
ON THE COMPOSITION OF DIFFERENTIABLE
FUNCTIONS

M. BACHIR AND G. LANCIEN

Abstract. We prove that a Banach space X has the Schur property if
and only if every X-valued weakly differentiable function is Fréchet differ-
entiable. We give a general result on the Fréchet differentiability of f ◦ T ,
where f is a Lipschitz function and T is a compact linear operator. Finally
we study, using in particular a smooth variational principle, the differen-
tiability of the semi norm ‖ ‖lip on various spaces of Lipschitz functions.

1. Introduction

If X and Y are two Banach spaces and f is a map from an open subset
U of Y into X. We shall say that f is weakly differentiable at the point y0

of U if, for any x∗ in the dual space X∗, x∗ ◦ f is differentiable at y0. For
a positive integer k, we will say as well that f is weakly Ck, or weakly k
times continuously differentiable, if for any x∗ in X∗, x∗ ◦ f is a Ck function.
It is stated in [3] and proved in [7] that a weakly Ck function is always of
class Ck−1. On the other hand, there are examples, as we will recall later, of
nowhere differentiable weakly C1 functions. In section 2, we will show that
differentiability and weak differentiability are equivalent if and only if the space
X has the Schur property. We recall that a Banach space X has the Schur
property if any weakly convergent sequence in X is norm convergent and that
`1 is the most classical example of an infinite dimensional Banach space with
the Schur property.

We now define a few spaces of real valued functions that will be studied in
sections 3 and 4.
We denote by Cb(R) the Banach space of all bounded continuous real valued
functions defined on R equipped with the supremum norm ‖ ‖∞.
For 0 < α ≤ 1, Lipα

b (R) is the space of all bounded α-Hölder functions
equipped with the complete norm defined by

‖φ‖∞,α = max(‖φ‖∞, ‖φ‖α), ∀φ ∈ Lipα
b (R)
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where,

‖φ‖α = sup
x,y∈R, x6=y

|φ(x)− φ(y)|
|x− y|α

.

When α = 1, we simply denote this space by Lipb(R) and write ‖φ‖1 = ‖φ‖lip.
If s is a positive integer, (Cs

b (R), ‖ ‖Cs) is the Banach space of all Cs functions
φ such that φ, φ′,..., φ(s) are bounded on R. The norm ‖ ‖Cs is defined by

‖φ‖Cs = max(‖φ‖∞, ‖φ′‖∞, ..., ‖φ(s)‖∞).

Let again α ∈ (0, 1]. We denote by C1,α
b (R) the Banach space of all functions

in C1
b (R) such that φ′ is α-Hölder, equipped with the norm

‖φ‖1,α = max(‖φ‖∞, ‖φ′‖∞, ‖φ′‖α).

In section 3, we use the classical idea that compactness improves the Gâteaux
differentiability of Lipschitz functions into Fréchet differentiability. We apply
this idea to prove the generic Fréchet differentiability of ‖ ‖∞ on the space of
Lipschitz functions on [0, 1] and of ‖ ‖L1 on the space of absolutely continuous
functions on [0, 1]. We also give a general result in Theorem 3.4.

Section 4 is essentially devoted to the study of the differentiability of the
semi norm R defined by R(φ) = ‖φ‖lip on various Banach spaces of Lipschitz
functions. First we give some negative results about its Fréchet differentiability
on C1

b (R) and its Gâteaux differentiability on Lipb(R). Then, we apply the
smooth variational principle of Deville, Godefroy and Zizler [5] and also results
of Ghoussoub [6], to obtain positive statements about its generic Gâteaux
differentiability on C1

b (R) and about its generic Fréchet differentiability on
Ck

b (R) for k ≥ 2 or on C1,α
b (R) for 0 < α ≤ 1.

2. Weakly differentiable functions

Our first result can be seen as a converse of the “chain rule” on Banach
spaces with the Schur property.

Theorem 2.1. Let X be a Banach space with the Schur property, U be an
open subset of a Banach space Y and y0 ∈ U . Suppose that f : U → X is
weakly differentiable at y0. Then f is Fréchet differentiable at y0.

Proof. We may assume that y0 = 0 and f(0) = 0. For h ∈ Y and x∗ ∈ X∗, we
set

(2.1) Φ(h)(x∗) = lim
t→0

t−1(x∗ ◦ f)(th) = D(x∗ ◦ f)(0)h.

Clearly, Φ(h) is linear on X∗. Let (tn) be a sequence of real numbers tend-
ing to 0. By assumption, we have that for any x∗ in X∗, the sequence
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(t−1
n (x∗ ◦ f)(tnh))n≥0 is bounded in R. Then it follows from the Banach-

Steinhaus Theorem that the sequence (t−1
n f(tnh))n≥0 is bounded in X. This

implies that Φ(h) is continuous on X∗ and therefore is an element of X∗∗.
Then, equation (2.1) means that Φ(h) is the weak∗ limit of t−1f(th) as t tends
to 0. Since X has the Schur property, it is a weakly sequentially complete
Banach space. So Φ(h) ∈ X.
We now claim that Φ : Y → X is linear. Indeed, it follows easily from the
Hahn-Banach Theorem that otherwise there would exist x∗ ∈ X∗ such that
D(x∗ ◦ f)(0) is not linear.
Let us now fix x∗ in X∗. We have that

sup
‖h‖≤1

|Φ(h)(x∗)| = sup
‖h‖≤1

|D(x∗ ◦ f)(0)h| = ‖D(x∗ ◦ f)(0)‖Y ∗ < +∞.

So we can use again the Banach-Steinhaus Theorem to get that Φ is a bounded
linear operator from Y into X.
Finally, we have by assumption that ‖h‖−1(f(h)−Φ(h)) tends weakly to 0 as
‖h‖ tends to 0. Using again that X has the Schur property, we obtain that

lim
h→0

‖h‖−1‖f(h)− Φ(h)‖ = 0.

Thus Φ is the Fréchet derivative of f at 0.
�

As a corollary, we obtain the following:

Corollary 2.2. Let X be a Banach space with the Schur property, U be an
open subset of a Banach space Y and f be a function from U into X. Then,
the following assertions are equivalent:

(i) f is a C1 function.
(ii) f is a weakly C1 function.

Proof. We only need to show that (ii) implies (i). So let us assume that (ii)
holds. By Theorem 2.1, we already know that f is Fréchet differentiable on U
and that for any x∗ in X∗, D(x∗ ◦ f) = x∗ ◦Df on U .
Assume now that Df is not continuous at some point y of U . Then there exist
ε > 0, (yn)n≥0 ⊂ U so that lim

n→∞
‖yn − y‖ = 0 and (hn)n≥0 ⊂ Y with ‖hn‖ = 1

satisfying

(2.2) ∀n ≥ 0 ‖(Df(yn)−Df(y))hn‖X > ε.

But we have by assumption that for any x∗ ∈ X∗

lim
n→∞

‖x∗ ◦Df(yn)− x∗ ◦Df(y)‖Y ∗ = 0.

This implies that (Df(yn) − Df(y))hn tends weakly to 0. Since X has the
Schur property, this is in contradiction with (2.2).
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�

The above corollary can be extended to the case of Ck functions.

Corollary 2.3. Let X be a Banach space with the Schur property, U be an
open subset of a Banach space Y and f be a function from U into X. Let k be
a positive integer and assume that f is weakly Ck. Then f is a Ck function.

Proof. The proof will be done by induction. So let us assume that the state-
ment is true for k ∈ N and that f is weakly Ck+1. Since the proof is very
similar to the previous ones, we will only outline its main steps.
By [7] or by the induction hypothesis, we already know that f is Ck. First we
have to show that for any y in U , Dkf is Fréchet differentiable at y. As usual,
we assume for convenience that y = 0 and Dkf(0) = 0.
For h = (h1, .., hk+1) ∈ Y k+1 and x∗ ∈ X∗, we denote

Ψ(h)(x∗) = lim
t→0

t−1(x∗ ◦Dkf)(th1)(h2, .., hk+1) = Dk+1(x∗ ◦ f)(0)(h1, .., hk+1).

Following the argument in the proof of Theorem 2.1 we show that for any h in
Y k+1, Ψ(h) ∈ X and that Ψ is (k + 1)-linear and continuous from Y k+1 into
X. Then, using the Schur property we deduce that Ψ = Dk+1f(0).
Finally, one can easily adapt the proof of Corollary 2.2 in order to show that
Dk+1f is continuous on U .

�

We will now show that the composition property described in Theorem 2.1
is a characterization of the Schur property. More precisely, we have:

Proposition 2.4. Let X be a Banach which does not have the Schur property.
Then there is a Lipschitz function f : [−1, 1] → X which is not differentiable
at 0, but such that for any open neighborhood U of f(0) in X and any function
g : U → R differentiable at f(0), g ◦ f is differentiable at 0.

Proof. Since X does not have the Schur property, there is a weakly null nor-
malized sequence (xn)n≥0 in X. We define f by f(0) = 0, f(2−n) = 2−nxn, f
is affine on each interval [2−(n+1), 2−n] and f is an even function.
Let t = u2−n + (1− u)2−(n+1) and t′ = u′2−n + (1− u′)2−(n+1), with u and u′

in [0, 1]. Then

(2.3)
‖f(t)− f(t′)‖ = |u− u′| ‖2−nxn − 2−(n+1)xn+1‖ ≤ 3 |u− u′| 2−(n+1) = 3 |t− t′|.

So f is 3-Lipschitz on each interval [2−(n+1), 2−n].
Furthermore, for p < n:

(2.4) ‖f(2−p)− f(2−n)‖ ≤ 2−p + 2−n ≤ 3 |2−p − 2−n|.
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Using the triangular inequality, one can easily deduce from (2.3) and (2.4) that
f is 3-Lipschitz on [−1, 1].
Now, for t ∈ [2−(n+1), 2−n], there is u ∈ [0, 1] such that
t = u2−n + (1− u)2−(n+1) = (1 + u)2−(n+1). Then, for any x∗ ∈ X∗:

(2.5) t−1(x∗ ◦ f)(t) = (1 + u)−1(2ux∗(xn) + (1− u)x∗(xn+1)).

Since (xn)n≥0 is weakly null, it is clear from the above equation that for any x∗

in X∗, x∗ ◦ f is differentiable at 0 and (x∗ ◦ f)′(0) = 0. Then it follows easily
from the fact that f is Lipschitz that for any real valued function g which is
differentiable at 0, g ◦ f is differentiable at 0 and (g ◦ f)′(0) = 0.
Finally, if f was differentiable at 0, we would have f ′(0) = 0. But this is in
contradiction with the fact that for any n, ‖2nf(2−n)‖ = 1. �

We will finish this section with a related open question. Let us say that a
Banach space X has the near Radon-Nikodỳm property (in short near RNP)
if every weakly C1 function f from R into X has a point of differentiability.
Our problem is to characterize the Banach spaces with the near RNP. Let us
just give some elementary information concerning this question.

It follows from the Mean Value Theorem and the Banach Steinhaus The-
orem, that a weakly C1 function from R into X is locally Lipschitz. So a
Banach space with the Radon-Nikodỳm property has the near RNP. However,
the converse is not true. Indeed there exists a subspace S of L1, constructed by
J. Bourgain and H.P. Rosenthal in [4], without the Radon-Nikodỳm property
but with the Schur property. Then, it follows from our Corollary 2.2 that S
has the near RNP.

On the other hand, as we already mentioned in the introduction, there are
Banach spaces without the near RNP. The space c0 is probably the simplest
example . Indeed, let f : R → c0 be given by f(t) = (fn(t))n≥1, where

∀p ∈ N, f2p−1(t) =
cos pt

p
and f2p(t) =

sin pt

p
.

Then f is a well known example of a weakly C1 but nowhere differentiable
function (see [7] for instance).

Finally, we do not know if L1 has the near RNP. We do not know either,
any space not containing c0 and without the near RNP.

3. Fréchet smoothness through compact operators

We start with the following elementary lemma:

Lemma 3.1. Let X, Y and Z be three Banach spaces and let T be a compact
linear operator from X into Z. Assume that a locally Lipschitz function f
from an open subset U of Z into Y is Gâteaux differentiable at Tx for some
x in X. Then the function f ◦ T is Fréchet differentiable at x.
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Proof. It is known and easy to see that a locally Lipschitz function is so called
Hadamard differentiable at some point x if and only if this function is Gâteaux
differentiable at x. Therefore f is Hadamard differentiable at Tx. In other
words, for every compact Hausdorff subset K of Z,

lim
t→0

sup
k∈K

‖f
(
Tx+ tk

)
− f

(
Tx

)
− t〈Df

(
Tx

)
, k〉‖Y

|t|
= 0

In particular, for K = TBX , we obtain,

lim
t→0

sup
h∈BX

‖f ◦ T (x+ th)− f ◦ T (x)− t〈Df
(
Tx

)
◦ T, h〉‖Y

|t|
= 0

This implies that f ◦ T is Fréchet differentiable at x. �

We will now describe two natural applications of this lemma. Let us first
denote by µ the Lebesgue measure on [0, 1], by (L1[0, 1], ‖ ‖L1) the space of
µ-integrable functions with its natural norm and by AC[0, 1] the space of all
absolutely continuous functions on [0, 1]. We equip this space with the com-
plete norm ‖ ‖AC defined by ‖φ‖AC = ‖φ‖L1 +‖φ′‖L1 . The space (C[0, 1], ‖ ‖∞)
is the space of all continuous functions on [0, 1] with the supremum norm and
Lip [0, 1] is the space of all Lipschitz functions on [0, 1] equipped with the
complete norm ‖φ‖∞,1 = max(‖φ‖∞, ‖φ‖lip).

First, we have

Proposition 3.2. The function N : Lip [0, 1] → R defined by N (g) = ‖g‖∞
is generically Fréchet differentiable in (Lip[0, 1], ‖ ‖∞,1)

Proof. It is well known that the supremum norm ‖ ‖∞ is Gâteaux differentiable
at f ∈ C[0, 1] if and only if |f | attains its unique maximum at some point of
[0, 1]. On the other hand, by Ascoli-Arzela Theorem, the canonical embedding
from Lip [0, 1] into C[0, 1] is a compact operator. Using Lemma 3.1, the norm
‖ ‖∞ is Fréchet differentiable on (Lip [0, 1], ‖ ‖∞,1) at f ∈ Lip [0, 1] if the
function |f | attains its unique maximum at some point x of [0, 1] (the converse
is also true and can be easily checked). But the set of Lipschitz continuous
functions f on [0, 1] such that |f | attains its unique maximum at some point,
is dense in (Lip [0, 1], ‖ ‖∞,1). This implies that the norm ‖ ‖∞ is Fréchet
differentiable on a dense subset of (Lip [0, 1], ‖ ‖∞,1). Since ‖ ‖∞ is a convex
continuous function, we obtain that ‖ ‖∞ is generically Fréchet differentiable
on (Lip [0, 1], ‖ ‖∞,1). �

Remark: This is a particular case of results in [1], where the approach is to
use variational principles instead of compactness.

As another consequence of Lemma 3.1 we obtain
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Proposition 3.3. The function M : AC[0, 1] → R defined by M(g) = ‖g‖L1

for all g ∈ AC[0, 1], is Fréchet differentiable at f ∈ AC[0, 1] if and only if
µ
(
{x; f(x) = 0}

)
= 0. Moreover M is generically Fréchet differentiable on

AC[0, 1].

Proof. The argument being similar, we just outline the main steps. The norm
‖ ‖L1 is Gâteaux differentiable at f ∈ L1[0, 1] if and only if µ({x, f(x) = 0}) =
0. It is also clear that if f in AC[0, 1] is such that µ({x, f(x) = 0}) > 0,
then M is not Gâteaux differentiable at f . On the other hand, the canonical
embedding from AC[0, 1] into L1[0, 1] is a compact operator. So the conclusion
follows again from Lemma 3.1, the convexity of M and the density of the set
{g ∈ AC[0, 1];µ({x, g(x) = 0}) = 0} in AC[0, 1]. �

We now turn to a general result:

Theorem 3.4. Let Y be a Banach space with the Radon-Nikodỳm Property
and Z be a separable Banach space. Let X be a Banach space and suppose
that there exists a compact operator T from X into Z such that TX is dense
in Z. Then
(i) The set TX is not Aronszajn null in Z.
(ii) For every locally Lipschitz function f : Z → Y , there exists a subset B
of Z which is Aronszajn null and such that f ◦ T is Fréchet-differentiable at
every point of T−1(Z \B).

As an immediate corollary, we have

Corollary 3.5. Let (Z, ‖ ‖Z) be a separable Banach space and (X, ‖ ‖X) be a
Banach space such that X is a dense subspace of Z. Suppose that the canonical
embedding i : X → Z is compact. Then for every locally Lipschitz function
f : (Z, ‖ ‖Z) → R, the restriction f|X : (X, ‖ ‖X) → R is Fréchet-differentiable
at every point of a subset A of X which is not Aronszajn null in Z.

The assertion (i) of Theorem 3.4 is a general and probably well known fact,
that we state now and prove for the sake of completness.

Proposition 3.6. Let X be a Banach space, Z be a separable Banach space
and T be a continuous linear operator from X into Z. If TX is dense in Z,
then TX is not Aronszajn null in Z.

Proof. We will actually show that TX is not cube null, which is an equivalent
statement (see [2] for the definitions of these notions and the proof of their
equivalence).
Let (xn)n≥1 ⊂ X such that

∑
‖xn‖X < ∞, the vectors Txn are linearly

independant and their linear span is dense in Z. We now define U from
Q = [0, 1]N into Z by

U(t) =
∑
n≥1

tnTxn, for any t = (tn)n≥1 ∈ Q.
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Since X is complete and T is continuous, we clearly have that U(Q) ⊂ TX.
This shows that TX is not cube null. �

Proof of Theorem 3.4. Since Z is a separable space, Y is a space with the
Radon-Nikodỳm Property and f : Z → Y is locally Lipschitz, it follows from
Theorem 6.42. in [2] (different versions of this theorem were proved indepen-
dantly by Aronszajn, Christensen and Mankiewicz) that the set B on which f
is not Gâteaux differentiable is Aronszajn null. Then Lemma 3.1 implies that
f ◦ T is Fréchet differentiable at every point of {x ∈ X : Tx ∈ Z \B}. �

Observe that the assumptions of Corollary 3.5 are satisfied for X = AC[0, 1]
and Z = L1[0, 1] and for X = Lip [0, 1] and Z = C[0, 1]. So in the above cases
every Lipschitz function on X which can be extended to a Lipschitz function
on Z has points of Fréchet differentiability. It is of particular interest when X
is not an Asplund space, which is the case in these situations.

4. Spaces of differentiable functions on the real line

Let us recall that the supremum norm ‖ ‖∞ is generically Fréchet dif-
ferentiable on a large class of spaces of bounded continuous functions, like
(Lipb(R), ‖ ‖∞,1) or (C1

b (R), ‖ ‖C1) (see [1]). As a consequence, we get for
instance that the norm ‖ ‖C1 is generically Fréchet differentiable on the open
subset of C1

b (R):
O = {φ ∈ C1

b (R) : ‖φ‖∞ > ‖φ′‖∞}.
In this section, we investigate the differentiability of the semi norm R given

by R(φ) = ‖φ‖lip on various Banach spaces of Lipschitz functions defined on
the real line. Notice that, by the Mean Value Theorem, the restriction of R is
defined on C1

b (R) by R(φ) = ‖φ′‖∞.

We start with a negative result on the Fréchet differentiability of this func-
tion.

Proposition 4.1. The function R is nowhere Fréchet differentiable on C1
b (R).

Proof. First we choose, as we may, an even function b in C1
b (R) with support

in [−1, 1], increasing on [−1, 0] such that ‖b‖∞ = b(0) = 1 and 1 ≤ ‖b‖C1 =
‖b′‖∞ ≤ 2.
Consider now φ in C1

b (R). We will prove that R is not Fréchet differentiable
at φ.

We pick t in (0, 1) such that tR(φ) <
1

4
and x0 in R satisfying

|φ′(x0)| ≥ (1− t2)R(φ).

Assume for instance that φ′(x0) = |φ′(x0)|. Then there exists δ ∈ (0, 1) so that

∀x ∈ [x0 − δ, x0 + δ] φ′(x) ≥ (1− 2t2)R(φ).
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Now, for x in R, we set h(x) = tδ b(x−x0

δ
). Easy computations show that

t ≤ ‖h‖C1 = ‖h′‖∞ ≤ 2t. Notice that there is y0 in (x0 − δ, x0) and z0 in
(x0, x0 + δ) such that h′(y0) = −h′(z0) = ‖h‖C1 . Then we have

(4.6)

R(φ+ h) +R(φ− h)− 2R(φ) ≥ (φ′ + h′)(y0) + (φ′ − h′)(z0)− 2R(φ)

≥ 2‖h‖C1 − 4t2R(φ) ≥ 2t(1− 2tR(φ))

≥ t ≥ ‖h‖C1

2
.

Since R is convex, this concludes our proof. �

We now show that the situation is even worst on Lipb(R).

Proposition 4.2. The function R is nowhere Gâteaux differentiable on Lipb(R).

Proof. Let f ∈ Lipb(R). We will prove that R is not Gâteaux differentiable
at f . We may assume that R(f) = 1. We need to introduce a few auxiliary
functions. For s < t ∈ R, we set

∆s,t(f) =
f(t)− f(s)

t− s
.

For ε > 0 and x ∈ R, we denote

D(x, ε) = {(s, t) ∈ (x− ε, x+ ε)× (x− ε, x+ ε), s < t},
D+(x, ε) = {(s, t) ∈ (x, x+ ε)× (x, x+ ε), s < t},
D−(x, ε) = {(s, t) ∈ (x− ε, x)× (x− ε, x), s < t}.

We can now define:

uf (x) = lim
ε→0

sup
(s,t)∈D(x,ε)

|∆s,t(f)|,

vf (x) = lim
ε→0

sup
(s,t)∈D(x,ε)

∆s,t(f),

wf (x) = lim
ε→0

sup
(s,t)∈D(x,ε)

−∆s,t(f),

v+
f (x) = lim

ε→0
sup

(s,t)∈D+(x,ε)

∆s,t(f),

w+
f (x) = lim

ε→0
sup

(s,t)∈D+(x,ε)

−∆s,t(f).

We define similarly v−f (x) and w−f (x).
One can easily show that for any x in R,

uf (x) = max(vf (x), wf (x)),

vf (x) = max(v+
f (x), v−f (x)), and wf (x) = max(w+

f (x), w−f (x)).



10 M. BACHIR AND G. LANCIEN

It is also clear that uf is bounded, upper semi continuous (u.s.c.) and that
‖uf‖∞ = R(f).

First we will assume that uf does not attain its supremum. Since uf is
u.s.c., it implies that there exists a sequence (xn) in R such that uf (xn) tends
to R(f) = 1 and |xn| tends to +∞. By using some symmetry arguments and
extracting a subsequence, we may assume without loss of generality that

∀n ∈ N, xn+1 > xn + 2 and uf (xn) = v+
f (xn).

Then, for each n in N, we can pick sn < tn in (xn, xn + 1) so that ∆sn,tn(f)
tends to 1. Once this is done, we choose εn > 0 such that

∀n ∈ N, [x, x+ εn] ∩ [sn, tn] = ∅ and
∞∑

n=1

2εn ≤ 1.

We now build a continuous, piecewise affine function h, with constant slope
equals to 1 on each interval (xn−εn, xn +εn), which is equal to 0 on (−∞, x1−
ε1] and constant on each [xn + εn, xn+1 − εn+1]. Clearly, h ∈ Lipb(R) and
‖h‖∞,1 = 1. Moreover, for any t ∈ (0, 1) and any n in N we have

v+
f+th(xn) = v+

f (xn) + t and ∆sn,tn(f − th) = ∆sn,tn(f).

So for any t in (0, 1), R(f + th) = 1 + t and R(f − th) ≥ 1. It follows that R
is not Gâteaux differentiable at f .

Secondly, we will assume that uf admits a maximum at some point x0 in
R. For symmetry reasons, we may assume that 1 = R(f) = uf (x0) = v+

f (x0).
Then, there is a strictly decreasing sequence (sn)n≥0 in (x0, x0 + 1) which is
tending to x0 and such that ∆s2n+1,s2n(f) tends to R(f) = 1. We denote by an

the midpoint of [s2n+1, s2n]. Notice that ∆an,s2n(f) and ∆s2n+1,an(f) also tend
to 1.
We need to introduce a “hat” function φ defined by φ = 0 on (−∞,−1],
φ(x) = x + 1 for x in [−1, 0] and φ is even. Then, for ε > 0 and x ∈ R, we
denote φε(x) = εφ(x/ε). Notice that for any ε ∈ (0, 1), ‖φε‖∞,1 = R(φ) = 1.
Now we define

h(x) =
∞∑

n=0

φ s2n−s2n+1
2

(x− an).

Again, h ∈ Lipb(R) and ‖h‖∞,1 = 1. Then, for any t ∈ (0, 1) and any n in N:

∆s2n+1,an(f + th) = ∆s2n+1,an(f) + t and ∆an,s2n(f − th) = ∆an,s2n(f) + t.

It follows that for any t ∈ (0, 1), R(f + th) = R(f − th) = 1 + t. Thus R is
not Gâteaux differentiable at f .

Up to a few symmetry arguments, we have considered all the possible situa-
tions and therefore shown that R is nowhere Gâteaux differentiable on Lipb(R).
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�

Remark: This proof, which of course works as well on Lip[0, 1], shows the
importance in Corollary 3.5 of the assumption that the function on X has a
Lipschitz extension to Z.

So, our first motivation now will be to study the Gâteaux differentiability
of R on C1

b (R).
If D(R) is a Banach space of differentiable functions, then, for x in R, we

denote by δ′x the linear functional defined by δ′x(φ) = φ′(x) for all φ ∈ D(R).
We also denote by ε the signe function defined on R \ {0}.

Our main result is

Theorem 4.3. (a) The semi norm R is generically Gâteaux differentiable on
(C1

b (R), ‖.‖C1). More precisely, the set of points of Gâteaux differentiability of
R is G = {φ ∈ C1

b (R) st |φ′| admits a strong maximum } which is a dense
Gδ subset of C1

b (R). For φ ∈ G, the derivative of the semi norm R at φ is
ε(φ′(x0))δ

′
x0

where x0 ∈ R is the point where the function |φ′| attains its strong
maximum.

(b) The norm ‖ ‖C1 of C1
b (R) is generically Gâteaux differentiable on C1

b (R).

Thus, as the regularity of the function space gets better, so does the regu-
larity of R. In fact, our methods will also yield some results on the Fréchet
differentiability of R on spaces of functions with higher order of smoothness.

Theorem 4.4. Let 0 < α ≤ 1 and s ∈ N such that s ≥ 2. For X = Cs
b (R)

or X = C1,α
b (R), R is Fréchet differentiable on {φ ∈ X st |φ′| admits a strong

maximum } which is a dense Gδ subset of X and the derivative of R is given
by the same formula.

Before proceeding with the proof of the above theorems, we have to recall
some useful background. The origin of the main tool of our proof goes back to
a paper of Deville, Godefroy and Zizler [5] who proved a smooth variational
principle based on the Baire category theorem. In [6], Ghoussoub, generalizes
this result to an abstract class of function spaces. The Lemma 4.8 that we es-
tabish below can be viewed as a new application of these works. The following
definitions and Theorem 4.7 are taken from [6]. We also refer to the survey
paper of Deville and Ghoussoub in [8].

Let (X, d) be a metric space and (A(X), γ) be a metric space of real valued
functions defined on X. For any subset F of X, we denote by AF (X) the class
of functions in A(X) that are bounded above on F. For φ ∈ AF (X), and t > 0,
we define the slice S(F, φ, t) of F by:

S(F, φ, t) = {x ∈ F ;φ(x) > sup
F
φ− t}.
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Definition 4.5. The space (X, d) is said to be uniformly A(X)-dentable if
for every non-empty set F ⊂ X, every φ ∈ AF (X), and every ε > 0 there
exists ψ ∈ AF (X) such that γ(φ, ψ) ≤ ε and t > 0 such that S(F, ψ, t) has
diameter less than ε.

Then we associate to the metric space (X, d), the space X̃ = X×R equipped
with the pseudo-metric

d̃((x, λ)), (y, µ)) = d(x, y).

We denote by Ã(X̃) the class of all functions φ̃ on X̃, with φ ∈ A(X), where φ̃

is defined by φ̃(x, λ) = φ(x)− λ. We equip Ã(X̃) with the distance γ̃(φ̃, ψ̃) =
γ(φ, ψ).

Definition 4.6. Let (X, d) be a metric space. We say that the metric space
(A(X), γ) is admissible if the three following conditions hold:
i) There exists K > 0 such that γ(φ, ψ) ≥ K sup{|φ(x)−ψ(x)|;x ∈ X} for all
φ, ψ ∈ A(X).
ii)(A(X), γ) is a complete metric space.

iii) The product space (X̃, d̃) is uniformly Ã(X̃)-dentable.

Theorem 4.7. (Ghoussoub [6]): Let (A(X), γ) be an admissible class of
functions on a complete metric space (X, d). Let f : X → R ∪ {+∞} be a
bounded below, lower semicontinuous function with non empty domain. Then
the set

{φ ∈ A(X) : f − φ attains a strong minimum on X}
is a dense Gδ subset of A(X).

With these results in hand, we can now prove the following lemma:

Lemma 4.8. Let f : R → R∪{+∞} be a bounded below lower semicontinuous
function with non empty domain. Then for any positive integer s, the set

{φ ∈ Cs
b (R) : f − φ′ attains a strong minimum on R}.

is a dense Gδ subset of Cs
b (R).

The same conclusion holds for the spaces C1,α
b (R), with α ∈ (0, 1].

Proof. We only give the proof for the space Cs
b (R). The other cases are similar.

So let us consider the space A(R) = {φ′ : φ ∈ Cs
b (R)}. We equip this space

with the complete norm ‖φ′‖A(R) = ‖φ‖Cs for all φ ∈ Cs
b (R) such that φ(0) = 0.

By Theorem 4.7, it is enough to show that the space A(R) is admissible.
As we just mentioned, A(R) satisfies the condition ii) of Definition 4.6. It

also clearly fulfils condition i). Thus it remains to show that the product space

R̃ = R× R is uniformly Ã(R× R)-dentable.
So, let ε ∈ (0, 1) and let β ∈ Cs−1

b (R) be a positive bump function on R
such that supp(β)⊂ [−ε/2, ε/2], ‖β‖Cs−1 = ε and β(0) = ‖β‖∞. Now, let
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V ∈ Ã(R× R) be a function which is bounded above on a closed subset F of
R×R. It follows from the definition of Ã(R×R), that there exists φ′ ∈ A(R)
such that V(x, t) = φ′(x) − t for all (x, t) in R × R. Let now (x0, t0) ∈ F be
such that

φ′(x0)− t0 > sup
F
V − β(0)

2
.

Then we consider the functions h and W defined by h(x) =
∫ x

0
β(t− x0)dt for

all x ∈ R and W(x, t) = φ′(x) + h′(x)− t for all (x, t) ∈ R× R.
Notice that h′(x) = β(x−x0). In particular h′(x) = 0 whenever |x−x0| ≥ ε/2
and h′(x0) = β(0). On the other hand,

‖W − V‖Ã(R×R) = ‖h′‖A(R) = ‖h‖Cs = ε.

We can now consider the following non empty slice of F :

S = {(x, t) ∈ F ; W(x, t) > sup
F
W − β(0)

2
}.

If (x, s) ∈ F and |x− x0| ≥ ε/2, then h′(x) = 0 and (x, s) cannot belong to S.

It follows that the diameter of S for d̃ is at most ε. This proves the uniform
dentability of Ã(R× R).

�

We now turn to the proofs of the main results of this section.

Proof of Theorem 4.3: We start with the assertion (a). Let G = {φ ∈
C1

b (R) st |φ′| admits a strong maximum }. It is standard to show that G
is a Gδ subset of C1

b (R). One can for instance prove, following [5], that

G =
∞⋂

n=1

{φ ∈ C1
b (R), ∃x ∈ R : |φ′(x)| > sup

|y−x|>1/n

|φ′(y)|}.

Let now G′ = {φ ∈ C1
b (R), φ′ has a strong maximum} and G” = {φ ∈ C1

b (R),
−φ′ has a strong maximum}. It follows from Lemma 4.8 that G′ and G”
are dense Gδ subsets of C1

b (R). Consider now O′ = {φ ∈ C1
b (R), supR φ

′ >
supR−φ′} and O” = {φ ∈ C1

b (R), supR φ
′ < supR−φ′}. It is clear that O′

and O” are open in C1
b (R), that O′ ∪ O” is dense in C1

b (R) and that G =
(G′ ∩O′) ∪ (G” ∩O”). Therefore G is also dense in C1

b (R).
In order to prove that G coincides with the set of the points of Gâteaux
differentiability of R one only has to imitate the proof of the fact that the set
of points of Gâteaux differentiability of ‖ ‖∞ on Cb(R) is {φ ∈ Cb(R)st |φ|
admits a strong maximum }. Of course, the formula for the derivative is part
of the argument.

We will now prove the assertion (b). We know from [1] that the supre-
mum norm: φ 7→ ‖φ‖∞ is Fréchet differentiable on a dense Gδ subset G1 of
(C1

b (R), ‖ ‖C1) and we proved above that the semi norm φ 7→ ‖φ′‖∞ is Gâteaux
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differentiable on a dense Gδ subset G2 of (C1
b (R), ‖ ‖C1). On the other hand,

it is easy to see that the closed subset F = {φ ∈ C1
b (R) : ‖φ‖∞ = ‖φ′‖∞}

has an empty interior. It implies that the norm ‖ ‖C1 = max(‖φ‖∞, ‖φ′‖∞)
is Gâteaux differentiable at every point of (G1 ∩ G2)\F , which is a dense Gδ

subset of (C1
b (R), ‖ ‖C1). �

Proof of Theorem 4.4: The argument is very similar to the previous one. Let
us just indicate that the improvement on the smoothness of R relies essentially
on the generic Fréchet differentiability of ‖ ‖∞ on Cs−1

b (R) or Lipα
b (R) (see [1]).

�
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