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Abstract. Truncated Fourier operators play an important role in
many inverse problems of Signal and Image science. A varia-
tional approach to the regularization of their pseudo-inverses is
considered. A particular regularization parameter, which can be
interpreted in terms of resolution level, appears to play the es-
sential role. This paper presents results on the behavior of the
regularized solution as this parameter tends to zero. Notably,
reasonably mild conditions are shown to ensure strong conver-
gence of the regularized solution to the pseudo-inverse of the
data.

Mathematics subject classification: 47A52 (ill-posed problems, regular-
ization) and 35A15 (variational methods).

1 Introduction

The problem of Fourier Synthesis is of central importance in many applica-
tions pertaining to signal and image processing. At a rather abstract level,
it can be formulated as follows:

Recover a function from a partial and approximate knowledge of
its Fourier transform.
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Among the many applications which belong to this general class of problems,
let us mention aperture synthesis (in astronomy and earth observation) [5],
deconvolution problems (see e.g. [6]), spectral analysis of signals (see e.g. [3])
and tomography [8, 9]. Notice that Shannon’s interpolation formula may
also be regarded as an explicit solution of a particular problem of Fourier
synthesis.
In [6, 5], Lannes et al. stated and analyzed the problem in more specific
terms, namely:

Let V and W be subsets of Rd. Assume that V is bounded and
that W has a non-empty interior. Recover f0 ∈ L2(V ) from the
knowledge of its Fourier transform on W .

Here, L2(Ω) denotes the space of square integrable complex valued functions
having their (essential) support in the set Ω ⊆ Rd. (For every p ∈ [1,∞],
Lp(Ω) is defined likewise and ‖ · ‖Lp(Ω) denotes the corresponding Lp-norm.)
In the case where W (resp. W c) is bounded, the problem is referred to
as that of Fourier extrapolation (resp. Fourier interpolation). It has been
shown [6] that the problem of Fourier extrapolation is ill-posed, whereas the
problem of Fourier interpolation is well-posed in the least square sense.
In practice, of course, the experimental data provide some knowledge of the
Fourier transform on a bounded domain. In [6, 5], an original regularization
principle for problems of Fourier extrapolation was designed. In essence,
this regularization principle consists in reformulating the problem in terms
of Fourier interpolation. It amounts to replacing the original problem of
recovering the unknown object f0 by that of recovering a limited resolution

version of it, namely, φ ∗ f0, where φ is some convolution kernel (or point

spread function). Well-known results from the approximation of Lp-functions
by mollification suggest that φ should be regarded as a member of the one-
parameter family {φβ |β > 0} defined by

φβ(x) =
1

βd
φ

(

x

β

)

, (1)

where φ ∈ L1(Rd) and
∫

Rd φ(x) dx = 1. The reconstructed object may then
be defined as the solution of the optimization problem

(Pα,β)

∣

∣

∣

∣

∣

∣

minimize
1

2

∥

∥

∥
φ̂βg − 1W f̂

∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂β)f̂

∥

∥

∥

2

L2(Rd)

s.t. f ∈ L2(V ),

in which 1W denotes the characteristic function of W , and f̂ = Uf denotes
the image of f by the Fourier operator.
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Figure 1: One-dimensional examples of functions φβ (point spread functions)

and φ̂β (filters): Gaussian case.

The regularized data φ̂βg are expected to correspond to φβ ∗f0. The regular-

ization term ‖(1− φ̂β)f̂ ‖2/2 can be interpreted as the energy of f in the high

frequency domain (the inverse of β being interpreted as a cutoff frequency),
whereas the fit term acts in the low frequency domain. Both terms are de-
signed so as to be as little in conflict as possible, which suggests that the
choice of a particular α is not as crucial as in the case of other regularization
principles. Figure 1 gives one-dimensional examples of φβ and φ̂β .
In the pioneering works [6, 5], convergence analysis was not investigated.
More precisely, one may (and one should) wonder about the destination of
the reconstructed object when α and/or β converge to zero. This is the main
purpose of this article. Let us emphasize that β appears here as the essential
regularization parameter and that, consequently, the above regularization
scheme is in fact quite different from Tikhonov’s approach (in which α is the
important parameter).
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The paper is organized as follows. In Section 2, we review basic facts about
Fourier synthesis. Ill-posedness of the Fourier extrapolation problem is out-
lined, as well as well-posedness of the Fourier interpolation problem. In
Section 3, we consider the behavior of the solution of (Pα,β) as Tikhonov’s
parameter α goes to zero. This reveals difficulties which tend to confirm
that β is the fundamental parameter of this regularization principle. In Sec-
tion 4, we prove that the solution of (Pα,β) converges, as β tends to zero, to
the Moore-Penrose inverse of the data g, under some regularity condition of
the latter as well as conditions on the underlying point spread function. In
the last section, the previous assumptions are somewhat relaxed, providing
a regularization scheme which is morphologically less restrictive.

Notation: We shall denote by TΩ the operator

TΩ : L2(V ) −→ L2(Ω)

f 7−→ TΩf := 1Ωf̂ = 1ΩUf.

Operators of this form will be referred to as truncated Fourier operators.
The set of all continuous functions on Rd which vanish at infinity will be
denoted by C0(R

d). The closed ball of Rd centered at the origin of radius r
will be denoted by Br.

Standing Assumption: Throughout, V and W are bounded subsets of Rd

with non-empty interiors1.

2 Ill-posedness and regularization

In this section, we review a few fundamental facts about Fourier synthesis.
These results originate from [6]. For the sake of completeness, however, most
statements will be proved. In fact, our setting as well as some of the proofs
are somewhat different from those given in [6].

2.1 Fourier extrapolation

Proposition 1. The linear operator TW is compact and injective. The Her-
mitian operator T ⋆

WTW is diagonalizable in a Hilbert basis {fk}k∈N∗, and the
eigenvalues are the values taken by a sequence λ1 ≥ λ2 ≥ . . . > 0 which

1 Assuming that int V 6= ∅ and that W is bounded implies that ker T ⋆
W = {0}. For

details, see Remark 3. Most of the results of this paper would still be true without the
assumption int V 6= ∅, but such an assumption is entirely natural and will simplify our
developments.
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converges to zero. The inverse T−1
W : ranTW → L2(V ) is unbounded and so

is the pseudo-inverse T+
W . Moreover, ranT−1

W is not closed.

Proof. Notice first that, for all f ∈ L2(V ) and all ξ ∈ Rd,

(TW f)(ξ) =

∫

Rd

e−2iπ〈x,ξ〉
1V (x)1W (ξ)f(x) dx.

Since V and W are bounded, the kernel

α(x, ξ) := e−2iπ〈x,ξ〉
1V (x)1W (ξ)

belongs to L2(Rd ×Rd), which shows that TW is Hilbert-Schmidt (thus com-
pact). Now, recall that the Fourier transforms of compactly supported func-
tions are entire functions, which implies that they are completely determined
by their values on the setW (since we assume thatW has nonempty interior).
Consequently, TW is injective. The proposition then results from Theorem 14
(see the appendix).

Proposition 2. The largest eigenvalue λ1 of T ⋆
WTW is strictly less than 1.

Proof. An easy computation shows that, for all g ∈ L2(W ), T ⋆
W g =

1V U
−1g, so that T ⋆

WTW = 1V U
−1

1WU and

λ2
1 = ‖T ⋆

WTW f1‖2
L2(V ) =

∫

V

∣

∣U−1
1WUf1

∣

∣

2

≤
∫

Rd

∣

∣U−1
1WUf1

∣

∣

2
=

∫

W

∣

∣Uf1

∣

∣

2
,

where the last equality results from Plancherel’s Theorem; the last integral
is strictly less than 1, for otherwise Uf1 would vanish on the complement
of W , thus on Rd (since it is analytic), in contradiction with the fact that
f1 6= 0.

We end this subsection by a remark on the domain of the Moore-Penrose
pseudo-inverse T+

W of TW (see also Footnote 1 on Page 4).

Remark 3. It is well known that D(T+
W ), the domain of T+

W , satisfies

D(T+
W ) = ranTW + kerT ⋆

W = ranTW + (ranTW )⊥.

In our context, T ⋆
W is injective, again as a consequence of the analyticity of

Fourier transforms of compactly supported function. It follows that D(T+
W ) =

ranTW = D(T−1
W ), and that T−1

W and T+
W coincide. Nevertheless, we shall use

T+
W instead of T−1

W throughout, in order to emphasize that our developments
remain true in a more general framework.
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2.2 Fourier regularization

Let us first introduce the problem of Fourier interpolation, which consists in
inverting the truncated Fourier operator TΩ, in which Ω is assumed to have
a bounded complement (and a nonempty interior).

Proposition 4. Let us assume that Ω ⊆ Rd is such that Ωc is bounded.
Then,

(i) TΩ is bounded and injective;

(ii) ranTΩ is closed;

(iii) T−1
Ω : ranTΩ → L2(V ) is bounded.

Proof. It is readily seen that T ⋆
ΩTΩ = I − T ⋆

ΩcTΩc , in which I denotes the
identity of L2(V ). From the properties of the Fourier extrapolation problem,
we deduce that T ⋆

ΩTΩ can be diagonalized, and that its eigenvalues are the
values of a sequence 0 < µ1 ≤ µ2 ≤ . . . < 1 which converges to 1. As a
matter of fact, µk = 1−λk(T

⋆
ΩcTΩc) for all k, and Proposition 2 ensures that

0 < µ1. Consequently, both

T ⋆
ΩTΩ : L2(V ) → ran(T ⋆

ΩTΩ) and TΩ : L2(V ) → ranTΩ

have continuous inverses, and ranTΩ is closed.

As pointed out in [6], this suggests to regularize the Fourier extrapolation
problem by reformulating it in terms of Fourier interpolation. In a rough
version of this approach, the reconstructed object is defined as the minimizer
of a functional of the form

1

2
‖g − TW f ‖2

L2(W ) +
1

2
‖1Wβ

Uf ‖2
L2(Wβ),

where Wβ is the complement of the ball B1/β centered at the origin of radius
1/β. The parameter β is chosen small enough to ensure that Wβ ∩W = ∅.
Clearly, this amounts to interpolate the Fourier transform on (Wβ ∪ W )c

from its knowledge on Wβ ∪W . The assigned value on Wβ is zero, which
is reminiscent of the well-known zero filling techniques. We stress, however,
that a certain amount of interpolation (which depends on the value of β) is
actually performed here, and that this formulation is variational in essence.
Notice that the standard Tikhonov regularizer, namely,

1

2

∥

∥f
∥

∥

2

L2(Rd)
=

1

2

∥

∥Uf
∥

∥

2

L2(Rd)
,
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constrains Uf everywhere in Rd, which cannot be optimal for the inverse
problem under consideration.
It is important to realize that the new objective is no longer the reconstruc-
tion of the original object f0, but that of a lower resolution version of it,
namely, φβ ∗ f0, where the Fourier transform of φβ is the characteristic func-
tion of the ball B1/β . Since φβ is a (radial) sinc function, it seems more
appropriate to introduce some apodization. For obvious morphological rea-
sons, the point spread function φβ should be (essentially) positive, isotropic
and radially decreasing. We are then led to define the reconstructed object
as the solution of Problem (Pα,β) above2. Throughout, the apodized point

spread function will be of the form given in Equation (1), where φ is assume
to be a non-trivial integrable function.

We shall prove in Proposition 6 below that Problem (Pα,β) is well-posed.
A detailed account of the behavior of the solution of (Pα,β) as α ↓ 0 (and
β fixed) will be given in the next section. Although the well-posedness of
Problem (Pα,β) is a rather immediate consequence of Proposition 4, we adopt
here a different viewpoint. This approach will bring us back to Tikhonov’s
regularization theory, as reviewed in the appendix. The key point lies in
Lemma 5 below. Let β > 0 be fixed and let, for every f1, f2 ∈ L2(V ),

〈f1, f2〉β :=

∫

Rd

|1 − φ̂β |2Uf1Uf2. (2)

Lemma 5. The sesquilinear mapping 〈·, ·〉β is an inner product which turns
L2(V ) into a Hilbert space. The corresponding norm ‖ · ‖β is equivalent to
the original L2-norm.

Proof. The first part of the lemma is an easy exercise, and we only prove
the equivalence of the norms. Since φβ is assumed to be integrable, φ̂β is
continuous and vanishes at infinity. Therefore, there exists R > 0 such that

inf
‖ξ‖≥R

|1 − φ̂β(ξ)| ≥ 1

2
.

2Notice that the support of φβ ∗ f0 is clearly expected to be larger that V . In practice,
it may therefore be suitable to replace V by a larger set V ′ in (Pα,β). However, it is clear
that the injectivity of TW is crucial, so that chosing (the closure of) supp φβ + V may not
be possible (for example, a Gaussian φ would lead to the choice V ′ = Rd). Moreover, our
analysis would remain true with any bounded V ′ ⊃ V in place of V , and since L2(V ) is
then obviously contained in L2(V ′), we shall merely ignore this distinction.
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By Proposition 4, TBc
R

: L2(V ) → ranTBc
R

is bi-continuous, so that, for all

f ∈ L2(V ),

∥

∥f
∥

∥

β
≥ 1

2

∥

∥TBc
R
f
∥

∥

L2(Bc
R)

≥ 1

2
∥

∥T−1
Bc

R

∥

∥

∥

∥f
∥

∥

L2(V )
.

On the other hand, Plancherel’s Equality implies that, for all f ∈ L2(V ),

∥

∥f
∥

∥

β
≤ sup

ξ∈Rd

∣

∣

∣
1 − φ̂β(ξ)

∣

∣

∣

∥

∥f̂
∥

∥

L2(Rd)
= sup

ξ∈Rd

∣

∣

∣
1 − φ̂β(ξ)

∣

∣

∣

∥

∥f
∥

∥

L2(V )
.

Proposition 6. Let α, β > 0 be fixed. Then (Pα,β) has a unique solution
fα,β, which depends continuously on g ∈ L2(W ).

Proof. Clearly, Problem (Pα,β) can then be rewritten as:

(P ′
α,β)

∣

∣

∣

∣

∣

∣

minimize
1

2

∥

∥

∥
φ̂βg − TW f

∥

∥

∥

2

L2(W )
+
α

2
‖f ‖2

β

s.t. f ∈ L2(V ).

From the classical theory of Tikhonov’s regularization (see the appendix,
Proposition 17) the unique solution of (P ′

α,β) is given by

fα,β = (T#
W TW + αI)−1T#

W (φ̂βg),

in which T#
W denotes the adjoint of TW with respect to the new inner product

〈·, ·〉β. The conclusion then follows from Lemma 5 and the continuity of the

multiplication g 7→ φ̂βg in L2(W ).

3 Tikhonov-like regularization

In this section, we fix β > 0 and we investigate the behavior of the solution
of (Pα,β) as α ↓ 0. This leads us to consider the following limit problem:

(P0,β)

∣

∣

∣

∣

∣

∣

minimize
1

2

∥

∥

∥
φ̂βg − TW f

∥

∥

∥

2

s.t. f ∈ L2(V ).

One may indeed wonder whether the solution of (Pα,β) converges to that
of (P0,β) under the usual condition that g ∈ D(T+

W ). This simple question
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raises the following important conceptual difficulty: does Problem (P0,β)

have any solution at all, that is to say, does the regularized datum φ̂βg
belong to D(T+

W ) ? This condition, which we shall discuss later on (see
Proposition 8 below), turns out to be necessary and sufficient for the norm
of the reconstructed object fα,β not to diverge to infinity as α ↓ 0.

Theorem 7. Let β > 0 be fixed and let g ∈ D(T+
W ).

(i) If φ̂βg ∈ D(T+
W ), then the unique solution fα,β ∈ L2(V ) of (Pα,β)

converges strongly in L2(V ), as α ↓ 0, to the unique solution of (P0,β),

namely, T+
W (φ̂βg).

(ii) If φ̂βg /∈ D(T+
W ), then ‖fα,β‖L2(V ) tends to infinity as α ↓ 0.

Proof.

i. On rewriting (Pα,β) as (P ′
α,β), this point is an immediate consequence

of the Tikhonov classical theory (see the appendix, Theorem 18) and
Lemma 5.

ii. Assume that φ̂βg /∈ D(T+
W ), that is to say, that (P0,β) has no solution.

Suppose, in order to obtain a contradiction, that ‖fα,β‖ does not tend
to infinity as α ↓ 0. There then exists a positive sequence (αn)n∈N∗

converging to 0 which is such that the sequence (fn)∈N∗ defined by

fn := fαn,β

is bounded in L2(V ). By the Weak Compactness Theorem, taking
a subsequence if necessary, we can assume that (fn)n∈N∗ converges
weakly to some f ′ in L2(V ). Writing that fn is the solution of (Pαn,β),
we find that, for every f ∈ L2(V ),

1

2

∥

∥

∥
φ̂βg − TW fn

∥

∥

∥

2

L2(W )
+
αn

2
‖(1 − φ̂β)f̂n‖2

L2(Rd)

≤ 1

2

∥

∥

∥
φ̂βg − TW f

∥

∥

∥

2

L2(W )
+
αn

2
‖(1 − φ̂β)f̂ ‖2

L2(Rd). (3)

It is obvious that φ̂βg − TW fn converges weakly to φ̂βg − TW f ′ as
n→ ∞. Hence, we have

∥

∥

∥
φ̂βg − TW f ′

∥

∥

∥

L2(W )
≤ lim inf

n→∞

∥

∥

∥
φ̂βg − TW fn

∥

∥

∥

L2(W )
.
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Letting n→ ∞ in (3) now yields the inequality:

1

2

∥

∥

∥
φ̂βg − TW f ′

∥

∥

∥

2

L2(W )
≤ 1

2

∥

∥

∥
φ̂βg − TW f

∥

∥

∥

2

L2(W )
;

notice indeed that

αn

2
‖(1 − φ̂β)f̂n‖2

L2(Rd) ≤
αn

2
sup
ξ∈Rd

∣

∣

∣
1 − φ̂β(ξ)

∣

∣

∣
‖fn‖2

L2(V ) → 0,

since αn → 0 and (fn)n∈N∗ is bounded in L2(V ). We have then proved
that f ′ is a solution of (P0,β), which is the desired contradiction.

The next proposition will show that, in Theorem 7, the second alternative
occurs quite often.

Proposition 8. Let φ ∈ L1(Rd) be such that φ̂ is analytic. Then, for every
β > 0 and g ∈ D(T+

W ), φ̂βg ∈ D(T+
W ) if and only if supp(φβ ∗ T+

W g) ⊆ V .

Proof. By the analytic continuation theorem, g̃ := UT+
W g is the unique

analytic extension of g on Rd. If supp(φβ ∗T+
W g) ⊆ V , then φβ ∗T+

W g ∈ L2(V )

and U(φβ ∗ T+
W g) = φ̂β g̃. It is then obvious that A(φβ ∗ T+

W g) = φ̂βg.
Assume now that supp(φβ ∗T+

W g) is strictly larger than V . Suppose, in order

to obtain a contradiction, that φ̂βg ∈ D(T+
W ). In our context, D(T+

W ) =

ranTW and there exists f ∈ L2(V ) such that 1WUf = φ̂βg. As the product

of two analytic functions, φ̂β g̃ is analytic, and it coincides with the entire
function Uf on W . Since intW 6= ∅, the analytic continuation theorem
shows that Uf = φ̂β g̃. Taking inverse Fourier transforms yields the equality
f = φβ ∗ (U−1g̃) (in L2(Rd)). Then,

f = φβ ∗ (U−1UT+
W g) = φβ ∗ T+

W g (in L2(Rd)).

This contradicts our working assumption on the support of (φβ ∗ T+
W g).

At a first sight, the last proposition may be regarded as a serious drawback of
the whole regularization methodology. Together with Theorem 7 (i), it says
in particular that point spread functions with non-compact support (such as
the Gaussian kernel shown in Figure 1) give rise to somewhat inconsistent
regularization schemes. We believe instead that this only stresses the fact
that α should not be considered as the fundamental regularization parameter.
As it may already be clear to the reader, the parameter playing the essential
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role in (Pα,β) is β. This motivates the next sections, in which we shall obtain
results on the behavior of fα,β as β goes to zero.
In the Tikhonov regularization theory (see the appendix), the spectral de-
composition of T ⋆T + αI appears as the main tool. Clearly, the fact that
the eigenspaces do not change with α is one of the keys to the convergence
theorem (Theorem 18). As we shall see, the results of the next sections do
not rely on any spectral argument (at least, we where not able to exhibit
an inner product leaving the eigenspaces invariant with β). This is why the
techniques to be used pertain essentially to variational analysis.

4 Mollification

Theorem 9. Let α > 0 be fixed and φ ∈ L1(Rd) be such that
∫

Rd φ(x)dx = 1,

that is to say φ̂(0) = 1. Assume that there exists s > 0 such that

∣

∣

∣
1 − φ̂(ξ)

∣

∣

∣
∼ξ→0

∥

∥ξ
∥

∥

s
, (4)

up to a positive multiplicative constant. Assume in addition that

∀ξ ∈ Rd \ {0}, φ̂(ξ) 6= 1. (5)

Let g ∈ D(T+
W ) be such that

∫

Rd

∥

∥ξ
∥

∥

2s ∣
∣ g̃(ξ)

∣

∣

2
dξ <∞, (6)

where g̃ is the unique analytic extension of g on Rd. Then, the unique solu-
tion fα,β of Problem (Pα,β) converges strongly to T+

W g in L2(V ).

The proof of Theorem 9 relies on two technical lemmas, which we establish
now.

Lemma 10. Let φ be as in the theorem, and let

mβ := min
‖ξ‖=1

∣

∣

∣
1 − φ̂(βξ)

∣

∣

∣

2
and Mβ := max

‖ξ‖=1

∣

∣

∣
1 − φ̂(βξ)

∣

∣

∣

2
. (7)

We then have the following properties:

(i) For all β > 0, 0 < mβ ≤Mβ ≤
(

1 + ‖φ‖L1(Rd)

)2
;

(ii) supβ>0(Mβ/mβ) <∞ and Mβ tends to zero as β ↓ 0;

11



(iii) there exist positive constants ν0 and C0 such that, for every β ∈ (0, 1]
and every ξ ∈ Rd \ {0},

ν0

(

‖ξ‖2s
1B1/β

(ξ) +
1

Mβ
1Bc

1/β
(ξ)

)

≤ |1 − φ̂(βξ)|2
|1 − φ̂(βξ/‖ξ‖)|2

≤ C0‖ξ‖2s.

Proof.

(i) By the Riemann-Lebesgue Lemma, φ̂ ∈ C0(R
d) and ‖φ̂‖L∞(Rd) ≤

‖φ‖L1(Rd). We deduce, in particular, that Mβ ≤ (1 + ‖φ‖L1(Rd))
2.

Moreover, (5) implies that |1− φ̂| is positive on Rd \ {0} and it follows
that mβ > 0, as the infimum of a continuous and positive function on
a compact set.

(ii) The continuity and positivity, on Rd \ {0}, of |1 − φ̂| also imply that
the ratio Mβ/mβ is continuous with respect to β > 0. Moreover, since

φ̂ ∈ C0(R
d), we see that |1 − φ̂(ξ)| tends to 1 as ‖ξ‖ → ∞. It follows

that Mβ/mβ tends to 1 as β → ∞. On the other hand, Condition (4)
implies that Mβ/mβ also tends to 1 as β ↓ 0. Since the ratio Mβ/mβ

has finite limits as β ↓ 0 and as β → ∞, it must be bounded above on
(0,∞). Finally, Condition (4) clearly implies that Mβ goes to zero as
β ↓ 0.

(iii) By (4), |1− φ̂(ξ)|2/‖ξ‖2s tends to some positive constant C as ξ → 0.
In particular, there exists r > 0 such that

∀ξ ∈ Br,
C

2
‖ξ‖2s ≤ |1 − φ̂(ξ)|2 ≤ 2C‖ξ‖2s. (8)

Let r0 := min{1, r}, and let

m := min
{r0≤‖ξ‖≤1}

∣

∣

∣
1 − φ̂(ξ)

∣

∣

∣

2
and M := max

{r0≤‖ξ‖≤1}

∣

∣

∣
1 − φ̂(ξ)

∣

∣

∣

2
.

We have 0 < m ≤M <∞ and, for all ξ such that r0 ≤ ‖ξ‖ ≤ 1,

m‖ξ‖2s ≤ m ≤
∣

∣

∣
1 − φ̂(ξ)

∣

∣

∣

2
≤M ≤ M

r2s
0

∥

∥ξ
∥

∥

2s
. (9)

Let ν1 := min{m,C/2} and C1 := max{M/r2s
0 , 2C}. Then, ν1 and C1

are positive and (8) and (9) imply that, for all ξ such that |ξ | ≤ 1,

ν1

∥

∥ξ
∥

∥

2s ≤
∣

∣

∣
1 − φ̂(ξ)

∣

∣

∣

2
≤ C1

∥

∥ξ
∥

∥

2s
. (10)

12



Consequently, for every β ∈ (0, 1] and every ξ ∈ B1/β \ {0},

ν1β
2s‖ξ‖2s ≤ |1 − φ̂(βξ)|2 ≤ C1β

2s‖ξ‖2s,

ν1β
2s ≤ |1 − φ̂(βξ/‖ξ‖)|2 ≤ C1β

2s.

Since all terms of the last inequality are positive, we deduce that, for
every β ∈ (0, 1] and every ξ ∈ B1/β \ {0},

ν1

C1
‖ξ‖2s ≤ |1 − φ̂(βξ)|2

|1 − φ̂(βξ/‖ξ‖)|2
≤ C1

ν1
‖ξ‖2s. (11)

Let now

m′ := min
{‖ξ‖>1}

∣

∣

∣
1 − φ̂(ξ)

∣

∣

∣

2
and M ′ := max

{‖ξ‖>1}

∣

∣

∣
1 − φ̂(ξ)

∣

∣

∣

2
.

The fact that ξ 7→ |1− φ̂(ξ)| is positive and continuous on Rd \{0} and
that it tends to 1 as ‖ξ‖ → ∞ clearly implies that 0 < m′ ≤M ′ <∞.
Thus, for every β ∈ (0, 1] and every ξ such that ‖ξ‖ ≥ 1/β,

m′

Mβ
≤ |1 − φ̂(βξ)|2

|1 − φ̂(βξ/‖ξ‖)|2
≤ M ′

mβ
.

Moreover, (10) implies that mβ ≤ C1β
2s, so that

M ′

mβ
≤ M ′

C1β2s
≤ M ′

C1
‖ξ‖2s.

We have then proved that, for every β ∈ (0, 1] and every ξ such that
‖ξ‖ ≥ 1/β,

m′

Mβ
≤ |1 − φ̂(βξ)|2

|1 − φ̂(βξ/‖ξ‖)|2
≤ M ′

C1
‖ξ‖2s. (12)

Finally, let ν0 := min{ν1/C1,m
′} and C0 := max{C1/ν1,M

′/C1}.
Then, ν0 and C0 are positive, and (11) and (12) yield the desired
inequality.

Lemma 11. Let φ ∈ L1(Rd) and, for β > 0, define φβ as in (1). Then, for

every ψ ∈ L2(Rd), φ̂βψ converges strongly to φ̂(0)ψ in L2(Rd) as β ↓ 0.

13



Proof. Let a :=
∫

Rd φ(x) dx = φ̂(0) and f := U−1ψ ∈ L2(Rd). Well-known
results on the approximation of Lp-functions by mollification say that φβ ∗ f
converges strongly to af as β ↓ 0. Taking the Fourier transform (which is
an isometry of L2(Rd)), we see that U(φβ ∗ f) = φ̂βψ converges strongly to

aψ = φ̂(0)ψ in L2(Rd).

Proof of the theorem. The proof is divided in three steps. In Step 1,
we derive an L2-estimate of fα,β which does not depend on β. In Step 2, we
establish the weak convergence of fα,β to T+

W g. Finally, in Step 3, we use a
compactness argument to show that the convergence is indeed strong.

Step 1: L2-estimate. For all f ∈ L2(V ),

1

2

∥

∥

∥
φ̂βg − TW fα,β

∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂β)f̂α,β

∥

∥

∥

2

L2(Rd)

≤ 1

2

∥

∥

∥
φ̂βg − TW f

∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂β)f̂

∥

∥

∥

2

L2(Rd)
.

Let us take f = T+
W g. Then,

1

2

∥

∥

∥
φ̂βg − TW fα,β

∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂β)f̂α,β

∥

∥

∥

2

L2(Rd)

≤ 1

2

∥

∥

∥
φ̂βg − TWT+

W g
∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂β)UT+

W g
∥

∥

∥

2

L2(Rd)
. (13)

Let us recall that UT+
W g is the unique analytic extension of g on Rd, that

is to say UT+
W g = g̃. Since TWT+

W g = g, Inequality (13) can be written as
follows:

1

2

∥

∥

∥
φ̂βg − TW fα,β

∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂β)f̂α,β

∥

∥

∥

2

L2(Rd)

≤ 1

2

∥

∥

∥
(1 − φ̂β)g

∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂β)g̃

∥

∥

∥

2

L2(Rd)
.

In particular,

α

2

∥

∥

∥
(1 − φ̂β)f̂α,β

∥

∥

∥

2

L2(Rd)
≤ 1

2

∥

∥

∥
(1 − φ̂β)g̃

∥

∥

∥

2

L2(Rd)
+
α

2

∥

∥

∥
(1 − φ̂β)g̃

∥

∥

∥

2

L2(Rd)
.

and, dividing by α/2, it follows that

∥

∥

∥
(1 − φ̂β)f̂α,β

∥

∥

∥

2

L2(Rd)
≤ 1 + α

α

∥

∥

∥
(1 − φ̂β)g̃

∥

∥

∥

2

L2(Rd)
. (14)

14



For every ξ ∈ Rd \ {0},

1 − φ̂β(ξ) = 1 − φ̂(βξ) =
(

1 − φ̂(βξ/‖ξ‖)
) 1 − φ̂(βξ)

1 − φ̂(βξ/‖ξ‖)
.

Recall indeed that Condition (5) ensures that we do not divide by 0. We
then see that (14) can be written as

∫

Rd

∣

∣

∣
1 − φ̂(βξ/‖ξ‖)

∣

∣

∣

2 |1 − φ̂(βξ)|2
|1 − φ̂(βξ/‖ξ‖)|2

|f̂α,β(ξ)|2 dξ

≤ 1 + α

α

∫

Rd

|1 − φ̂(βξ/‖ξ‖)|2 |1 − φ̂(βξ)|2
|1 − φ̂(βξ/‖ξ‖)|2

|g̃(ξ)|2 dξ.

Defining mβ and Mβ as in (7), we deduce that

mβ

∫

Rd

|1 − φ̂(βξ)|2
|1 − φ̂(βξ/‖ξ‖)|2

|f̂α,β(ξ)|2 dξ

≤ 1 + α

α
Mβ

∫

Rd

|1 − φ̂(βξ)|2
|1 − φ̂(βξ/‖ξ‖)|2

|g̃(ξ)|2 dξ.

By Lemma 10 (i), we can divide this inequality by mβ > 0 and obtain

∫

Rd

|1 − φ̂(βξ)|2
|1 − φ̂(βξ/‖ξ‖)|2

|f̂α,β(ξ)|2 dξ

≤ 1 + α

α

Mβ

mβ

∫

Rd

|1 − φ̂(βξ)|2
|1 − φ̂(βξ/‖ξ‖)|2

|g̃(ξ)|2 dξ.

By Lemma 10 (iii), it is now easy to deduce from the above inequality that
if β ∈ (0, 1], then

ν0

∫

Rd

(

1B1/β
(ξ)‖ξ‖2s +

1

Mβ
1Bc

1/β
(ξ)

)

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

≤ 1 + α

α

Mβ

mβ
C0

∫

Rd

∥

∥ξ
∥

∥

2s ∣
∣ g̃(ξ)

∣

∣

2
dξ ≤ 1 + α

α
C0C1,

where

C1 :=

(

sup
β>0

Mβ

mβ

)

∫

Rd

∥

∥ξ
∥

∥

2s ∣
∣ g̃(ξ)

∣

∣

2
dξ.
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Notice that Lemma 10 (ii) and Assumption (6) imply that C1 is a finite
(positive) real number. At this stage of the proof, we have established the
following key estimate: for all β ∈ (0, 1],

ν0

∫

‖ξ‖≤1/β
‖ξ‖2s

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ +

ν0

Mβ

∫

‖ξ‖>1/β

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

≤ 1 + α

α
C0C1. (15)

Since β ∈ (0, 1], the first term of the left hand side of the above inequality
is bounded below as follows:

ν0

∫

‖ξ‖≤1/β
‖ξ‖2s|f̂α,β(ξ)|2 dξ ≥ ν0

∫

1≤‖ξ‖≤1/β
‖ξ‖2s|f̂α,β(ξ)|2 dξ

≥ ν0

∫

1≤‖ξ‖≤1/β
|f̂α,β(ξ)|2 dξ.

As for the second term, Lemma 10 (i) implies that

ν0

Mβ

∫

‖ξ‖>1/β
|f̂α,β(ξ)|2 dξ ≥ ν0

(

1 + ‖φ‖L1(Rd)

)−2
∫

‖ξ‖>1/β
|f̂α,β(ξ)|2 dξ.

We thus find that the left hand side of (15) is bounded below by

ν1

∫

‖ξ‖≥1

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ, where ν1 := ν0

(

1 + ‖φ‖L1(Rd)

)−2
.

Thus, for every β ∈ (0, 1],

ν1

∫

‖ξ‖≥1

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ ≤ 1 + α

α
C0C1. (16)

Finally, notice that the truncated Fourier operator TBc
1
: L2(V ) → ranTBc

1
is

invertible with continuous inverse (see Proposition 4). Hence, writing fα,β

as T−1
Bc

1

1Bc
1
f̂α,β , we see that

∥

∥fα,β

∥

∥

2 ≤
∥

∥

∥
T−1
Bc

1

∥

∥

∥

2
∫

‖ξ‖≥1

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ,

from which we deduce our L2-estimate: for every β ∈ (0, 1],

∥

∥fα,β

∥

∥

2

L2(V )
≤
∥

∥

∥
T−1
Bc

1

∥

∥

∥

2 (1 + α)C0C1

αν1
. (17)
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Step 2: weak convergence. In order to prove that fα,β converges weakly
to T+

W g as β ↓ 0, it suffices to show that, for every positive sequence (βn)n∈N∗

converging to zero, the sequence (fn)n∈N∗ defined by

fn := fα,βn

has a subsequence which converges weakly to T+
W g.

Let (βn)n∈N∗ and (fn)n∈N∗ be as above. It results from Step 1 that (fn) is
bounded, and thus from the Weak Compactness Theorem that there exists
a subsequence (fnk

)k∈N∗ which converges weakly to some f ′ ∈ L2(V ). We
shall prove that f ′ = T+

W g. Recall that T+
W g is the unique solution of

(P0)

∣

∣

∣

∣

∣

∣

minimize
1

2

∥

∥g − TW f
∥

∥

2

L2(W )

s.t. f ∈ L2(V )

(see Remark 3). Since fnk
is the solution of (Pα,βnk

), for every f ∈ L2(V ),

1

2

∥

∥

∥
φ̂nk

g − TW fnk

∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂nk

)f̂nk

∥

∥

∥

2

L2(Rd)

≤ 1

2

∥

∥

∥
φ̂nk

g − TW f
∥

∥

∥

2

L2(W )
+
α

2

∥

∥

∥
(1 − φ̂nk

)f̂
∥

∥

∥

2

L2(Rd)
,

where φ̂nk
:= φ̂βnk

. Consequently,

∥

∥

∥
φ̂nk

g − TW fnk

∥

∥

∥

2

L2(W )

≤
∥

∥

∥
φ̂nk

g − TW f
∥

∥

∥

2

L2(W )
+ α

∥

∥

∥
(1 − φ̂nk

)f̂
∥

∥

∥

2

L2(Rd)
. (18)

Let k tend to ∞ in this inequality. On the one hand, Lemma 11 implies that
φ̂nk

g converges strongly to φ̂(0)g = g in L2(W ), as k → ∞. Moreover, it is
clear that TW fnk

converges weakly to TW f ′. It follows that φ̂nk
g − TW fnk

converges weakly to g − TW f ′, so that

∥

∥g − TW f ′
∥

∥

2

L2(W )
≤ lim inf

k→∞

∥

∥

∥
φ̂nk

g − TW fnk

∥

∥

∥

2

L2(W )
.

On the other hand, φ̂nk
g − TW f converges strongly to g − TW f and (1 −

φ̂nk
)f̂ = f̂ − φ̂nk

f̂ converges strongly to f̂ − f̂ = 0 by Lemma 11 again. We
deduce that the right hand side of (18) converges to ‖g−TW f ‖2

L2(W ), so that

∥

∥g − TW f ′
∥

∥

2

L2(W )
≤
∥

∥g − TW f
∥

∥

2

L2(W )
.
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Since f ∈ L2(V ) is arbitrary, we see that f ′ must be the unique solution
of (P0).

Step 3: strong convergence. For every h ∈ Rd and every f ∈ L2(Rd), let
Thf denote the translated function x 7→ f(x−h). Let (βn)n∈N∗ and (fn)n∈N∗

be as in Step 2. It results from Step 1 that (fn)n∈N∗ is bounded. Moreover,
since (fn)n∈N∗ ⊂ L2(V ) and V is bounded, it is clear that

lim
R→∞

sup
n∈N∗

∫

‖x‖>R

∣

∣fn(x)
∣

∣

2
dx = 0.

Now, if we can prove that

sup
n∈N∗

∥

∥Thfn − fn

∥

∥

L2(Rd)
→ 0 as ‖h‖ → 0, (19)

a classical relative compactness theorem (see e.g. [4], Theorem 3.8 page 175)
will then show that (fn)n∈N∗ is precompact. Combined with the weak conver-
gence of (fn)n∈N∗ to T+

W g obtained in Step 2, this will establish the claimed
strong convergence. We thus proceed to prove (19).
We have UThfα,β = e−2iπ〈h,·〉f̂α,β and Plancherel’s Equality implies that

∥

∥Thfα,β − fα,β

∥

∥

2

L2(Rd)
=

∥

∥U (Thfα,β − fα,β)
∥

∥

2

L2(Rd)

=

∫

Rd

∣

∣

∣
e−2iπ〈h,ξ〉 − 1

∣

∣

∣

2 ∣
∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

= I1 + I2, (20)

where

I1 :=

∫

‖ξ‖≤1/β

∣

∣

∣
e−2iπ〈h,ξ〉 − 1

∣

∣

∣

2 ∣
∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

and

I2 :=

∫

‖ξ‖>1/β

∣

∣

∣
e−2iπ〈h,ξ〉 − 1

∣

∣

∣

2 ∣
∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ.

Let us estimate the first integral:

I1 =

∫

0<‖ξ‖≤1/β

|e−2iπ〈h,ξ〉 − 1|2
‖ξ‖2s′

∥

∥ξ
∥

∥

2s′
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

≤ sup
ξ 6=0

|e−2iπ〈h,ξ〉 − 1|2
‖ξ‖2s′

∫

‖ξ‖≤1/β

∥

∥ξ
∥

∥

2s′
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ,
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where s′ := min{1, s}. Using the change of variable ξ′ = ‖h‖ξ (for h 6= 0),
we have:

sup
ξ 6=0

|e−2iπ〈h,ξ〉 − 1|2
‖ξ‖2s′

=
∥

∥h
∥

∥

2s′
sup
ξ′ 6=0

|e−2iπ〈‖h‖−1h,ξ′〉 − 1|2
‖ξ′‖2s′

.

Since |e−2iπ〈‖h‖−1h,ξ′〉 − 1| = O(‖ξ′‖) near the origin, it is clear that there
exists a positive constant C2 such that, for every h ∈ Rd \ {0},

sup
ξ′ 6=0

|e−2iπ〈‖h‖−1h,ξ′〉 − 1|2
‖ξ′‖2s′

≤ C2.

It follows that

I1 ≤ C2‖h‖2s′
∫

‖ξ‖≤1/β

∥

∥ξ
∥

∥

2s′
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ.

Since ‖ξ‖2s′ ≤ 1 + ‖ξ‖2s, we deduce that

I1 ≤ C2

∥

∥h
∥

∥

2s′
(

∫

‖ξ‖≤1/β

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ +

∫

‖ξ‖≤1/β

∥

∥ξ
∥

∥

2s
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

)

≤ C2

∥

∥h
∥

∥

2s′
(

∥

∥

∥
f̂α,β

∥

∥

∥

2

L2(Rd)
+

∫

‖ξ‖≤1/β

∥

∥ξ
∥

∥

2s
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

)

= C2

∥

∥h
∥

∥

2s′
(

∥

∥fα,β

∥

∥

2

L2(V )
+

∫

‖ξ‖≤1/β

∥

∥ξ
∥

∥

2s
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

)

,

thanks to Plancherel’s Equality. By (17), we deduce that, for β ∈ (0, 1],

I1 ≤ C2

∥

∥h
∥

∥

2s′
(

∥

∥

∥
T−1
Bc

1

∥

∥

∥

2 (1 + α)C0C1

αν1
+

∫

‖ξ‖≤1/β

∥

∥ξ
∥

∥

2s
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ

)

.

Since, by (15),

∫

‖ξ‖≤1/β

∥

∥ξ
∥

∥

2s
∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ ≤ (1 + α)C0C1

αν0
≤ (1 + α)C0C1

αν1
,

we finally get:

I1 ≤ C2

∥

∥h
∥

∥

2s′ (1 + α)C0C1

αν1

(

1 +
∥

∥

∥
T−1
Bc

1

∥

∥

∥

2
)

.
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It remains to estimate the second integral. By (15), we have:

I2 ≤ 4

∫

‖ξ‖>1/β

∣

∣

∣
f̂α,β(ξ)

∣

∣

∣

2
dξ ≤ 1 + α

α

C0C1

ν0
Mβ ≤ 1 + α

α

C0C1

ν1
Mβ .

Thus, from (20) and the above estimates for I1 and I2, we deduce that
∥

∥Thfα,β − fα,β

∥

∥

2

L2(Rd)

≤ C2

∥

∥h
∥

∥

2s′ (1 + α)C0C1

αν1

(

1 +
∥

∥

∥
T−1
Bc

1

∥

∥

∥

2
)

+
1 + α

α

C0C1

ν1
Mβ

≤ C3

(

∥

∥h
∥

∥

2s′
+Mβ

)

, (21)

where

C3 := max

{

(1 + α)C0C1C2

αν1

(

1 +
∥

∥

∥
T−1

Bc
1

∥

∥

∥

2
)

,
(1 + α)C0C1

αν1

}

> 0.

We are now ready to prove (19). By Lemma 10 (ii), for every ε > 0, there
exists n0 ≥ 1 such that, for every n ≥ n0, Mβn ≤ ε. By (21), it follows that

sup
n∈N∗

∥

∥Thfn − fn

∥

∥

2

L2(Rd)

≤ max

{

max
1≤n≤n0

∥

∥Thfn − fn

∥

∥

2

L2(Rd)
, C3

(

∥

∥h
∥

∥

2s′
+ ε
)

}

. (22)

The L2-continuity of translations implies that, for all n ∈ N∗, ‖Thfn −
fn‖2

L2(Rd)
tends to zero as h→ 0, so that

max
1≤n≤n0

∥

∥Thfn − fn

∥

∥

2

L2(Rd)
→ 0 as h→ 0.

Consequently,
lim sup

h→0
sup
n∈N∗

∥

∥Thfn − fn

∥

∥

2

L2(Rd)
≤ C3ε.

Since ε is arbitrary, the proof of (19) is complete, and so is that of the
theorem.

We emphasize that Condition (6) restricts the validity of our convergence
result to the image by TW of the subspace L2(V ) ∩Hs(Rd). Since L2(V ) ∩
Hs(Rd) is dense in L2(V ), its image by TW is dense in L2(W ) (recall that
ranTW is dense in L2(W )). However, a convergence result valid for all g ∈
D(TW ) is most certainly desirable. Such a result will be obtained in the next
section. As we shall see, the price to be paid is, among other things, the
reintroduction of α as a regularization parameter, along with β.
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Figure 2: One-dimensional examples of filters of the form ξ 7→ exp(−|ξ |s),
with associated point spread functions. In the case where s = 1, the point
spread function is explicitly given by ξ 7→ 2/(1 + 4πξ2).

Remark 12. Among the filters Uφ which satisfy Conditions (4) and (5), we
find the functions ξ 7→ exp(−‖ξ‖s). For s ∈ (0, 2], the corresponding Point
Spread Functions U−1(exp(−‖ξ‖s)) have nice morphological properties. In
particular, they are positive (see [7]), isotropic, radially deacreasing (see [1]),
and C∞. For s = 2, φ is Gaussian, and for s < 2,

φ(x) ∼‖x‖→∞ ‖x‖−d−s

up to a positive multiplicative constant (see [2]). Examples are given in
Figure 2, in the cases s = 1 and s = 0.6.

5 Hybrid approach

Theorem 13. Let φ ∈ L1(Rd) be such that φ̂(0) =
∫

Rd φ(x) dx ∈ (0, 1).
Assume in addition that (5) holds true. Let g ∈ D(T+

W ). Let (αn)n∈N∗ and
(βn)n∈N∗ be sequences of positive reals converging to 0 which satisfy

sup
‖ξ‖≤βn

∣

∣

∣
φ̂(ξ) − φ̂(0)

∣

∣

∣

2
= o(αn), (23)
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as n → ∞. Let fn = fαn,βn be the unique solution of Problem (Pαn,βn).

Then φ̂(0)−1fn converges strongly to T+
W g, as n→ ∞.

Proof. As in the preceding proof, the first step consists in deriving an
L2-estimate for fn. We use again the fact that fn solves Problem (Pαn,βn)
to write:

1

2

∥

∥

∥
φ̂ng − TW fn

∥

∥

∥

2

L2(W )
+
αn

2

∥

∥

∥
(1 − φ̂n)f̂n

∥

∥

∥

2

L2(Rd)

≤ 1

2

∥

∥

∥
φ̂ng − TWT+

W

(

φ̂(0)g
)

∥

∥

∥

2

L2(W )
+
αn

2

∥

∥

∥
(1 − φ̂n)UT+

W

(

φ̂(0)g
)

∥

∥

∥

2

L2(Rd)
.

Since UT+
W

(

φ̂(0)g
)

= φ̂(0)UT+
W g = φ̂(0)g̃, the right hand side of the above

inequality can be written as

1

2

∥

∥

∥

(

φ̂n − φ̂(0)
)

g
∥

∥

∥

2

L2(W )
+
αnφ̂(0)2

2

∥

∥

∥

(

1 − φ̂n

)

g̃
∥

∥

∥

2

L2(Rd)
,

so that

αn

∥

∥

∥

(

1 − φ̂n

)

f̂n

∥

∥

∥

2

L2(Rd)

≤
∥

∥

∥

(

φ̂n − φ̂(0)
)

g
∥

∥

∥

2

L2(W )
+ αnφ̂(0)2

∥

∥

∥

(

1 − φ̂n

)

g̃
∥

∥

∥

2

L2(Rd)
.

Dividing the latter inequality by αnφ̂(0)2 (which is clearly nonzero) yields

∥

∥

∥

(

1 − φ̂n

)

U
(

φ̂(0)−1fn

)

∥

∥

∥

2

L2(Rd)

≤ φ̂(0)−2

αn

∥

∥

∥

(

φ̂n − φ̂(0)
)

g
∥

∥

∥

2

L2(W )
+
∥

∥

∥

(

1 − φ̂n

)

g̃
∥

∥

∥

2

L2(Rd)

≤ φ̂(0)−2 sup
ξ∈W

|φ̂(βnξ) − φ̂(0)|2
αn

∥

∥g
∥

∥

2

L2(W )
+
∥

∥

∥

(

1 − φ̂n

)

g̃
∥

∥

∥

2

L2(Rd)
. (24)

Recall indeed that φ̂n(ξ) = φ̂(βnξ). Now, the function ξ 7→ |1 − φ̂(ξ)| is
continuous and tends to 1 at infinity (by the Riemann-Lebesgue lemma).
Moreover Condition (5) and the assumption that φ̂(0) ∈ (0, 1) imply that it
is positive on Rd. It follows that there exists γ > 0 such that, for all ξ ∈ Rd,
|1 − φ̂(ξ)| ≥ γ. Hence, for all ξ ∈ Rd, |1 − φ̂n(ξ)| = |1 − φ̂(βn(ξ))| ≥ γ and
we deduce from (24) and Plancherel’s Equality that

∥

∥

∥

(

1 − φ̂n

)

U
(

φ̂(0)−1fn

)

∥

∥

∥

2

L2(Rd)
≥ γ2

∥

∥

∥
φ̂(0)−1fn

∥

∥

∥

2

L2(V )
.
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On the other hand, since W is bounded, Condition (23) implies that

lim
n→∞

sup
ξ∈W

|φ̂(βnξ) − φ̂(0)|2
αn

= 0, (25)

so that

C := sup
n∈N∗

sup
ξ∈W

|φ̂(βnξ) − φ̂(0)|2
αn

<∞.

Consequently, for all n ∈ N∗,

γ2
∥

∥

∥
φ̂(0)−1fn

∥

∥

∥

2

L2(V )
≤ φ̂(0)−2C

∥

∥g
∥

∥

2

L2(W )
+
∥

∥

∥
(1 − φ̂n)g̃

∥

∥

∥

2

L2(Rd)

≤ φ̂(0)−2C
∥

∥g
∥

∥

2

L2(W )
+
(

1 + ‖φ‖L1(Rd)

)2 ∥
∥ g̃
∥

∥

2

L2(Rd)
,

which shows that the sequence
(

φ̂(0)−1fn

)

n∈N∗ is bounded in L2(V ). Now,
we leave it to the reader to check, with the same reasoning as in the proof
of Theorem 9 (see Step 2), that φ̂(0)−1fn converges weakly to T+

W g. It then
remains to establish the strong convergence.

By Lemma 11, (1 − φ̂n)g̃ converges strongly to (1 − φ̂(0))g̃, which implies
that

∥

∥

∥
(1 − φ̂n)g̃

∥

∥

∥

L2(Rd)
→
∥

∥

∥
(1 − φ̂(0))g̃

∥

∥

∥

L2(Rd)
as n→ ∞.

It then results from (24) and (25) that

lim sup
n→∞

∥

∥

∥

(

1 − φ̂n

)

U
(

φ̂(0)−1fn

)

∥

∥

∥

2

L2(Rd)
≤
∥

∥

∥

(

1 − φ̂(0)
)

g̃
∥

∥

∥

2

L2(Rd)
. (26)

We now prove that the function ϕn := (1−φ̂n)U
(

φ̂(0)−1fn

)

converges weakly

to
(

1 − φ̂(0)
)

g̃. For every ψ ∈ L2(Rd), we have

〈

ϕn , ψ
〉

L2(Rd)
=

∫

Rd

(

1 − φ̂n(ξ)
)

U
(

φ̂(0)−1fn

)

(ξ)ψ(ξ) dξ

=

∫

Rd

U
(

φ̂(0)−1fn

)

(ξ)
(

1 − Uφn(ξ)
)

ψ(ξ) dξ

=
〈

U
(

φ̂(0)−1fn

)

,
(

1 − Uφn

)

ψ
〉

L2(Rd)
. (27)

Since φ̂(0)−1fn converges weakly to T+
W g, U

(

φ̂(0)−1fn

)

converges weakly to
UT+

W g = g̃, in L2(Rd). Moreover, Lemma 11 implies that
(

1 − Uφn

)

ψ con-
verges strongly to

(

1−Uφ(0)
)

ψ, in L2(Rd). By the weak-strong convergence

theorem, it follows from (27) that, for every ψ ∈ L2(Rd),

〈

ϕn , ψ
〉

L2(Rd)
→
〈

g̃ ,
(

1 − Uφ(0)
)

ψ
〉

L2(Rd)
=
〈

(

1 − φ̂(0)
)

g̃ , ψ
〉

L2(Rd)
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as n→ ∞. Consequently,

∥

∥

∥

(

1 − φ̂(0)
)

g̃
∥

∥

∥

L2(Rd)
≤ lim inf

n→∞

∥

∥ϕn

∥

∥

L2(Rd)
. (28)

From (26) and (28), we deduce that

∥

∥ϕn

∥

∥

L2(Rd)
→
∥

∥

∥

(

1 − φ̂(0)
)

g̃
∥

∥

∥

L2(Rd)
as n→ ∞,

and it follows that ϕn converges strongly to
(

1 − φ̂(0)
)

g̃ in L2(Rd).

Finally, let us write U(φ̂(0)−1fn) = (1 − φ̂n)−1ϕn. Since, for every n ∈ N∗,
|1− φ̂n| is bounded below by γ > 0, the function (1− φ̂n)−1 converges locally
uniformly on Rd to the constant (1 − φ̂(0))−1 as n→ ∞, by being bounded
by 1/γ. This implies that (1 − φ̂n)−1ϕn converges strongly to

(

1 − φ̂n

)−1(
1 − φ̂(0)

)

g̃ = g̃.

In other words, U(φ̂(0)−1fn) converges strongly to UT+
W g. Since the Fourier

operator is an isometry of L2, this completes the proof of the strong conver-
gence of φ̂(0)−1fn to T+

W g.

Figure 3 shows filters and their complements, in the cases where φ̂(0) = 1
and φ̂(0) ∈ (0, 1). It should be noticed that, in our hybrid approach, the low
frequency component of the object to be reconstructed (which correspond
to the experimental domain W ) undergoes a higher level of tension between
the fit term and the regularization term. However, this extra tension can be
made as small as desired by letting φ̂(0) approach 1.

Appendix: Reminder on Tikhonov regularization

Throughout this appendix, F andG are infinite dimensional separable Hilbert
spaces whose norms are both denoted by ‖ · ‖, and T : F → G is a compact,
injective, linear operator. The adjoint (resp. generalized inverse) of T is
denoted by T ⋆ (resp. T+). The closure of a set S is denoted by clS.

Theorem 14. (i) There exists a real sequence λ1 ≥ λ2 ≥ . . . > 0 con-
verging to zero and a Hilbert basis {fk}k∈N∗ of F such that

∀k ∈ N∗, T ⋆Tfk = λkfk;

(ii) T−1 : ranT → F is unbounded, and so is T+;
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Figure 3: Gaussian filters and their complements, in the cases where φ̂(0) = 1
and φ̂(0) ∈ (0, 1).

(iii) ranT is not closed, so that D(T+) = ranT + (ranT )⊥ ( G.

Proof. Clearly, T ⋆T is Hermitian, compact, positive and injective. Point (i)
is then a particular instance of the spectral theorem for compact hermitian
operators. Now for all k ∈ N∗, ‖Tfk‖2 = λk, so that

inf
‖f ‖=1

‖Tf ‖ = 0.

This proves Point (ii). Finally, if ranT were closed, it would be a Banach
space on its own, and the Open Mapping Theorem would imply continuity
of T−1. This would contradict Point (ii), thus Point (iii) is clear.

The system

gk :=
1√
λk
Tfk, fk =

1√
λk
T ⋆gk

is the so-called Singular Value Decomposition of T , and the numbers
√
λk

are the Singular Values of T .

Proposition 15. The family {gk}k∈N∗ is a Hilbert basis of cl ranT .
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Proof. For all k, l ∈ N∗,

〈gk, gl〉 =
1√
λkλl

〈Tfk, T fl〉 =
1√
λkλl

〈fk, T
⋆Tfl〉 =

√

λl

λk
〈fk, fl〉 = δkl,

where δkl is the Kronecker symbol. Thus {gk}k∈N∗ is an orthonormal family
in G. Let us show that cl vect{gk}k∈N∗ = cl ranA. Clearly, vect{gk}k∈N∗ ⊂
ranT , so that cl vect{gk}k∈N∗ ⊂ cl ranT . On the other hand, recall that
F = {∑k αkfk |

∑

k |αk |2 <∞}, so that

ranA =

{

∑

k

αk

√

λkgk

∣

∣

∣

∣

∣

∑

k

|αk |2 <∞
}

=

{

∑

k

βkgk

∣

∣

∣

∣

∣

∑

k

|βk |2
λk

<∞
}

.

Since
∑

k |βk |2/λk <∞ =⇒∑

k |βk |2 <∞, we see that

ranA ⊂
{

∑

k

βkgk

∣

∣

∣

∣

∣

∑

k

|βk |2 <∞
}

= cl vect(gk),

and the result follows.

Proposition 16. (i) For all f ∈ F , Tf =
∑

k∈N∗ λ
1/2
k 〈f, fk〉gk;

(ii) for all g ∈ G, T ⋆g =
∑

k λ
1/2
k 〈g, gk〉fk;

(iii) for all g ∈ D(T+), T+g =
∑

k λ
−1/2
k 〈g, gk〉fk.

Proof. It is an easy exercise.

Proposition 17. Let α be a position number, and let I denote the identity
of F . Then T ⋆T + αI is bi-continuous and fα := (T ⋆T + αI)−1T ⋆g is the
unique minimizer of

F : f 7→ 1

2
‖g − Tf ‖2 +

α

2
‖f ‖2.

Moreover, fα depends continuously on g ∈ G.

Proof. By Theorem 14(i), T ⋆T + αI is diagonalizable, with eigenvalues
λ1 + α ≥ λ2 + α ≥ . . . > α. It is then clear that T ⋆T + αI is bi-continuous.
Now, let f ∈ F and let h := f − fα. For all t ∈ R, let

Φ(t) := F(fα + th).
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Clearly, Φ(t) is of the form at2 + bt+ c, with a, b, c real and a nonnegative.
Thus Φ is convex. Moreover,

Φ′(0) = Re (〈T ⋆Tfα − T ⋆g + αfα, h〉) = 0.

Thus, Φ reaches its minimum at 0. In particular, Φ(0) ≤ Φ(1), that is to
say, F(fα) ≤ F(f). Since this is true for every f ∈ F , we deduce that fα

minimizes F . The uniqueness of the minimizer is a consequence of the strict
convexity of F . As for the continuous dependence, it results immediately
from the continuity of the operator (T ⋆T + αI)−1.

Theorem 18. Let fα be defined as above. Then fα converges strongly to
f+ := T+g as α ↓ 0.

Proof. Let us first evaluate the difference f+ − fα. We have:

(T ⋆T + αI)(f+ − fα) = T ⋆Tf+ + αf+ − (T ⋆T + αI)(T ⋆T + αI)−1T ⋆g

= T ⋆g + αf+ − T ⋆g

= αf+,

whence the equality f+ − fα = α(T ⋆T +αI)−1f+. Next, we express (T ⋆T +
αI)−1 in terms of the orthogonal projections Pk onto the one-dimensional
subspaces vect fk, where {fk}k∈N∗ is the Hilbert basis exhibited in Theo-
rem 14. Since

∀k ∈ N∗, T ⋆Tfk = λkfk and ∀f ∈ F, f =
∑

k∈N∗

〈f, fk〉fk,

one has, for all f ∈ F , T ⋆Tf =
∑

k∈N∗ λk〈f, fk〉fk =
∑

k∈N∗ λkPkf . There-
fore,

(T ⋆T + αI)f =
∑

k∈N∗

(λk + α)Pkf.

Now

∑

j∈N∗

1

λj + α
Pj(T

⋆T + αI)f =
∑

j∈N∗

1

λj + α
Pj

(

∑

k∈N∗

(λk + α)Pkf

)

=
∑

j∈N∗

1

λj + α
(λj + α)Pjf,

= f,
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where the convergence of the series in the left hand side is justified by the
computation. Consequently,

(T ⋆T + αI)−1 =
∑

k∈N∗

1

λk + α
Pk.

Finally, let us prove that fα → f+ as α→ 0. One has

∥

∥f+ − fα

∥

∥

2
=

∥

∥α(T ⋆T + αI)−1f+
∥

∥

2

=

∥

∥

∥

∥

∥

∑

k∈N∗

α

λk + α
Pkf

+

∥

∥

∥

∥

∥

2

=
∑

k∈N∗

(

α

λk + α

)2

|〈f+, fk〉|2.

Since the series is convergent, and since, for all k ∈ N∗,

(

α

λk + α

)2
∣

∣〈f+, fk〉
∣

∣

2 → 0 as α→ 0,

a dominated convergence argument shows that fα → f+ as α→ 0.
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