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Abstract. Truncated Fourier operators play an important role in
many inverse problems of Signal and Image science. A varia-
tional approach to the regularization of their pseudo-inverses is
considered. A particular regularization parameter, which can be
interpreted in terms of resolution level, appears to play the es-
sential role. This paper presents results on the behavior of the
regularized solution as this parameter tends to zero. Notably,
reasonably mild conditions are shown to ensure strong conver-
gence of the regularized solution to the pseudo-inverse of the
data.

Mathematics subject classification: 47A52 (ill-posed problems, regular-
ization) and 35A15 (variational methods).

1 Introduction

The problem of Fourier Synthesis is of central importance in many applica-
tions pertaining to signal and image processing. At a rather abstract level,
it can be formulated as follows:

Recover a function from a partial and approximate knowledge of
its Fourier transform.
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Among the many applications which belong to this general class of problems,
let us mention aperture synthesis (in astronomy and earth observation) [5],
deconvolution problems (see e.g. [6]), spectral analysis of signals (see e.g. [3])
and tomography [8, 9]. Notice that Shannon’s interpolation formula may
also be regarded as an explicit solution of a particular problem of Fourier
synthesis.

In [6, 5], Lannes et al. stated and analyzed the problem in more specific
terms, namely:

Let V and W be subsets of R?. Assume that V is bounded and
that W has a non-empty interior. Recover fo € L?(V) from the
knowledge of its Fourier transform on W.

Here, L?(2) denotes the space of square integrable complex valued functions
having their (essential) support in the set Q C R?. (For every p € [1, 00],
LP(Q) is defined likewise and | - || 1»(q) denotes the corresponding LP-norm.)
In the case where W (resp. W€) is bounded, the problem is referred to
as that of Fourier extrapolation (resp. Fourier interpolation). It has been
shown [6] that the problem of Fourier extrapolation is ill-posed, whereas the
problem of Fourier interpolation is well-posed in the least square sense.

In practice, of course, the experimental data provide some knowledge of the
Fourier transform on a bounded domain. In [6, 5|, an original regularization
principle for problems of Fourier extrapolation was designed. In essence,
this regularization principle consists in reformulating the problem in terms
of Fourier interpolation. It amounts to replacing the original problem of
recovering the unknown object fy by that of recovering a limited resolution
version of it, namely, ¢ * fo, where ¢ is some convolution kernel (or point
spread function). Well-known results from the approximation of LP-functions
by mollification suggest that ¢ should be regarded as a member of the one-
parameter family {¢g|8 > 0} defined by

05(@) = 59 (5) 1)

where ¢ € L'(R?) and [, ¢(z) dz = 1. The reconstructed object may then

be defined as the solution of the optimization problem
o 194 Lo 2 A PEERY: 9
(Pa,ﬂ> minimize 5 H g — Lw f HLQ(W) + 3 H (1— qbg)f‘

st. feLXV),

L2(R4)

in which 1y, denotes the characteristic function of W, and f = U f denotes
the image of f by the Fourier operator.
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Figure 1: One-dimensional examples of functions ¢4 (point spread functions)
and ¢g (filters): Gaussian case.

The regularized data gﬁg g are expected to correspond to ¢gx* fo. The regular-
ization term || (1 — gisﬁ)fHQ/2 can be interpreted as the energy of f in the high
frequency domain (the inverse of 3 being interpreted as a cutoff frequency),
whereas the fit term acts in the low frequency domain. Both terms are de-
signed so as to be as little in conflict as possible, which suggests that the
choice of a particular « is not as crucial as in the case of other regularization
principles. Figure 1 gives one-dimensional examples of ¢g and (;As/g.

In the pioneering works [6, 5|, convergence analysis was not investigated.
More precisely, one may (and one should) wonder about the destination of
the reconstructed object when o and /or 3 converge to zero. This is the main
purpose of this article. Let us emphasize that 3 appears here as the essential
regularization parameter and that, consequently, the above regularization
scheme is in fact quite different from Tikhonov’s approach (in which « is the
important parameter).



The paper is organized as follows. In Section 2, we review basic facts about
Fourier synthesis. Ill-posedness of the Fourier extrapolation problem is out-
lined, as well as well-posedness of the Fourier interpolation problem. In
Section 3, we consider the behavior of the solution of (P, g) as Tikhonov’s
parameter « goes to zero. This reveals difficulties which tend to confirm
that 3 is the fundamental parameter of this regularization principle. In Sec-
tion 4, we prove that the solution of (P, g) converges, as 3 tends to zero, to
the Moore-Penrose inverse of the data g, under some regularity condition of
the latter as well as conditions on the underlying point spread function. In
the last section, the previous assumptions are somewhat relaxed, providing
a regularization scheme which is morphologically less restrictive.

NoTATION: We shall denote by T the operator

To: L*(V) — L*Q)
f o Tof =1lqf =1Uf.

Operators of this form will be referred to as truncated Fourier operators.
The set of all continuous functions on R% which vanish at infinity will be
denoted by Co(R?). The closed ball of R? centered at the origin of radius r
will be denoted by B,.

STANDING ASSUMPTION: Throughout, V and W are bounded subsets of R?

with non-empty interiors!.

2 Ill-posedness and regularization

In this section, we review a few fundamental facts about Fourier synthesis.
These results originate from [6]. For the sake of completeness, however, most
statements will be proved. In fact, our setting as well as some of the proofs
are somewhat different from those given in [6].

2.1 Fourier extrapolation

Proposition 1. The linear operator I;, s compact and injective. The Her-
mitian operator Ty Ty, is diagonalizable in a Hilbert basis { fi}ren<, and the
ergenvalues are the values taken by a sequence \;y > Ao > ... > 0 which

! Assuming that intV # () and that W is bounded implies that ker T3} = {0}. For
details, see Remark 3. Most of the results of this paper would still be true without the
assumption int V' # (), but such an assumption is entirely natural and will simplify our
developments.



converges to zero. The inverse ijlz ran Ty, — L*(V) is unbounded and so
1s the pseudo-inverse TVJ[;. Moreover, ran TV(71 is mot closed.

PROOF. Notice first that, for all f € L?(V) and all £ € RY,

(T £)(€) = / 2O L ()1 (€)f(2) da.

R4
Since V and W are bounded, the kernel

a(z,€) = e 2™ @O 1y () Ly (€)

belongs to L?(R? x RY), which shows that Ty, is Hilbert-Schmidt (thus com-
pact). Now, recall that the Fourier transforms of compactly supported func-
tions are entire functions, which implies that they are completely determined
by their values on the set W (since we assume that W has nonempty interior).
Consequently, Tj;, is injective. The proposition then results from Theorem 14
(see the appendix). =

Proposition 2. The largest eigenvalue A1 of Tjy/Iy;, is strictly less than 1.

PROOF. An easy computation shows that, for all ¢ € L?(W), Tyg =
1y U lg, so that Ty Ty = 1y U 'y U and

_ 2

X = BTy i ey = /V U LU |

S/ ‘UlﬂwUfl‘QZ/ ‘Uf1|2,
Rd w

where the last equality results from Plancherel’s Theorem; the last integral
is strictly less than 1, for otherwise U f; would vanish on the complement
of W, thus on R? (since it is analytic), in contradiction with the fact that

J1#0. u

We end this subsection by a remark on the domain of the Moore-Penrose
pseudo-inverse TV"VF of T}, (see also Footnote 1 on Page 4).

Remark 3. It is well known that D(T}};), the domain of T;;;, satisfies
D(T;)) = ranTy, + ker [y = ran Ty, + (ran TW)l.

In our context, Ty, is injective, again as a consequence of the analyticity of
Fourier transforms of compactly supported function. It follows that D(TMJ;) =
ran Ty, = ’D(TW_/I), and that ijl and Tjf; coincide. Nevertheless, we shall use
TVJ[E instead of TI;/l throughout, in order to emphasize that our developments
remain true in a more general framework. u



2.2 Fourier regularization

Let us first introduce the problem of Fourier interpolation, which consists in
inverting the truncated Fourier operator Tq, in which €2 is assumed to have
a bounded complement (and a nonempty interior).

Proposition 4. Let us assume that  C R? 4s such that Q° is bounded.
Then,

(i) Tq is bounded and injective;
(ii) ranTq is closed;

(ili) To': ranTo — L2(V) is bounded.

PRrooOF. It is readily seen that T3T,, = I — T3 T, in which I denotes the
identity of L?(V'). From the properties of the Fourier extrapolation problem,
we deduce that T{T, can be diagonalized, and that its eigenvalues are the
values of a sequence 0 < p; < pg < ... < 1 which converges to 1. As a
matter of fact, pp = 1 — A\ (15 Te) for all k, and Proposition 2 ensures that
0 < p1. Consequently, both

T3Tqo: LX(V) — ran(T3Ty) and Tg: L2(V) — ranTy
have continuous inverses, and ranTq is closed. =

As pointed out in [6], this suggests to regularize the Fourier extrapolation
problem by reformulating it in terms of Fourier interpolation. In a rough
version of this approach, the reconstructed object is defined as the minimizer
of a functional of the form

1 1
519 = T F 2wy + 510w U F 2wy

where Wj is the complement of the ball By 5 centered at the origin of radius
1/3. The parameter § is chosen small enough to ensure that WgNW = (.
Clearly, this amounts to interpolate the Fourier transform on (W3 U W)*
from its knowledge on W3 U W. The assigned value on Wy is zero, which
is reminiscent of the well-known zero filling techniques. We stress, however,
that a certain amount of interpolation (which depends on the value of 3) is
actually performed here, and that this formulation is variational in essence.
Notice that the standard Tikhonov regularizer, namely,

1 1
5 1 ey = 5 1107 ey
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constrains U f everywhere in R? which cannot be optimal for the inverse
problem under consideration.

It is important to realize that the new objective is no longer the reconstruc-
tion of the original object fy, but that of a lower resolution version of it,
namely, ¢g * fo, where the Fourier transform of ¢g is the characteristic func-
tion of the ball By 3. Since ¢g is a (radial) sinc function, it seems more
appropriate to introduce some apodization. For obvious morphological rea-
sons, the point spread function ¢g should be (essentially) positive, isotropic
and radially decreasing. We are then led to define the reconstructed object
as the solution of Problem (P, 3) above?. Throughout, the apodized point
spread function will be of the form given in Equation (1), where ¢ is assume
to be a non-trivial integrable function.

We shall prove in Proposition 6 below that Problem (P, ) is well-posed.
A detailed account of the behavior of the solution of (P, g) as « | 0 (and
[ fixed) will be given in the next section. Although the well-posedness of
Problem (P, ) is a rather immediate consequence of Proposition 4, we adopt
here a different viewpoint. This approach will bring us back to Tikhonov’s
regularization theory, as reviewed in the appendix. The key point lies in
Lemma 5 below. Let 8 > 0 be fixed and let, for every fi, fo € L*(V),

(tas = [ 1= bsPURTT )

Lemma 5. The sesquilinear mapping (-, ) s an inner product which turns
L%(V) into a Hilbert space. The corresponding norm || - || is equivalent to
the original L*-norm.

PRrROOF. The first part of the lemma is an easy exercise, and we only prove
the equivalence of the norms. Since ¢g is assumed to be integrable, ¢g is
continuous and vanishes at infinity. Therefore, there exists R > 0 such that

- 1
inf |1-— > —.
nt 1= 65001 = 5

2Notice that the support of ¢ * fo is clearly expected to be larger that V. In practice,
it may therefore be suitable to replace V by a larger set V' in (Pa,5). However, it is clear
that the injectivity of Tj; is crucial, so that chosing (the closure of) supp ¢3 + V' may not
be possible (for example, a Gaussian ¢ would lead to the choice V' = ]Rd). Moreover, our
analysis would remain true with any bounded V' O V in place of V, and since L? (V) is
then obviously contained in L?(V"), we shall merely ignore this distinction.



By Proposition 4, T L*(V) — ran T’ is bi-continuous, so that, for all
feLXV),

1 1
17115 = 5 135S | 2y 2 Sy

> —i Il f :

On the other hand, Plancherel’s Equality implies that, for all f € L*(V),

1 £1l < sup |1 = 5| 1]l paguey = 0 |1 = Ba(©)] [ £ 2y - =
£eRd £cRd

Proposition 6. Let o, > 0 be fired. Then (Pqg) has a unique solution
fa.3, which depends continuously on g € L*(W).

PRrROOF. Clearly, Problem (P, 3) can then be rewritten as:

. 1 - 2 o
P! ) minimize 5 $39 — wa‘ L) + §HfH%
7 st. feL?V).

From the classical theory of Tikhonov’s regularization (see the appendix,
Proposition 17) the unique solution of (7, 5) is given by

fap = (LE Ty + al) VI (d59),

in which Tv?f denotes the adjoint of Ij;, with respect to the new inner product
(-,-)8- The conclusion then follows from Lemma 5 and the continuity of the
multiplication g — ¢gg in L2(W).

3 Tikhonov-like regularization

In this section, we fix 8 > 0 and we investigate the behavior of the solution
of (Pa,) as a | 0. This leads us to consider the following limit problem:

(770,5) minimize é H qg/@g — TWf H2
st. feL?V).

One may indeed wonder whether the solution of (P, ) converges to that
of (Py3) under the usual condition that g € D(Tyf7). This simple question



raises the following important conceptual difficulty: does Problem (P 3)
have any solution at all, that is to say, does the regularized datum gZ)gg
belong to D(T3;;) ? This condition, which we shall discuss later on (see
Proposition 8 below), turns out to be necessary and sufficient for the norm
of the reconstructed object f, g not to diverge to infinity as o | 0.

Theorem 7. Let 3> 0 be fized and let g € D(Ty;).

(i) If g € D(TLyf7), then the unique solution fop5 € L*(V) of (Pap)
converges strongly in L2(V), as o | 0, to the unique solution of (Po,3),

namely, T, (gﬁgg)

(ii) If gZ;ﬁg ¢ D(T;})), then | fa5llL2(vy tends to infinity as a | 0.

PRrOOF.

i. On rewriting (7, 5) as (P, 5), this point is an immediate consequence

of the Tikhonov classical theory (see the appendix, Theorem 18) and
Lemma 5.

it. Assume that gZ;gg ¢ D(Tf}), that is to say, that (Py g) has no solution.
Suppose, in order to obtain a contradiction, that || f, g|| does not tend
to infinity as a | 0. There then exists a positive sequence (a,)pen
converging to 0 which is such that the sequence (f,)en+ defined by

fn = foznﬂ

is bounded in L?(V). By the Weak Compactness Theorem, taking
a subsequence if necessary, we can assume that (fy,)nen+ converges
weakly to some f’ in L?(V'). Writing that f, is the solution of (P,,, 3),
we find that, for every f € L2(V),

o o a
+ 7” (1- ¢5)fn||%2(Rd)

ol

11« 2
5 Hﬁb,@g—Tan

W)

+ 1= 8532z (3)

L2(W)

It is obvious that gZ)gg — Ty fn converges weakly to gzggg — Ty, f as
n — oo. Hence, we have

| 659 =T s'| ., < imint [ G0 Ty 1], -



Letting n — oo in (3) now yields the inequality:

o< Moso-mal;

1 -
2 ’%g_T 2w’

notice indeed that
(679 n ;N2 Qp n 2
5 11 = &g) fallz2(may < - sup ‘1 - qﬁﬁ({f)’ 1 nllz2 vy = 0,
EeRd

since a;, — 0 and (f,)nen+ is bounded in L?(V). We have then proved
that f’ is a solution of (Py g), which is the desired contradiction. a

The next proposition will show that, in Theorem 7, the second alternative
occurs quite often.

Proposition 8. Let ¢ € L'(RY) be such that b is analytic. Then, for every
B6>0andge D(TV{/F), B9 € D(TV'V") if and only if supp(¢g * TV{/'FQ) cV.

Proor. By the analytic continuation theorem, g := U Tv{tg is the unique
analytic extension of g on RY. If supp(¢*Trg) C V, then ¢sxTihg € L*(V)
and U(¢g * TV?/rg) = éﬁg. It is then obvious that A(¢g * T&g) = Q@/gg.
Assume now that supp(¢g * TV{,F g) is strictly larger than V. Suppose, in order
to obtain a contradiction, that ¢zg € D(T;;). In our context, D(T;;) =
ran Ty, and there exists f € L?(V) such that 1y U f = qAﬁgg. As the product
of two analytic functions, q%gg is analytic, and it coincides with the entire
function Uf on W. Since int W # (), the analytic continuation theorem
shows that Uf = qug. Taking inverse Fourier transforms yields the equality
f =63+ (U1g) (in L2(R)). Then,

f=ds+ (U 'UTg) = ¢s+Tg (in L*H(RY)).
This contradicts our working assumption on the support of (¢g * TVJ[E g) =

At a first sight, the last proposition may be regarded as a serious drawback of
the whole regularization methodology. Together with Theorem 7 (i), it says
in particular that point spread functions with non-compact support (such as
the Gaussian kernel shown in Figure 1) give rise to somewhat inconsistent
regularization schemes. We believe instead that this only stresses the fact
that a should not be considered as the fundamental regularization parameter.
As it may already be clear to the reader, the parameter playing the essential

10



role in (P, g) is B. This motivates the next sections, in which we shall obtain
results on the behavior of f, g as 3 goes to zero.

In the Tikhonov regularization theory (see the appendix), the spectral de-
composition of T*T + al appears as the main tool. Clearly, the fact that
the eigenspaces do not change with « is one of the keys to the convergence
theorem (Theorem 18). As we shall see, the results of the next sections do
not rely on any spectral argument (at least, we where not able to exhibit
an inner product leaving the eigenspaces invariant with 3). This is why the
techniques to be used pertain essentially to variational analysis.

4 Mollification

Theorem 9. Let a > 0 be fized and ¢ € L' (RY) be such that [pa ¢(x)dx = 1,
that is to say (0) = 1. Assume that there exists s > 0 such that

[1-6(6) | ~eo €I (4)

up to a positive multiplicative constant. Assume in addition that

~

VEeRIN{0}, (&) #1. (5)

Let g € D(T3}) be such that

Ll 1) dé < o, (6)

where § is the unique analytic extension of g on RE. Then, the unique solu-
tion fo3 of Problem (Py,3) converges strongly to TV[J;g in L2(V).

The proof of Theorem 9 relies on two technical lemmas, which we establish
NOw.

Lemma 10. Let ¢ be as in the theorem, and let

2 . 2

‘ and Mg := ”mHaX ‘1 - qﬁ(ﬁf)‘ .
¢||=1

mg = ||12‘1‘in ‘ 1 —o(B¢) (7)

=1
We then have the following properties:
(i) Forall 5>0,0<ms< Mg < (1+ o]l @a)’;

(ii) supgso(Mp/mg) < oo and Mg tends to zero as 3| 0;

11



(iii)

there exist positive constants vy and Cy such that, for every € (0,1]
and every ¢ € R4\ {0},

5 . 1—$(BY)[>
M)Qmu213u5@>+1M%ﬂB@A50 §|1[wﬂﬂéAQMH2

< Coll€]I**.

PRrooOF.

(i)

(i)

(iii)

By the Riemann-Lebesgue Lemma, ¢ € Co(R%) and ||§Z§||L00(Rd) <
19111 Ry We deduce, in particular, that Mz < (1 + |6l 11 (ra))*
Moreover, (5) implies that |1 — ¢| is positive on R%\ {0} and it follows
that mg > 0, as the infimum of a continuous and positive function on
a compact set.

The continuity and positivity, on R?\ {0}, of |1 — gZA)\ also imply that
the ratio Mg/mg is continuous with respect to 5 > 0. Moreover, since
¢ € Co(R?), we see that |1 — ¢(£)| tends to 1 as ||£]| — co. Tt follows
that Mg/mgs tends to 1 as 8 — oco. On the other hand, Condition (4)
implies that Mg/mg also tends to 1 as § | 0. Since the ratio Mg/mg
has finite limits as # | 0 and as § — o0, it must be bounded above on
(0,00). Finally, Condition (4) clearly implies that Mg goes to zero as

B 1o.

By (4), |1 — &(€)[2/]|€]|* tends to some positive constant C' as & — 0.
In particular, there exists r > 0 such that

C s 7 s
Ve B, SllEl* <I1- @) <20 ¢]* (8)
Let ro := min{1, 7}, and let
n [1-d© and M 1)
m:=  min - an ‘= max —
{ro<|l€ll<1} {ro<li¢li<1}
We have 0 < m < M < oo and, for all £ such that ro < ||| <1,
s n 2 M 2s
mlgl <m < 16| <M < g™ ©)
0

Let v1 := min{m, C/2} and C} := max{M/r3%,2C}. Then, v; and C}
are positive and (8) and (9) imply that, for all £ such that |£]| < 1,

A 2 s
el <[1-d@| <cifel*. (10)

12



Consequently, for every 3 € (0,1] and every § € By 3\ {0},

v B2 €]1% < |1 — ¢(B€) 2 < C1B% €|,
B <|1—¢(Be/|€)1? < C16%.

Since all terms of the last inequality are positive, we deduce that, for
every 3 € (0,1] and every £ € By 5\ {0},

Vs o 11088 < S, 11
o= 3G nene < w1 )

2 .2
’ and M’ := max ’1—¢§)‘

m':= min |1— ¢
’ ¢(§) {llgl>1}

{ligl>1}
The fact that £ — |1 —¢(€)] is positive and continuous on R%\ {0} and

that it tends to 1 as ||| — oo clearly implies that 0 < m/ < M’ < co.
Thus, for every 3 € (0,1] and every £ such that ||| > 1/,

ﬁ< |1f95(5§)|2 <M.
Mg = |1 —o(Bg/|IEI)I* — ms

Moreover, (10) implies that mg < C13%, so that

M’ M’ M’
<< el
mg — C13 4

We have then proved that, for every 8 € (0,1] and every £ such that
1€l >1/8, A
W [n-dEP
Mp = 1= ¢(Be/lIEN)> ~ O
Finally, let vy := min{,/Cy,m'} and Cy := max{Cy/vi, M'/C1}.
Then, vy and Cj are positive, and (11) and (12) yield the desired
inequality. =

€1, (12)

Lemma 11. Let ¢ € LY(R?) and, for 3 > 0, define ¢g as in (1). Then, for
every v € L?(RY), &51/1 converges strongly to ngb(O)w in L2(R?) as 5| 0.

13



PROOF. Let a 1= [pq ¢(z) de = $(0) and f := U~'4 € L2(R%). Well-known
results on the approx1mat10n of LP-functions by mollification say that ¢g* f
converges strongly to af as § | 0. Taking the Fourier transform (which is
an isometry of L?(R%)), we see that Ulpg* f) = gggq/) converges strongly to

a) = ¢(0)1p in L2(RY). a

PROOF OF THE THEOREM. The proof is divided in three steps. In Step 1,
we derive an L2-estimate of fa,3 which does not depend on 3. In Step 2, we
establish the weak convergence of f, g to Tﬁﬁ g. Finally, in Step 3, we use a
compactness argument to show that the convergence is indeed strong.

Step 1: L?-estimate. For all f € L?(V),

1y - « N
31900 =Ttos |+ 5 |1 = 99
_ (1- ‘
_2H¢69 Wf‘m( ) H 95)f L2(Rd)
Let us take f = TV'VFg. Then,
H%g Wfa’ﬁ‘ LZ(W) 2 H (1~ ) fo‘ﬁ‘ L2(R4)
(1- ‘ 1
Wg‘ L2(W) ) H )V Tivg L2(RY) (13)

Let us recall that U TV{,Fg is the unique analytic extension of g on R?, that
is to say UTI;/rg = g. Since TWTMJ}g = g, Inequality (13) can be written as
follows:

«
o alo-snl;

% H ‘ﬁﬁg - waa

L2(R)
Ll T
§H( _¢ﬁg’L2(W ZH ~ )7 L2(Rd)
In particular,
2la 1= é0)3l’ 1= é0)il’
20 ddas e < 30 =08 + 5[ 08008
and, dividing by «/2, it follows that
1+« - 2
1—d5) 1, ) < H 1 ‘ . 14
| = b0 | o < o [0 =903 (14

14



For every ¢ € R\ {0},

1—dp(€) =1 — g(¢) = (1 - &(BUIISII)) 1—1;(;%

Recall indeed that Condition (5) ensures that we do not divide by 0. We
then see that (14) can be written as

~ 2 ~
L= dwenen| 22007
lta [ SIS CI
< 1-— d
< e s STl ag

Defining mg and Mg as in (7), we deduce that

_ 2 R
mﬂ/]R L-00OP |5 (e)pde

a |1 - o(Be/|IEN)I2
1+a 11— BP0
< M d
@ ﬂ/Rd“_ </35/H£H)|2|g(£)’ ‘

By Lemma 10 (i), we can divide this inequality by mg > 0 and obtain

LR ey
oo T stasfieip O

_1taMy [ 1P
T a mg Jra |1 G(B¢/|I€]]) 2
By Lemma 10 (iii), it is now easy to deduce from the above inequality that

if 8 € (0,1], then

s, 1 5 2
o [ (18,1617 + 51, ) [Fuate) as

cltaM, . 1
<1xol [ e a0 < M 0aa,

— Mp 25 ~ 2d )
o= (s 22) [ el 50 o

15

19(©)[7 dg

where



Notice that Lemma 10 (ii) and Assumption (6) imply that C; is a finite
(positive) real number. At this stage of the proof, we have established the
following key estimate: for all 3 € (0, 1],

~ 2 ) N 2
EN1 | fap(&)| dE+ - Ffos(O] de
" /MSW| 1 fust©)| e+ 5 /”bw 56|
1+«
< CoChr. (15)
(673

Since ( € (0, 1], the first term of the left hand side of the above inequality
is bounded below as follows:

VO/ 1€]1%%| fap(6)[2de > Vo/ 1€11%] fa,p(6) |* A€
1€N<1/p 1<||€l1L1/8
f 2 q¢.
= V0/1<s||<1/ﬂ‘f°"6(§)’ ¢

As for the second term, Lemma 10 (i) implies that

W, o€ 6 2 0 (14 [9l1cs) ()2 A€
T [ Heot@Pag = (1 llign) " [ (ol a¢

We thus find that the left hand side of (15) is bounded below by
~ 2 -2
1/1/ ’fayg(f)’ d¢, where vy =1y (1 + ||¢HL1(Rd)) .
€l=1

Thus, for every 8 € (0,1],

1/1/
l€l=1

Finally, notice that the truncated Fourier operator 1pe: L*(V) — ranTj B¢ 18
invertible with continuous inverse (see Proposition 4). Hence, writing fq 3

2 N
/ fas
ll€1>1

1+«
o

fus@)| de< %001, (16)

-1 ~
as Tpe 1pg fa,, We see that

| fas I < || 75 2o(©)] e,

from which we deduce our L?-estimate: for every 3 € (0, 1],

1 H2 1+ 04)0001‘ (17)

2 _
| s 2y < || T2
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Step 2: weak convergence. In order to prove that f, g converges weakly
to Tmtg as (3 | 0, it suffices to show that, for every positive sequence (3, )nen=
converging to zero, the sequence (fy,)nen+ defined by

fn = fa,ﬁn

has a subsequence which converges weakly to TV;/F qg.

Let (Bn)nen+ and (fn)nen= be as above. It results from Step 1 that (fy,) is
bounded, and thus from the Weak Compactness Theorem that there exists
a subsequence (fn, Jken+ which converges weakly to some f' € L*(V). We
shall prove that f' = TV; g. Recall that TMJE g is the unique solution of

1
minimize 5 Hg =Ty f Hiqw

(Po)
st. feL*V)

(see Remark 3). Since f,, is the solution of (Pa,ﬁnk)a for every f € L?(V),

2

Oni9 = Ty Jo, L2(W) ) H (1 %’“)f"’“ L2(Rd)
=3 H(b"’“g Wf‘ L2(W) ) H = ) f‘ L2(RY)
where énk = éﬂnk' Consequently,
Hgg"’“g ~ T ;(W)
< s =Tt [y 0= 0y 09

Let k tend to oo in this inequality. On the one hand, Lemma 11 implies that
qﬁnk g converges strongly to ng(O) g=gin L>(W), as k — oo. Moreover, it is
clear that Ty, f,, converges weakly to Tj, f'. It follows that ¢y, g — Tjy fn,
converges weakly to g — Tj;, f/, so that

2
|9 = Bt [0y < limint | Gug — Ty Fu,

L2(W)

On the other hand, qbnkg Ty f converges strongly to g — T, f and (1 —

qﬁnk) f f d)nk f converges strongly to f f = 0 by Lemma 11 again. We
deduce that the right hand side of (18) converges to ||g—1j, f HLQ(W so that

g _TWf/H2L2(W) <|lg _TWinQ(W

17



Since f € L?(V) is arbitrary, we see that f’ must be the unique solution
of (Po).

Step 3: strong convergence. For every h € R? and every f € L?(R?), let
71 f denote the translated function x — f(z—h). Let (8n)nen and (fr)nen+
be as in Step 2. It results from Step 1 that (f,,)nen+ is bounded. Moreover,
since (fn)nen C L2(V) and V is bounded, it is clear that

lim sup / | fn(2) ‘2 dz = 0.
l=|>R

R—o0 TLGN*

Now, if we can prove that

sup || Tnfn — anLQ(Rd) —0 as |h|—0, (19)
neN*

a classical relative compactness theorem (see e.g. |4], Theorem 3.8 page 175)
will then show that ( f,,)nen+ is precompact. Combined with the weak conver-
gence of (fy)nen to TV{," g obtained in Step 2, this will establish the claimed
strong convergence. We thus proceed to prove (19).

We have UTy fo 3 = e~ 2imlhy) faﬁ and Plancherel’s Equality implies that

2 2
H,];Lfa,ﬁ - faﬂ HLQ(Rd) = H U (%foz,ﬁ - fa,ﬁ) HLQ(Rd)
. 2 . 2
= [ e 1l | fuste)] ag
R4
= Il + 127 (20)
where ) )
e [ femd o | fu)] ag
lel<i/s
and
—2im(h€) 21z 2
I = ’e 8 1‘ faﬁ(g)‘ de.
lél>1/8
Let us estimate the first integral:
‘672i7r<h,§) _ 1‘2 98 | 2
n—- | e G
o<llel<1/8 1€]]% Iel ’ ‘

o 2
fap(®@)| ag,

T
€40 €l lel<1/8

18



where s’ := min{1, s}. Using the change of variable ¢’ = ||h||¢ (for h # 0),
we have:
|e=2im (IR~ e’y _ 12

sup [ 21 2 .
€40 €]l ¢1£0 €

—2im (A7 e _ 1| =

Since |e O(]|€'||) near the origin, it is clear that there
exists a positive constant Cy such that, for every h € R%\ {0},

|e=2im (IRl " ) _ 12

sup ; < (Cs.
¢140 [1€7]2
It follows that
y og | » 2
Bclnl® [ el fas)] ac
ll€lI<1/8

Since ||€]|?*" < 1+ ||€]|**, we deduce that

s ol ([ ool [ 1
Ca [l (Hfaﬂ’m /”ESWMH% fa,g(ofdg)

= Al (ool + [, NelP st ac).

thanks to Plancherel’s Equality. By (17), we deduce that, for g € (0, 1],

GO [ el st ;dg)
I€l1<1/8

(67%1)
fa,g(f) ‘2 d¢ < (1 +a)CoCh < (1+ a)C’0017

Qv [67%]

)

8(& ‘ dé)

IN

A (HTB?
Since, by (15),

[l
lén<i/s

we finally get:

L < CbHilH%'(lﬁ_aﬁchch<14—H1g?

avrvy

19



It remains to estimate the second integral. By (15), we have:

IQ§4/ 1+ aCyCy 14+ aCyCy
l€l>1/8

Mg <
Thus, from (20) and the above estimates for I and I, we deduce that

fa,ﬁ(g) ‘2 d¢ <

Mp.
140 (67 141 A

HIZ;LfCVwB - fOé,,B HiQ(Rd)

s (1 CoC 112 1 CoC
< el SEEEE (e ) + S0 S
< o (InlP 4 05). @)
where
C3 := max { (L+ Q;ZOCICQ <1 + H T_fl 2) ,7(1 +00210001 } > 0.

We are now ready to prove (19). By Lemma 10 (ii), for every £ > 0, there
exists ng > 1 such that, for every n > ng, Mg, <e. By (21), it follows that

2
SUp [ Tofn = I 2w
< max {1%%}7{10 H,Z;Lfn — Jn HiQ(Rd) ,C3 (H hH2S + E)} . (22)

The L2-continuity of translations implies that, for all n € N*, |7 fn, —
anQLQ(Rd) tends to zero as h — 0, so that

2
12135510 H%Lfﬂ —In HLQ(Rd) —0 as h—0.
Consequently, ,
limsup sup ||7xfn — f < Che.
wsup sup T~ fu e
Since ¢ is arbitrary, the proof of (19) is complete, and so is that of the
theorem. =

We emphasize that Condition (6) restricts the validity of our convergence
result to the image by T;;, of the subspace L?(V) N H*(R?). Since L2(V) N
H*(R?) is dense in L*(V), its image by T;;, is dense in L?(W) (recall that
ran Ty, is dense in L?(W)). However, a convergence result valid for all g €
D(T;;,) is most certainly desirable. Such a result will be obtained in the next
section. As we shall see, the price to be paid is, among other things, the
reintroduction of « as a regularization parameter, along with 3.
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Cauchy filter (s=1) Filter for s=0.6

1 1
0.8 0.8
g 0.6 § 0.6
=] =}
0.4 0.4
0.2 0.2
0 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
g g
Cauchy kernel (s=1) Kernel for s=0.6
3 3
25 25
2 2
= =
T 15 T 15
1 1
0.5 0.5
0 0
-02 -0.1 0 01 02 03 -02 -0.1 0 01 02 03
X X

Figure 2: One-dimensional examples of filters of the form & — exp(—|£]*),
with associated point spread functions. In the case where s = 1, the point
spread function is explicitly given by & s 2/(1 + 47&2).

Remark 12. Among the filters U¢ which satisfy Conditions (4) and (5), we
find the functions £ — exp(—||£||*). For s € (0,2], the corresponding Point
Spread Functions U~!(exp(—||£]|*)) have nice morphological properties. In
particular, they are positive (see [7]), isotropic, radially deacreasing (see [1]),
and C*°. For s = 2, ¢ is Gaussian, and for s < 2,

O(@) ~|ja oo ll2lI747°

up to a positive multiplicative constant (see [2|). Examples are given in
Figure 2, in the cases s =1 and s = 0.6. =

5 Hybrid approach

Theorem 13. Let ¢ € L*(R%) be such that ¢(0) = Jpa d(z)dz € (0,1).
Assume in addition that (5) holds true. Let g € D(TLy;). Let (an)nen= and
(Bn)nen+ be sequences of positive reals converging to 0 which satisfy

d(€) — $(0)

sup = o(ap), (23)

‘2
1€1<8n

21



as n — oo. Let f, = fa, 8, be the unique solution of Problem (Pq, g,)
Then gﬁ((])_lfn converges strongly to Tv;g, as n — o0o.

PROOF. As in the preceding proof, the first step consists in deriving an
L?-estimate for f,. We use again the fact that f, solves Problem (Pan,Bn)
to write:

1‘ g —To ol 2= )]
5 ¢ng an L2(W) ?H( d)n)f L2(R4)
1 - B +/2 2 -n — + (b ’
< 5[ duo - BT G00) [ L, + 5[ 1= 80T GO, -

Since UT; ((ﬁ(O)g) = (&(O)UTV{;g = $(0)g, the right hand side of the above

inequality can be written as

31 Gu-s0na]l,,,, + 25 0= b
so that
(1= 6n) ;(ﬂw
. 2
= H (én = qb(O))g‘ 2w + (0 H (1=6n)3 ‘ L2(RY)

Dividing the latter inequality by oznqAS(O)2 (which is clearly nonzero) yields

H(l—qsnw(qx )|

L2(Rd)
H O - é g) H(l_%g’mﬂz{d
< qs<o>—2§$ S —OF HLW b, e

Recall indeed that ¢, (&) = ¢(3n€). Now, the function & — |1 — @(&)] is
continuous and tends to 1 at infinity (by the Riemann-Lebesgue lemma).
Moreover Condition (5) and the assumption that ¢(0) € (0,1) imply that it
is positive on R?. Tt follows that there exists vy > 0 such t}iat, for all £ € RY,
1 6(¢)| > 7. Hence, for all € € RY, |1 - ¢,(6)] = 1 - $(8,(6))] > v and
we deduce from (24) and Plancherel’s Equality that

| (1= dnu@o) 5|

L2(R9) 27’ H 4(0) lf" L2(v)’
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On the other hand, since W is bounded, Condition (23) implies that
5 19(3:8) — 9O _

lim su 0, (25)
so that A S
O oy g 108 =3O _

neN* cew Qn

Consequently, for all n € N*,

2|l 2r—1g |2 70 —2 2 5 el
P60 4y S HO2C o lag, + ]| 1= 603
< 6(0)72C || 9|z2qwy + L+ ISl @a) 113172

which shows that the sequence (ng(O)*lfn)neN* is bounded in L?(V). Now,
we leave it to the reader to checlf, with the same reasoning as in the proof
of Theorem 9 (see Step 2), that ¢(0)~!f, converges weakly to TMJ}g. It then
remains to establish the strong convergence.

By Lemma 11, (1 — quSn)f] converges strongly to (1 — é(o))g, which implies
that

as 71— OQ.

|a=dnal,, p, — /- d03]
It then results from (24) and (25) that

L2(R9)

2

lim sup H (1 - &n)U(QE(O)_If")

n—oo

woy < || 1003

. (26)

L2( L2(R9)

We now prove that the function ¢,, := (1_(%”)[] ((;3(0)‘1 fn) converges weakly
to (1 - (5(0))@ For every v € L?(R%), we have

(o Wpsgey = [ (1= 6uO)U GO 1) 7@ de

_ /R U(B(0) £2) () (1 = Ton(€)(€) d
= (UO) " f) (1=Ton)w) , o (20)

L2(R9)

Since (]3(0)_1 fn converges weakly to TI;,F g, U (ngS(O)_l fn) converges weakly to
UTV?/Lg = §, in L*>(R%). Moreover, Lemma 11 implies that (1 — U(;Sn)w con-
verges strongly to (1 —Ugb(O))w, in L2(R9). By the weak-strong convergence
theorem, it follows from (27) that, for every ¢ € L?(R%),

<§0na ¢>L2(Rd) - <§7 (1 - U¢(O))w>L2(Rd) = < (1 o (JB(O))@, Ql)>Lz(Rd)
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as n — 0o. Consequently,

| =)

< lim inf H ©n (28)

L2(R4) N— 00 HLZ(Rd) .

From (26) and (28), we deduce that

[n HL?(Rd) - H (1- QS(O))EJ‘

as n — oo,
L2(R)
and it follows that ,, converges strongly to (1 — é(()))g in L?(R%).
Finally, let us write U(¢(0)"1f,) = (1 — ¢n) . Since, for every n e N*,
11— an| is bounded below by v > 0, the function (1 — gﬁn)_l converges locally
uniformly on R? to the constant (1 — ¢(0))~! as n — oo, by being bounded
by 1/~. This implies that (1 — ggn)_lgon converges strongly to

(1—dn) " (1-9(0)g =3

In other words, U(¢(0)~1f,) converges strongly to U T;ig. Since the Fourier
operator is an isometry of L?, this completes the proof of the strong conver-
gence of ¢(0) 7 f, to T g. w

Figure 3 shows filters and their complements, in the cases where (ﬁ(O) =1
and ¢(0) € (0,1). It should be noticed that, in our hybrid approach, the low
frequency component of the object to be reconstructed (which correspond
to the experimental domain W) undergoes a higher level of tension between
the fit term and the regularization term. However, this extra tension can be
made as small as desired by letting ngS(O) approach 1.

Appendix: Reminder on Tikhonov regularization

Throughout this appendix, F' and G are infinite dimensional separable Hilbert
spaces whose norms are both denoted by || - ||, and T: F' — G is a compact,
injective, linear operator. The adjoint (resp. generalized inverse) of T is
denoted by T* (resp. T). The closure of a set S is denoted by cl S.

Theorem 14. (i) There exists a real sequence A\ > Ag > ... > 0 con-
verging to zero and a Hilbert basis { fx}ren+ of F such that

Vk € N*, T*Tf],C = Ae [k
(i) T7': ranT — F is unbounded, and so is T*;
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Case Ug(0)=1

0.5

0.5

y=1-Uq(0)

-3 -2 -1

Figure 3: Gaussian filters and their complements, in the cases where qB(O) =1
and ¢(0) € (0,1).

(iii) ranT is not closed, so that D(Tt) =ranT + (ranT)* C G.

PROOF. Clearly, T*T is Hermitian, compact, positive and injective. Point (i)
is then a particular instance of the spectral theorem for compact hermitian
operators. Now for all k € N*, | Tf||?> = Ag, so that

inf || Tf| = o0.
IflI=1 1771
This proves Point (ii). Finally, if ranT" were closed, it would be a Banach

space on its own, and the Open Mapping Theorem would imply continuity
of T=1. This would contradict Point (ii), thus Point (iii) is clear. =

The system
1

1
gk = ——=
VA VR

is the so-called Singular Value Decomposition of T', and the numbers /Ay
are the Singular Values of T

T fy, fx T*gg

Proposition 15. The family {gx}ren+ is a Hilbert basis of clranT.
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PROOF. For all k,l € N*,

1 1 " B ﬁ B
<gkagl> - \/m<Tfkanl> - \/m<fk‘aT Tfl> - \/;(fkafﬁ - 5kla

where d; is the Kronecker symbol. Thus {gx }xen+ is an orthonormal family
in G. Let us show that clvect{gy }ren+ = clran A. Clearly, vect{ g tren+ C
ranT, so that clvect{gy}ren+ C clranT. On the other hand, recall that

F={> arfe] ) |low|* < oo}, so that

ran A = {Zak\/ggk > lal* < OO} = {Zﬁkgk
k k k

Since Y4 [Bel?/ Ak < 00 = >, | B]? < 00, we see that

ran A C {Zﬁkgk
k

and the result follows. »

| B |2
zk: " <oo}.

Z 1Be|? < oo} = clvect(g),
k

Proposition 16. (i) Forall f€ F, Tf =3, - )\,16/2<f, Jr)gr;
(i) Jor all g € G, T*g = S (9, 1) fis

(iii) for allge D(TT), TTg=73", A;1/2<979k>fk-

PROOF. It is an easy exercise. =

Proposition 17. Let a be a position number, and let I denote the identity
of F. Then T*T + ol is bi-continuous and fo = (T*T + «I)~YT*g is the
unique minimaizer of

1 a
Fofesllg =TI+ SIFIP
2 2
Moreover, f, depends continuously on g € G.

PROOF. By Theorem 14(i), T*T + ol is diagonalizable, with eigenvalues
AM+a>X+a>...>a ltis then clear that T*T + «f is bi-continuous.
Now, let f € F and let h:= f — f,. For all t € R, let

O(t) := F(fa +th).
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Clearly, ®(t) is of the form at? + bt + ¢, with a, b, ¢ real and a nonnegative.
Thus ® is convex. Moreover,

®'(0) = Re ((T*T fo — T*g + afa, b)) = 0.

Thus, ® reaches its minimum at 0. In particular, ®(0) < (1), that is to
say, F(fo) < F(f). Since this is true for every f € F, we deduce that f,
minimizes F. The uniqueness of the minimizer is a consequence of the strict
convexity of F. As for the continuous dependence, it results immediately
from the continuity of the operator (T*T + al)~!. =

Theorem 18. Let f, be defined as above. Then f, converges strongly to
ftr==Trgasal0.

PROOF. Let us first evaluate the difference f™ — f,. We have:

(T*T +al)(f* = fa) = TTf"+aft —(T*T +al)(T*T + al) "' T*g
= T'g+af" =T
= aff,

whence the equality fT — fo, = a(T*T + o)~ f*. Next, we express (T*T +
al)™! in terms of the orthogonal projections Py onto the one-dimensional
subspaces vect fi, where {fx}ren+ is the Hilbert basis exhibited in Theo-
rem 14. Since

Vk € N*, T*Tfy = Afi and VfEF, f=> (f fi)fr.
keN*

one has, for all f € F', T*Tf = >, x« Me(fs fe) fo = Dpen+ AP f. There-
fore,

(T*T + D) f = > (A + @) Pef.

keN*
Now
S L prrrant = S [ Y n+a)ns
: /\j—i-Oé J : /\j—i-a J
jEN* jEN* keN*
= > N tanf,
jeN* ]
=
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where the convergence of the series in the left hand side is justified by the
computation. Consequently,

Finally, let us prove that f, — f* as @ — 0. One has

1= fal

H a(T*T + OJ)_lfJr H2

2

(6
> Pef*
heNe A+«

- 3 (35) W

keN*

Since the series is convergent, and since, for all k£ € N*,

2
(5:%) WrmP =0 as a=o,

a dominated convergence argument shows that f, — f™ asa — 0. a
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