Θu1 and Θu2, we conclude that

sup
t∈[0,t∗]

||Θu1(t, .) − Θu2(t, .)||∞ ≤
(
t∗C4 + C

(
R′2

2
+ t∗C3

) 1
2 √

t∗
√
C4

)
sup

t∈[0,t∗]
||u1(t, .) − u2(t, .)||∞.

Since Ci only depends on CF , Cg, CF
R∨Rg , R and R′ (i = 3, 4), we have proved that Θ is a

contraction for t∗ > 0 sufficiently small. This established the local-in-time solvability of the
Cauchy problem (1.1)-(1.2).

Third step: global solvability. Define now

I :=
{
t ∈]0, T ] : ∃! ut ∈ Cb(Qt) such that ut satisfies (3.2) and ut is solution of (1.1)-(1.2) in Qt

}

and tmax = sup I. By the preceding step, I 6= ∅. Let us prove that tmax = T . Let us assume the
contrary and let us seek a contradiction. By construction, there exists a unique utmax ∈ Cb(Qtmax)
such that utmax satisfies (3.2) and utmax is solution of (1.1)-(1.2) in Qtmax . By (4.15) and
Proposition 4.1, utmax satisfies (3.4) and (4.7). We leave it to the reader to verify that Proposition
4.1 still holds true under the assumptions of Theorem 3.3. The family (utmax(s, .))s∈[0,tmax[ thus

satisfies the Cauchy property for s
<→ tmax and it follows that utmax ∈ C

0,1
b (Qtmax

). Consider the
following Cauchy problem:

∂tu+ F (t, x, u,Du,D2u, g̃[u]) = 0 in ]tmax, T [×RN , (4.22)

u(tmax, .) = utmax(tmax, .) on RN (4.23)
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where g̃[u] := g[w] with w which is defined as follows: w := utmax on Qtmax
and w = u on

[tmax, t] × RN . Arguing as in the second step, we can prove that there exists t ∈]tmax, T ] such
that there exists a unique u ∈ Cb([tmax, t] × RN ) which satisfies (3.2) and which is solution
of (4.22)-(4.23) in ]tmax, t[×RN . For each u ∈ Cb([tmax, t] × RN ) which satisfies (4.23), define
ũ ∈ Cb(Qt) as follows: ũ = utmax on Qtmax

and ũ = u on [tmax, t] × RN . Since

P2,+(−)ũ(tmax, x) ⊆ P2,+(−)

]0,tmax]×RNu
tmax(tmax, x),

the function u is solution of (4.22) in ]tmax, t[×RN iff ũ is solution of (1.1) in Qt. We deduce that
t ∈ I. Since t > tmax, we get a contradiction and necessarily tmax = T . The proof of Theorem
3.3 is now complete (1). �

4.4 Proof of Theorem 4.1

Before proving our continuous dependence estimate, we have to recall two classical lemmas.
The first lemma establishes a relation between the Fréchet subdifferential and the Clarke gen-
eralized derivative of a function of the real variable and the second lemma is a semicontinuity
result on marginal functions.

Here is the first result.

Lemma 4.1. Let f : [0, T ] → R be a locally bounded function. For each s ∈]0, T [,

sup ∂1,+f(s) ≤ lim sup
t→s

h
>
→0

f(t+ h) − f(t)

h
.

Proof. Let ξ belong to ∂1,+f(s). For each τ sufficiently small, f(s + τ) ≤ f(s) + ξτ + o(τ). If
τ < 0, then

ξ ≤ f(s+ τ) − f(s)

τ
+
o(τ)

τ
=
f(t) − f(t+ h)

−h +
o(h)

h
,

where t+ h := s and t := s+ τ . Since t→ s and h
>→ 0 when τ

<→ 0, the proof of Lemma 4.1 is
complete. �

To state the second lemma, we have to introduce some notations and recall some definitions
on multiapplications. Consider E and F two metric spaces, k an integer, and f a given function
from E × F into R. For x ∈ E, define g(x) := supy∈d(x) f(x, y) where we let d(x) denote any
subset of F depending on x.

Definition 4.1. The multiapplication d : E ⇉ F is said to be nonempty valued and compact
valued if for each x ∈ E, d(x) is a nonempty compact subset of F . Moreover, we say that:

1. The multiapplication d is upper semicontinuous on E (u.s.c. for short) iff for all x ∈ E and
all neighborhood U of d(x), there exists η > 0 such that for all x′ ∈ BE(x, η), d(x′) ⊆ U ;

1In fact, the uniqueness of the solution has been proved amongst the bounded continuous functions that satisfy
(3.2). But, we claim that the ideas of the proof of Proposition 4.2 allow to show that a priori solutions satisfies
(3.2); hence, the solution is unique in Cb(QT ).
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2. The multiapplication d is lower semicontinuous on E (l.s.c. for short) iff for all x ∈ E, all
sequence xm → x and all y ∈ d(x), there exists a sequence ym ∈ d(xm) such that ym → y;

3. The multiapplication d is continuous on E iff it is both u.s.c. and l.s.c. on E.

Here is the second lemma.

Lemma 4.2. Assume that f is continuous and that d is nonempty valued, compact valued and
u.s.c. on E. Then, g : E → R is well-defined and upper semicontinuous. If moreover d is l.s.c.
on E, then g is continuous on E.

For a proof of this result we refer the reader to [5, Theorem 7.3.1]. Let us now return to the
proof of our continuous dependence estimate.

Proof of Theorem 4.1. Let us introduce some notations that will be needed. Define

ψε(t, x, y) := u1(t, x) − u2(t, y) − eγt |x− y|2
2ε

,

and

Ψ(t, x, y, r1, r2, p,X, Y ) :=
(
G2

(
t, y, r2, e

γtp, eγtY
)
−G1

(
t, x, r1, e

γtp, eγtX
)
− γeγt |x− y|2

2ε

)+

.

Let us perturb the functions mε(.) and σε(.) the following way: let φ ∈ C2(RN ) be nonnegative
and such that φ(0) = 0, Cφ := ||Dφ||∞ + ||D2φ||∞ < +∞ and

lim
|x|→+∞

φ(x) = +∞; (4.24)

for η ∈]0, 1] and t ∈ [0, T ], define

mε,η(t) := sup
(x,y)∈RN×RN

(ψε(t, x, y) − η(φ(x) + φ(y)))+ , (4.25)

σε,η(t) := sup
dε,η(t)

Ψ(t, x, y, r, r, p,X, Y ),

where we let dε,η(t) denote the set of (x, y, r, p,X, Y ) such that,





φ(x) ≤ 2(||u1||∞∨||u2||∞)
η

,

|r| ≤ maxi=1,2 sup{
φ≤

2(||u1||∞∨||u2||∞)
η

} |ui(t, .)|,
p = x−y

ε
,

Condition (3.1) holds true,
|x−y|2

4ε
≤ m2ε,η(t) −mε,η(t).

Let us give some properties on these functions that we admit until the end of the proof of
Theorem 4.1.

Proposition 4.3. The functions mε,η(.) and σε,η(.) are well-defined from [0, T ] into R+ and are
continuous.
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The strategy of the proof of Theorem 4.1 is the following: first, we will prove that there exists
a constant R ≥ 0 such that for each η ∈]0, 1],

mε,η(.) is a continuous viscosity subsolution of the following differential equation in f :

ḟ = (σε,η − γf)+ + 2ωR(ηCφ) in ]0, T [,
(4.26)

where we let ωR(.) denote the modulus deriving from (4.2); this will give us some approximate
continuous dependence estimates, thanks to the comparison principle, and we will conclude by

taking the limit as η
>→ 0 in these estimates.

First step: proof of (4.26). By Proposition 4.3 and Lemma 4.1, it remains to prove that for each
s ∈]0, T [,

lim sup
t→s

h
>
→0

mε,η(t+ h) −mε,η(t)

h
≤ (σε,η(s) − γmε,η(s))

+ + 2ωR(ηCφ). (4.27)

Let us perturb again the functions mε,η(.) and σε,η(.) the following way: define

E := {(t, h) ∈ R2 : 0 ≤ t ≤ t+ h ≤ T}

and for every (t, h) ∈ E and λ ∈ R+, define

Mε(t, h, λ) := sup
τ∈[t,t+h],

(x,y)∈RN×RN

(ψε(τ, x, y) − η(φ(x) + φ(y)) − λ(τ − t))+ ,

Σ(t, h, λ) := sup
D(t,h,λ)

Ψ(τ, x, y, r1, r2, p,X, Y ),

where we let D(t, h, λ) denote the set of (τ, x, y, r1, r2, p,X, Y ) such that,





τ ∈ [t, t+ h],

φ(x) ≤ 2(||u1||∞∨||u2||∞)
η

,

r1 − r2 ≥Mε(t, h, λ),
|ri| ≤ maxj=1,2 sup

[t,t+h]×
{

φ≤
2(||u1||∞∨||u2||∞)

η

} |uj |, (i = 1, 2)

p = x−y
ε
,

Condition (3.1) holds true,
|x−y|2

4ε
≤M2ε(t, h, λ) −Mε(t, h, λ).

The new domain, on which the supremum Mε(t, h, λ) is computed, is introduced in order to use

Equation (4.1). Note the presence of the penalization terms, η(φ(x) + φ(y)) and |x−y|2

2ε
, which

are classically used when working with viscosity solutions (see [9]). Let us recall that there are
respectively used to treat unbounded domain and to split in two the space variables and use Ishii
Lemma. Here are some properties on the functions above that we admit until the end of the
proof of Theorem 4.1.

Proposition 4.4. The functions Mε(., ., .) and Σ(., ., .) are well-defined from E × R+ into R+

and are continuous.
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Let us take the parameter λ = λ(t, h) large enough in order that

Mε(t, h, λ(t, h)) ≤Mε(t, 0, λ(t, h)) = mε,η(t). (4.28)

Roughly speaking, λ(t, h) will be an upper bound on the velocity of mε,η(.) on [t, t+h] and (4.27)

will be obtained by taking the limit as t
>→ s and h

>→ 0. Take

R = max

{
||u1||∞ ∨ ||u2||∞, 2

√
2 (||u1||∞ ∨ ||u2||∞) eγT

ε
+ Cφ,

6eγT

ε
+ Cφ

}
. (4.29)

For every (t, h) ∈ E, define
λ(t, h) := sup d(t, h), (4.30)

where we let d(t, h) denote the set of λ ∈ R+ such that

λ− Σ(t, h, λ) − 2ωR

(
ηCφ

)
≤ 0. (4.31)

We have the following result:

Proposition 4.5. The function λ(., .) is well-defined from E into R+ and is u.s.c..

Proof. It is easy to see that Σ(t, h, λ) is nonnegative and bounded independently of (t, h, λ) ∈
E × R+. Then, d(., .) is nonempty valued and compact valued thanks to the continuity of
Σ(., ., .). Moreover, ∪(t,h)∈Ed(t, h) is relatively compact and the continuity of Σ(., ., .) also ensures
the upper semicontinuity of d(., .) on E (2). By Lemma 4.2, the proof of Proposition 4.5 is
complete. �

Let us prove that for all (t, h) ∈ E, (4.28) holds true. When Mε(t, h, λ(t, h)) = 0, (4.28) is
immediate (since Mε(t, h, λ) is nonnegative). Assume that Mε(t, h, λ(t, h)) > 0. The continuity
of Mε(., ., .) implies that for all λ > λ(t, h) sufficiently close to λ(t, h), Mε(t, h, λ) > 0. Let λ be
such a number. By (4.24), there exists (τ , x, y) at which Mε(t, h, λ) is achieved. Necessarily,

{
φ(x) ≤ 2(||u1||∞∨||u2||∞)

η
,

eγτ |x−y|2

4ε
≤M2ε(t, h, λ) −Mε(t, h, λ).

(4.32)

Let us prove that τ = t. Assume the contrary and let us seek a contradiction. We let O denote
the cylinder ]t, t+ h] × RN . Ishii Lemma (see [8] or [9, Theorem 8.3]) implies that there are

(a, eγτp+ ηDφ(x), eγτX + ηD2φ(x)) ∈ P2,+
O u1(τ , x),

(b, eγτp− ηDφ(y), eγτY − ηD2φ(y)) ∈ P2,−
O u2(τ , y),

with 



p = x−y
ε
,

a− b = λ+ γeγτ |x−y|2

2ε
,

Condition (3.1) holds true.

2 Indeed, multiapplications of the form d(x) = {y ∈ F : h(x, y) ≤ 0}, where E, F are metric spaces, h :
E × F → Rk is continuous and ∪x∈Ed(x) is relatively compact, are u.s.c. on E.
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Using the viscosity inequalities, we get

a− b ≤ G2

(
τ , y, u2, e

γτp− ηDφ(y), eγτY − ηD2φ(y)
)

−G1

(
τ , x, u1, e

γτp+ ηDφ(x), eγτX + ηD2φ(x)
)
.

By (4.32) and (3.1), we know that |eγτp| ≤ 2

√
2(||u1||∞∨||u2||∞)eγτ

ε
and |X|, |Y | ≤ 6

ε
. Recalling

that γ is nonnegative, the definition of R (see (4.29)) and (4.2) imply that

a− b ≤ G2

(
τ , y, u2, e

γτp, eγτY
)
−G1

(
τ , x, u1, e

γτp, eγτX
)

+ 2ωR

(
ηCφ

)
.

We then deduce that

λ ≤ G2

(
τ , y, u2, e

γτp, eγτY
)
−G1

(
τ , x, u1, e

γτp, eγτX
)
− γeγτ |x− y|2

2ε
+ 2ωR

(
ηCφ

)
,

≤ Ψ(τ , x, y, r1, r2, p,X, Y ) + 2ωR

(
ηCφ

)
, (4.33)

where r1 = u1(τ , x) and r2 = u2(τ , y). Recalling that Mε(t, h, λ) > 0, we get

(ψε(τ , x, y) − η(φ(x) + φ(y)) − λ(τ − t))+ > 0.

As a result of this,

ψε(τ , x, y) − η(φ(x) + φ(y)) − λ(τ − t)

= (ψε(τ , x, y) − η(φ(x) + φ(y)) − λ(τ − t))+ = Mε(t, h, λ).

The nonnegativity of eγτ |x−y|2

2ε
+ η(φ(x) + φ(y)) + λ(τ − t) implies that r1 − r2 ≥ Mε(t, h, λ).

According to (4.32) and (3.1), (τ , x, y, r1, r2, p,X, Y ) ∈ D(t, h, λ) and (4.33) implies that λ ≤
Σ(t, h, λ) + 2ωR

(
ηCφ

)
. By (4.30), (4.31) and the fact that λ > λ(t, h), we get a contradiction.

Consequently, τ = t and Mε(t, h, λ) ≤Mε(t, 0, λ). By the continuity of Mε(., ., .), we can pass to

the limit in λ
>→ λ(t, h) to complete the proof of (4.28).

Now, a simple computation shows that for all (t, h) ∈ E,

mε,η(t+ h) ≤Mε(t, h, λ(t, h)) + λ(t, h)h ≤Mε(t, 0, λ(t, h)) + λ(t, h)h = mε,η(t) + λ(t, h)h.

It follows that for all s ∈]0, T [,

lim sup
t→s

h
>
→0

mε,η(t+ h) −mε,η(t)

h
≤ lim sup

t→s

h
>
→0

λ(t, h) ≤ λ(s, 0),

thanks to the upper semicontinuity of λ(., .). Moreover, the continuity of Σ(., ., .) and the defi-
nition of λ(., .) imply that

λ(s, 0) = Σ(s, 0, λ(s, 0)) + 2ωR(ηCφ)

(in fact, this holds true not only for (t, h) = (s, 0) but for all (t, h) ∈ E ). Since (4.3) implies
that

Σ(s, 0, λ(s, 0)) ≤ (σε,η(s) − γMε(s, 0, λ(s, 0)))+ = (σε,η(s) − γmε,η(s))
+,
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we deduce that λ(s, 0) ≤ (σε,η(s)− γmε,η(s))
+ + 2ωR(ηCφ). Inequality (4.27) is now immediate

and this completes the proof of (4.26).

Second step: taking limit as η
>→ 0. By the comparison principle, we deduce from (4.26) that for

each t ∈ [0, T ],

mε,η(t) ≤ mε,η(0) +

∫ t

0
σε,η(τ)dτ + 2t ωR(ηCφ) (4.34)

and if γ > 0, then for each t ∈ [0, T ]

mε,η(t) ≤ mε,η(0) +
1

γ
sup

τ∈[0,t]
σε,η(τ)dτ + 2t ωR(ηCφ). (4.35)

Indeed, the right hand side of (4.34) (resp. (4.35)) is a classical solution (resp. a continuous

supersolution) of (4.26) as function of the t-variable. Let us pass to the limit as η
>→ 0 in these

inequalities. One can see that for all t ∈ [0, T ],

lim
η

>
→0

miε,η(t) = miε(t) (i = 1, 2) and lim sup
η

>
→0

σε,η(t) ≤ σε(t). (4.36)

The first limit is classical and its verification is left to the reader. Let us prove the second limit.
Let n be a nonnegative integer and let t belong to [0, T ]. For all positive η sufficiently small,
m2ε,η(t) − mε,η(t) ≤ m2ε(t) − mε(t) + 1

n
. Consequently, dε,η(t) ⊆ dn

ε (t) and σε,η(t) ≤ σn
ε (t).

Taking the infimum w.r.t. n ∈ N∗ implies that lim sup
η

>
→0

σε,η(t) ≤ σε(t). This finishes the proof

of (4.36). Note now that the set dε,η(t) is bounded independently of t and η. We deduce, by
(4.4) and (4.5), that the family of functions (σε,η)η>0 is uniformly bounded on [0, T ]. By (4.36)

and Fatou’s Lemma, the limit as η
>→ 0 in (4.34) completes the proof of the item i) of Theorem

4.1 (for a proof of the measurability of σε(.), see Appendix B). Moreover, when γ > 0 it is
immediate that ∪τ∈[0,t]{τ} × dε,η(τ) ⊆ Dε(t) for all t ∈ [0, T ] and all η > 0. The item ii) of
Theorem 4.1 can thus easily be deduced from (4.35) and this completes the proof of Theorem
4.1. �

Proof of Propositions 4.3 and 4.4. We only show that Σ(., ., .) is a well-defined real valued con-
tinuous function since the other points can be proved by the same ideas. Defining r∞ as in
(4.38), we see that

(t, 0, 0, r∞,−r∞, 0, 0, 0) ∈ D(t, h, λ)

for all (t, h, λ) ∈ E × R+. It follows that D(., ., .) is nonempty valued. Moreover, it is clear
that D(., ., .) is compact valued and since ∪(t,h,λ)∈E×R+D(t, h, λ) is relatively compact, D(., ., .)
is u.s.c. on E × R+ (see Footnote 2 on page 20). According to Lemma 4.2, we are then reduce
to proving that D(., ., .) is l.s.c.. Let (t, h, λ) ∈ E × R+, (tm, hm, λm) ∈ E × R+ be a sequence
which converges to (t, h, λ) and (τ, x, y, r1, r2, p,X, Y ) ∈ D(t, h, λ). For m ∈ N∗, define

r∞m := max
j=1,2

sup
[tm,tm+hm]×

{
φ≤

2(||u1||∞∨||u2||∞)
η

} |uj |,

Mm := Mε(tm, hm, λm)

and

τm := max{tm,min{τ, tm + hm}},
r1,m := max{−r∞m +Mm,min{r1, r∞m }},
r2,m := max{−r∞m ,min{r2, r1,m −Mm}}.
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For any ν ∈ [0, 1], define yν := (1 − ν)x+ νy. We get |x−yν |2

4ε
= ν2 |x−y|2

4ε
. Define

ν2
m := min

{
1,

4ε

|x− y|2 (M2ε(tm, hm, λm) −Mε(tm, hm, λm))

}

and ym = yνm and pm = x−ym

ε
. Observe that for all reals a ≤ b and c

a ≤ max{a,min{c, b}} ≤ b and
if a ≤ c ≤ b, then max{a,min{c, b}} = c.

(4.37)

Since Mm ≤ 2r∞m , −r∞m +Mm ≤ r∞m . By (4.37) and the nonnegativity of Mm,

−r∞m ≤ −r∞m +Mm ≤ r1,m ≤ r∞m .

Using now that −r∞m ≤ r1,m −Mm, (4.37) implies that

−r∞m ≤ r2,m ≤ r1,m −Mm ≤ r∞m −Mm ≤ r∞m .

We then have proved that |ri,m| ≤ r∞m (i = 1, 2) and that r1,m − r2,m ≥Mm. We deduce that

(τm, x, ym, r1,m, r2,m, pm, X, Y ) ∈ D(tm, hm, λm),

the detailed verification of the conditions on τm, ym and pm being left to the reader. Moreover,
we have the following properties:

r∞m → r∞ := max
j=1,2

sup
[t,t+h]×

{
φ≤

2(||u1||∞∨||u2||∞)
η

} |uj |, (4.38)

Mm → M := Mε(t, h, λ).

This can be seen by using Lemma 4.2 to prove the continuity of Mε(., ., .) and the continuity of
r∞ (as function of the (t, h)-variable). Then,

r1,m → max{−r∞ +M,min{r1, r∞}},
r2,m → max

{
−r∞,min{r2, lim

m
r1,m −M}

}
.

Since |ri| ≤ r∞ and r1 − r2 ≥ M , −r∞ + M ≤ r2 + M ≤ r1 ≤ r∞ and (4.37) implies that
limm r1,m = r1 and limm r2,m = r2. We easily deduce that

(τm, x, ym, r1,m, r2,m, pm, X, Y ) → (τ, x, y, r1, r2, p,X, Y )

and this finishes the proof of the lower semicontinuity of D(., ., .). The proof of Propositions 4.3
and 4.4 is now complete. �

A Sketch of the proof of Proposition 4.1

Let

C ′
ν := sup

β>0

supt∈[0,T ] ωβ(Θu(t, .)) − ν

β2
,

M := 2

√
2R

C ′
ν

,

Cν := sup
K

|F (t, x, r, p,X, λ)|,
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where R = ||u||∞ ∨ ||Θu||∞ and K denote the set of (t, x, r, p,X, λ) such that,




t ∈ [0, T ],
|r| ≤ R,

|p| ≤ C ′
νM,

|X| ≤ C ′
ν ,

|λ| ≤ Cg(1 +R).

If Θu is uniformly continuous w.r.t. x independently of t, then C ′
ν is finite. By (H4), (H7) and

(H8), it follows that Cν is finite. Let s and y be fixed. A simple computation shows that the
function

v(t, x) := Θu(s, y) + ν + C ′
ν

|x− y|2
2

+ Cν(t− s)

is a viscosity supersolution of (2.2) in ]s, T [×BRN (y,M). Moreover, for each x

Θu(s, x) − Θu(s, y) ≤ ω|x−y| (Θu(s, .)) ≤ ν + C ′
ν

|x− y|2
2

.

It follows that Θu(s, .) ≤ v(s, .). Another simple computation shows that Θu ≤ v on the domain
]s, T [×∂BRN (y,M). Using the comparison principle with a Dirichlet condition (see [9]) and
choosing x = y, we deduce that Θu(t, x) ≤ Θu(s, x) + ν + Cν(s− t). We can argue similarly to
obtain the other inequality and prove that |Θu(t, x)−Θu(s, x)| ≤ ν+Cν |s− t| for all t, s, x. The
proof of Proposition 4.1 is complete. �

B Proof of the measurability of σε(.)

For t ∈ [0, T ], define σn
ε (t) := supdn

ε (t) Ψ(t, x, y, r, r, p,X, Y ). Let us prove that σn
ε (.) is

measurable. For a set A of a metric space E, define

IA(x) :=

{
0 if x ∈ A,

−∞ if not.

We let A denote the set of (X,Y ) ∈ S2N such that (3.1) holds true. For t ∈ [0, T ], we let B(t)
(resp. C(t)) denote the set of r ∈ R (resp. (x, y) ∈ R2N ) such that r ≤ ||u1(t, .)||∞ ∨ ||u1(t, .)||∞
(resp. |x−y|2

4ε
≤ m2ε(t) −mε(t) + 1

n
). We see that

σn
ε (t) = sup(x,y,r,X,Y )∈R2N×R×A

{
Ψ

(
t, x, y, r, r,

x− y

ε
,X, Y

)
+ IB(t) (r) + IC(t) (x, y)

}
.

For each t ∈ [0, T ],

(
◦

C(t)

)
= C(t) and either B(t) = {0} or

(
◦

B(t)

)
= B(t); this implies that

σn
ε (t) = sup

Q2N×Q×D

{
Ψ

(
t, x, y, r, r,

x− y

ε
,X, Y

)
+ IB(t) (r) + IC(t) (x, y)

}
,

where D is a countable dense subset of A. Moreover, t→ ||u1(t, .)||∞ and miε(.) are measurable
as l.s.c. functions (i = 1, 2). Consequently, for each (x, y, r,X, Y ) ∈ Q2N × Q ×D, the function

t→ Ψ

(
t, x, y, r, r,

x− y

ε
,X, Y

)
+ IB(t) (r) + IC(t) (x, y)
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is measurable. The function σn
ε (.) then is measurable as countable supremum of measurable

functions. Since σε(.) = infN∗ σn
ε (.), we have established the measurability of σε(.). �
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