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BRUNO DE MENDONÇA BRAGA, GILLES LANCIEN, COLIN PETITJEAN,

AND ANTONÍN PROCHÁZKA

Abstract. We study the nonlinear embeddability of Banach spaces
and the equi-embeddability of the family of Kalton’s interlaced graphs
([N]k, dK)k into dual spaces. Notably, we define and study a modification
of Kalton’s property Q that we call property Qp (with p ∈ (1,+∞]). We
show that if ([N]k, dK)k equi-coarse Lipschitzly embeds into X∗, then
the Szlenk index of X is greater than ω, and that this is optimal, i.e.,
there exists a separable dual space Y ∗ that contains ([N]k, dK)k equi-
Lipschitzly and so that Y has Szlenk index ω2. We prove that c0 does
not coarse Lipschitzly embed into a separable dual space by a map with
distortion strictly smaller than 3

2
. We also show that neither c0 nor L1

coarsely embeds into a separable dual by a weak-to-weak∗ sequentially
continuous map.

1. Introduction

It was a long standing problem in the nonlinear theory of Banach spaces
whether every metric space uniformly or coarsely embeds into a reflexive
Banach space (we refer the reader to Section 2 for definitions) to which a
negative answer was only found in 2007. Indeed, N. Kalton exhibited in [18]
a property for metric spaces, that he named property Q, which serves as
an obstruction to coarse embeddability into reflexive spaces (see Section 3
for precise statements). Precisely, its absence is an obstruction to coarse
embeddability into reflexive Banach spaces. As it is easily checked, c0 fails
property Q and so it does not embed into any reflexive Banach space. This
property is defined in terms of the behaviour of Lipschitz maps defined on
a particular family of metric graphs: the Kalton’s interlaced graphs (see
Section 2.2).

Furthermore, N. Kalton proved the stronger result that any space X
coarsely containing c0 must have some of its iterated duals nonseparable
(see [18, Theorem 3.6]). Let us point out that coarsely containing the James
tree space J T would have the same impact on the iterated duals of X
[26, Theorem 6.2]. The result of N. Kalton raises the following very natural
problem:

Problem 1.1. Is there a universal n ∈ N so that if c0 coarsely embeds into
a Banach space X, then its n-th iterated dual X(n) is nonseparable?
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It is standard knowledge in the linear (resp. non-linear) theory of Banach
spaces, that c0 does not isomorphically (resp. Lipschitz) embed into any
separable dual space. So it is also quite natural to wonder the following:

Problem 1.2. Does c0 coarsely embed into a separable dual space?

It is clear that a negative answer to this last problem would represent the
strongest possible positive solution for Problem 1.1 (namely n = 2). How-
ever, this last problem is still open even in the category of coarse-Lipschitz
embeddings (see Section 2.1 for a precise definition).

Problem 1.3. Does c0 coarsely Lipschitz embed into a separable dual
space?

The current paper revolves around these questions. Therefore, inspired
by N. Kalton, we not only study different notions of nonlinear embeddability
of c0 into X, but we also analyse to which extent the equi-embeddability of
the Kalton’s interlaced graphs into a Banach space X forces the dual of X
to be nonseparable.

We now describe the main findings of this paper. Throughout this paper,
[N]k denotes the set of all subsets of N with k elements, [N]<ω denotes the
set of all finite subsets of N, and dK = dK,k denotes Kalton’s interlaced

metric on [N]k. There exists a metric on [N]<ω which extends all metrics
dK,k simultaneously, and we also denote this metric by dK (see Subsection 2.2
for precise definitions).

First of all, inspired by [21], we define a modification of Kalton’s prop-
erty Q that we call property Qp for p ∈ (1,∞]. In a nutshell, while
property Q consists in a strong concentration inequality for Lipschitz maps
f : ([N]k, dK) → R defined on the interlaced graphs, property Qp is a con-

centration inequality proportional to k1/p (see Definition 3.1). In this way,
property Q may be seen as property Q∞. It is readily seen that property
Qp is a coarse-Lipschitz invariant. The first main result relates this prop-
erty with asymptotic uniform convexity (see Subsection 2.4 for definitions
of asymptotic properties).

Theorem 3.3. Let p ∈ (1,+∞] and let q ∈ [1,∞) be the conjugate exponent
of p. If a dual space X∗ admits an equivalent q-AUC∗ dual norm then X∗

has property Qp.

We also prove that property Qq is equivalent to reflexivity for a certain
class of Banach spaces (namely those having the p-alternating Banach-Saks
property, see Corollary 3.7). These results can be used to rule out the coarse-
Lipschitz embeddability between certain Banach spaces (see Corollaries 3.4
and 3.8).

Next, recall that a separable Banach space X has separable dual if and
only if its Szlenk index Sz(X) is countable (see Subsection 2.3 for a def-
inition of the Szlenk index). Hence, Sz(X) can be seen as a quantitative
measurement of “how close to be nonseparable” is X∗. We obtain the fol-
lowing relation between containment of Kalton’s interlaced graphs and the
Szlenk index.
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Theorem 4.3. Let X be a Banach space. If the family of Kalton’s interlaced
graphs (([N]k, dK))k∈N equi-coarse Lipschitz embeds into X∗, then Sz(X) >
ω, where ω denotes the first infinite ordinal.

We also prove that if X has summable Szlenk index then X∗ enjoys prop-
erty Q. Moreover, Theorem 4.3 is actually optimal and the containment
of Kalton’s interlaced graphs cannot help us any further in the problem of
whether c0 coarsely embeds into a separable dual. Indeed, we show the
following.

Theorem 5.3. The Kalton graph ([N]<ω, dK) Lipschitz embeds into a sep-
arable dual space X∗ with Sz(X) = ω2.

Although we were not able to obtain a negative answer to Problem 1.3, we
obtained a restriction for the existence of a coarse Lispchitz embedding from
c0 into X∗ based on the distortion of such embeddings. Before presenting
our result, let us recall this definition. Let X and Y be Banach spaces and
f : X → Y be a coarse Lipschitz embedding. We say that f has coarse
Lipschitz distortion strictly less than K if there exist A,B,C,D > 0 with
AC < K so that

1

A
‖x− y‖ −B ≤ ‖f(x)− f(y)‖ ≤ C‖x− y‖+D

for all x, y ∈ X. We obtain the following.

Theorem 6.2. If c0 coarse Lipschitz embeds into a dual space X∗ with
coarse Lipschitz distortion strictly less than 3

2 , then X contains an isomor-
phic copy of `1.

In a different direction, we show that Problem 1.2 has a negative answer
with the extra assumption that the embedding is weak-to-weak∗ sequentially
continuous. Moreover, just as in the isomorphic theory, this also holds for
the space L1.

Theorem 7.4. Neither c0 nor L1 can be coarsely (resp. uniformly) em-
bedded into a separable dual Banach space by a map that is weak-to-weak∗

sequentially continuous.

Since the “weak-to-weak∗ sequential continuity” hypothesis is not stan-
dard, a word on Theorem 7.4 is necessary. The first named author has
begun the study of coarse and coarse Lispchitz embeddings between Ba-
nach spaces which also satisfy some continuity condition with respect to
the weak topologies [7, 8]. For instance, in contrast to the famous result of
I. Aharoni that c0 contains a Lipschitz copy of every separable metric space
[1, Theorem in page 288], any Banach space not containing `1 which can be
coarsely embedded into c0 by a weakly sequentially continuous map must
actually be isomorphic to a subspace of c0 [8, Theorem 1.6]. Also, although
`p (resp. Lp) coarsely embeds into `q (resp. Lq) for all p, q ∈ [1, 2], the same
is only true for weak sequentially continuous coarse embeddings `p → `q if
p ≤ q [7, Corollary 1.7]. In particular, Theorem 7.4 shows that although the
theory of coarse embeddability for members of the families (`p)p∈[1,2] and
(Lp)p∈[1,2] are the same, this is not the case for weakly sequentially contin-
uous embeddings. Indeed, L1 does not coarsely embed into Lq by a weakly
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sequentially continuous map for any q > 1, but `p does so into `q for all
q ≥ p.

This summarises our main findings. We now give the definitions and
terminology necessary for this paper.

2. Preliminaries

2.1. Embeddings between metric spaces. Let (M,dM ), (N, dN ) be two
metric spaces and f : M → N be a map. We define the compression modulus
ρf by letting

ρf (t) = inf{dN (f(x), f(y)) : dM (x, y) ≥ t}

for each t ≥ 0, and the expansion modulus ωf by letting

ωf (t) = sup{dN (f(x), f(y)) : dM (x, y) ≤ t}

for all t ≥ 0. We adopt the convention sup(∅) = 0 and inf(∅) = ∞. Note
that for every x, y ∈M ,

ρf (dM (x, y)) ≤ dN (f(x), f(y)) ≤ ωf (dM (x, y)).

Moreover, the map f : M → N is called

(i) a coarse embedding if limt→∞ ρf (t) = ∞ and ωf (t) < ∞ for every
t ∈ [0,+∞);

(ii) a coarse Lipschitz embedding if there exits A,B,C,D > 0 such that
ρf (t) ≥ At− C and ωf (t) ≤ Bt+D for every t ∈ [0,+∞);

(iii) a Lipschitz embedding if there exits A,B > 0 such that ρf (t) ≥ At
and ωf (t) ≤ Bt for every t ∈ [0,+∞).

Let (Mi)i∈I be a family of metric spaces. We say that the family (Mi)i∈I
equi-coarsely embeds (equi-coarsely Lipschitz embeds and equi-Lipschitz em-
beds respectively) into a metric space N if there exist two maps

ρ, ω : [0,+∞)→ [0,+∞)

and a family of maps (fi : Mi → N)i∈I such that

(1) ρ(t) ≤ ρfi(t) for every i ∈ I and t ∈ [0,∞),
(2) ωfi(t) ≤ ω(t) for every i ∈ I and t ∈ [0,∞), and
(3) the maps ρ and ω satisfy the properties (i) above (respectively (ii)

for coarse Lipschitz embedding and (iii) for Lipschitz embedding).

In order to refine the scale of coarse embeddings between Banach spaces,
we will also shortly use the following notion. Let X and Y be two Banach
spaces. We define αY (X) as the supremum of all α ∈ [0, 1) for which there
exists a coarse Lipschitz map f : X → Y (i.e., the expansion modulus ωf is
bounded above by an affine map) and A,C in (0,∞) so that ρf (t) ≥ Atα−C
for all t > 0. Then, αY (X) is called the compression exponent of X in Y .
Note that in the setting of Banach spaces, it is enough to impose that
ωf (a) < ∞ for some a > 0 to automatically get that f is coarse Lipschitz.

Indeed, decomposing any segment [x, y] in X into
⌊
‖x−y‖
a

⌋
+ 1 segments of

length at most a, we obtain that ‖f(x)−f(y)‖ ≤ ωf (a)
a ‖x−y‖+ωf (a). This

is more generally true when X is a so-called metrically convex metric space.
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2.2. Kalton interlaced graphs. Given k ∈ N and an infinite M ⊂ N, let
[M]k denote the set of all strictly increasing k-tuples in M. Given distinct
n̄ = (n1, . . . , nk), m̄ = (m1, . . . ,mk) ∈ [M]k, define a graph structure on
[M]k by declaring n̄ 6= m̄ adjacent if and only if either

n1 ≤ m1 ≤ n2 ≤ . . . ≤ nk ≤ mk or m1 ≤ n1 ≤ m2 ≤ . . . ≤ mk ≤ nk.

The metric dkK is defined as the shortest path metric in the graph [M]k. The

family ([N]k, dkK)k is the family of Kalton’s interlaced graphs.

For k ∈ N and M an infinite subset of N, we put [M]≤k =
⋃
m≤k[M]m,

[M]<ω =
⋃
m∈N[M]m and [M]ω = {S ⊂ M : S is infinite}. Just as in the

finite case, the elements of [M]ω are always written as strictly increasing
infinite tuples, i.e., if n̄ = (n1, n2, . . .) ∈ [M]ω, we always have nj < nj+1 for
all j ∈ N.

The distance dkK is independent of the infinite subset of N chosen. So,

given k ∈ N, M1 ∈ [N]ω and M2 ∈ [M1]ω, [M2]k is naturally a metric
subspace of [M1]k. This is implied by the following proposition obtained in
[26], which moreover gives us an explicit formula to compute dkK.

Proposition 2.1 (Proposition 2.2 of [26]). Letting

dK(n,m) = sup
{∣∣|n ∩ S| − |m ∩ S|∣∣ : S segment of N

}
for all n,m ∈ [N]<ω, we have that dkK = dK�[N]k for all k ∈ N.

The formula from the previous proposition also defines a graph metric on
[N]<ω whose restriction to [N]k of course coincides with dkK. From now on
we simply denote the interlaced metric by dK (thus omitting the reference
to k).

Remark 2.2. It is easy to see that the sequence ([N]k, dK)k equi-coarsely
Lipschitz embeds into a Banach space X if and only if it equi-Lipschitz
embeds into X. Indeed, this follows from the fact that, for any k ∈ N, the
map f : ([N]k, dK)→ ([N]2k, 1

2dK) defined by:

∀n = (n1, . . . , nk) ∈ [N]k, f(n) = (2n1, 2n1 + 1, . . . , 2nk, 2nk + 1)

is an isometry. Then, composing the isometric embedding of ([N]k, dK) into
([N]2

rk, 2−rdK) for r in N large enough and a rescaling of the equi-coarse
Lipschitz embedding of ([N]2

rk, dK) into X yields the conclusion.

For m = (m1,m2, . . . ,mr) ∈ [N]<ω and n = (n1, n2, . . . , ns) ∈ [N]<ω, we
write m ≺ n, if r < s and mi = ni, for i = 1, 2, . . . , r, and we write m � n
if m ≺ n or m = n. Thus m � n if m is an initial segment of n. At last,
for n = (n1, . . . , nk) and m = (m1, . . . ,ml) in [N]<ω, we write n < m if
nk < m1.

2.3. Szlenk index. Let X be Banach space and K be a weak∗ compact
subset of X∗. For each ε > 0, define

sε(K) = K \ {V ⊂ X∗ : V weak∗ open and diam(V ∩K) < ε}.

Given an ordinal ξ, sξε(K) is defined inductively by letting s0
ε(K) = sε(K),

sξ+1
ε (K) = sε(s

ξ
ε(K)) and sξε(K) = ∩ζ<ξsζε(K) if ξ is a limit ordinal. We then
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define Sz(X, ε) as the least ordinal ξ so that sξε(BX∗) = ∅, if such ordinal
exists, and Sz(X, ε) =∞ otherwise. The Szlenk index of X is defined as

Sz(X) = sup
ε>0

Sz(X, ε).

A Banach space X is said to have summable Szlenk index if there exists
c > 0 so that for all ε1, . . . , εn > 0 the inequality

sεn(sεn−1(. . . (sε2(sε1(BX∗)) . . .)) 6= ∅
implies ε1 + . . .+ εn ≤ c. It is known that any subspace of c0 has summable
Szlenk index, but the converse is not true (see details in Section 4).

The Szlenk index of a Banach space is closely related to the behavior of the
so-called weak∗-null or weak∗-continuous trees in its dual. So let us give the
necessary definitions. For a Banach space X, we call tree of height k in X any
family (x(n))n∈[N]≤k , with x(n) ∈ X. Then, if M ∈ [N]ω, (x(n))n∈[M]≤k will

be called a full subtree of (x(n))n∈[N]≤k . For M ∈ [N]ω, a tree (x∗(n))n∈[M]≤k

in X∗ is called weak∗-null if for any n = (n1, . . . , nj) ∈ [M]≤k−1 \{∅}, the se-
quence (x∗(n1, . . . , nj , t))t>nj ,t∈M is weak∗-null and the sequence (x∗(t))t∈M
is also weak∗-null. It is called weak∗-continuous if for any n = (n1, . . . , nj) ∈
[M]≤k−1 \ {∅}, the sequence (x∗(n1, . . . , nj , t))t>nj ,t∈M is weak∗-converging
to x∗(n1, . . . , nj) and the sequence (x∗(t))t∈M is also weak∗-converging to
x∗∅. Then, the following proposition is a direct consequence of the definition
of the Szlenk index.

Proposition 2.3. Let X be a Banach space and assume that (x∗(n))n∈[M]≤k

is a weak∗-continuous tree in BX∗ such that there exist i1 < · · · < il in
{0, . . . , k − 1} and Ki1 , . . . ,Kil > 0 satisfying

∀s ∈ {1, . . . , l} ∀n ∈ [M]is lim sup
t→∞,t∈M

‖x∗(n, t)− x∗(n)‖ ≥ Kis .

Then
x∗∅ ∈ sKil

. . . sKi1
(BX∗).

2.4. Asymptotic uniform smoothness and convexity. Let X be a Ba-
nach space. We denote the set of all closed subspaces of X with finite
codimension by CoFin(X). We define the modulus of asymptotic uniform
smoothness of X by letting

ρX(t) = sup
x∈∂BX

inf
E∈CoFin(X)

sup
y∈∂BE

‖x+ ty‖ − 1

for each t ≥ 0. The space X is asymptotically uniformly smooth (abbreviated
by AUS ) if limt→0+ ρX(t)/t = 0 for all t > 0. Let p ∈ (1,∞]. We say that
X is p-asymptotically uniformly smooth (abbreviated by p-AUS ) if there
exists C > 0 so that ρX(t) ≤ Ctp for all t ∈ [0, 1].

Let X∗ be a dual space. We denote the set of all weak∗ closed subspaces
of X∗ with finite codimension by CoFin∗(X∗). We define the modulus of
weak∗ asymptotic uniform convexity of X∗ by letting

δ
∗
X(t) = inf

x∗∈∂BX∗
sup

E∈CoFin∗(X∗)
inf

y∗∈∂BE

‖x∗ + ty∗‖ − 1

for each t ≥ 0. The space X∗ is weak∗ asymptotically uniformly convex
(abbreviated by AUC∗) if δ

∗
X(t) > 0 for all t > 0. Let p ∈ [1,∞). We
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say that X∗ is weak∗ p-asymptotically uniformly convex (abbreviated by

p-AUC∗) if there exists C > 0 so that δ
∗
X(t) ≥ Ctp for all t ∈ [0, 1].

We first recall the following classical duality result concerning these mod-
uli (see [12, Corollary 2.4]).

Proposition 2.4. Let X be a Banach space.

(i) Then ‖ ‖X is AUS if and and only if ‖ ‖X∗ is AUC∗.
(ii) If p ∈ (1,∞] and q ∈ [1,∞) are conjugate exponents, then ‖ ‖X is

p-AUS if and and only if ‖ ‖X∗ is q-AUC∗.

The next proposition is elementary.

Proposition 2.5. For any weak∗-null sequence (x∗n)∞n=1 ⊂ X∗ and for any
x∗ ∈ X∗ \ {0} we have

lim sup
n→∞

‖x∗ + x∗n‖ ≥ ‖x∗‖
(

1 + δ
∗
X

(
lim supn→∞ ‖x∗n‖

‖x∗‖

))
.

By iterating this estimate one can deduce the following property of weak∗-
null trees in a q-AUC∗ dual space.

Proposition 2.6. Let X be a Banach space with a dual q-AUC∗ norm, for
some q ∈ [1,∞). Then, there exists c > 0 such that for any weak∗-null tree
(x∗(n))n∈[N]≤k in X∗, there exists M ∈ [N]ω such that

∀n ∈ [M]k,
∥∥∥ ∑
m�n

x∗(m)
∥∥∥q ≥ c∑

m�n
‖x∗(m)‖q.

This now standard fact could initially be found in [22]. See also [20] and
[26, Lemma 3.6 and Lemma 3.7].

We conclude this section by recalling the fundamental renorming result
for spaces with Szlenk index equal to ω. The result is due to H. Knaust,
E. Odell and Th. Schlumprecht [22] in the separable case and M. Raja [30]
in the non separable setting. The precise quantitative version can be found
in [16].

Theorem 2.7. Let X be a Banach space such that Sz(X) = ω. Then there
exists p ∈ (1,∞) such that X admits an equivalent p-AUS norm.

2.5. General properties of Lipschitz maps into a dual space. We
finish this preliminaries section by gathering a few decompositon properties
of Lipschitz maps from ([N]k, dK) into a dual Banach space X∗ which will be
heavily used throughout these notes. We start with an elementary separable
reduction.

Proposition 2.8. Let X be a Banach space and f : [N]k → X∗ be a map.
Then, there exists a separable subspace Y of X such that the closed linear
span of f([N]k) isometrically embeds into Y ∗.

Proof. Since [N]k is countable, the closed linear span of f([N]k) is a separable
subspace of X∗; let us call it Z. Therefore, there exists a separable subspace
Y of X such that

∀x∗ ∈ Z, ‖x∗‖X∗ = sup
y∈BY

|x∗(y)|.

This concludes our proof. �
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The next proposition is [26, Proposition 2.8]. As it is mentioned in [26],
its proof follows the ideas of the proof of [4, Lemma 4.1]. As usual Lip(f)
denotes the best Lipschitz constant of a Lipschitz map f between metric
spaces; note that if f : ([N]k, dK)→ Y with Y being a normed vector space
then Lip(f) = ωf (1).

Proposition 2.9. Let X be a separable Banach space, k ∈ N, and f :
([N]k, dK) → X∗ a Lipschitz map. Then there exist M ∈ [N]ω and a weak∗-
null tree (x∗(m))m∈[M]≤k in X∗ with ‖x∗(m)‖ ≤ Lip(f) for all m ∈ [M]≤k \
{∅} and so that

∀n ∈ [M]k, f(n) = x∗∅ +
k∑
i=1

x∗(n1, . . . , ni) =
∑
m�n

x∗(m).

Next, we will extract infinite subsets of M in order to simplify further the
structure of f restricted to the corresponding graph. So assume, for the se-
quel of this subsection, that X is a separable Banach space, f : ([N]k, dK)→
X∗ is Lipschitz and (x∗(m))m∈[M]≤k is as in the conclusion of Proposition 2.9.

Lemma 2.10. Fix ε > 0. Then there exits M1 ∈ [M]ω such that for all
i ∈ {1, . . . , k} there exists Ki ∈ [0,Lip(f)] satisfying

∀(n1, . . . , ni) ∈ [M1]i, Ki ≤ ‖x∗(n1, . . . , ni)‖ ≤ Ki + ε.

Proof. This a direct consequence of Ramsey’s theorem and the compactness
of [0,Lip(f)]. �

Then we further extract in order to separate interlacing sequences. More
precisely we show the following.

Lemma 2.11. There exists M2 ∈ [M1]ω so that if M2 is enumerated as
M2 = {l1 < · · · < ln < · · · }, then, for every i ∈ {1, . . . , k}:

∀(n1, . . . , ni) ∈ [N]i, ‖x∗(l2n1 , . . . , l2ni)− x∗(l2n1+1, . . . , l2ni+1)‖ ≥ Ki

2
.

Proof. Let us fix i ∈ {1, . . . , k}. For m = (m1, . . . ,m2i) ∈ [M1]2i, we denote
modd = (m1,m3, . . . ,m2i−1) and meven = (m2,m4, . . . ,m2i). It follows from
the weak∗-lower semi-continuity of ‖ · ‖X∗ that for all M2 ∈ [M1]ω there

exists m ∈ [M2]2i such that ‖x∗(modd) − x∗(meven)‖ ≥ Ki
2 . Then, using

Ramsey’s theorem successively for each i ∈ {1, . . . , k}, we get that there
exists M2 ∈ [M1]ω so that for every i ∈ {1, . . . , k} and every m ∈ [M2]2i,

‖x∗(modd) − x∗(meven)‖ ≥ Ki
2 . Note now that if (n1, . . . , ni) ∈ [N]i and

m = (l2n1 , . . . , l2ni+1) ∈ [M2]2i, then modd = (l2n1 , . . . , l2ni) and meven =
(l2n1+1, . . . , l2ni+1). This finishes the proof. �

Then we set y∗∅ = 0 and for every n = (n1, . . . , ni) ∈ [N]≤k \ {∅}, we let

y∗(n) = x∗(l2n1 , . . . , l2ni)− x∗(l2n1+1, . . . , l2ni+1).

We have that for every n ∈ [N]k:∥∥∥ n∑
i=1

y∗(n1, . . . , ni)
∥∥∥ = ‖f(l2n1 , . . . , l2nk

)− f(l2n1+1, . . . , l2nk+1)‖

≤ Lip(f).



INTERLACED GRAPHS AND EMBEDDINGS INTO DUAL BANACH SPACES 9

Thus, we can build a weak∗-continuous tree (z∗(n))n∈[N]≤k in Lip(f)BX∗ as
follows:

∀n ∈ [N]≤k, z∗(n) =
∑
m�n

y∗(n).

We now summarize all these reductions in the following proposition.

Proposition 2.12. Let X be a separable Banach space, k ∈ N, ε > 0 and
f : ([N]k, dK) → X∗ a Lipschitz map. Then there exist M ∈ [N]ω, a weak∗-
null tree (x∗(m))m∈[M]≤k in X∗ and constants K1, . . . ,Kk in [0,Lip(f)] such
that

(i) For all m ∈ [M]≤k \ {∅}, ‖x∗(m)‖ ≤ Lip(f).
(ii) For all n ∈ [M]k, f(n) =

∑
m�n x

∗(m).

(iii) For all i ∈ {1, . . . , k} and all (n1, . . . , ni) ∈ [M]i,

Ki ≤ ‖x∗(n1, . . . , ni)‖ ≤ Ki + ε.

(iv) Denote M = {l1, . . . , ln, · · · } with l1 < · · · < ln < · · · , y∗∅ = z∗∅ = 0

and, for n = (n1, . . . , ni) ∈ [N]≤k \ {∅},
y∗(n) = x∗(l2n1 , . . . , l2ni)− x∗(l2n1+1, . . . , l2ni+1)

and
z∗(n) =

∑
m�n

y∗(n).

Then (z∗(n))n∈[N]≤k is a weak∗-continuous tree in Lip(f)BX∗ such

that for every i ∈ {1, . . . , k} and every (n1, . . . , ni) ∈ [N]i,

‖y∗(n1, . . . , ni)‖ ≥
Ki

2
.

3. Property Qp
N. Kalton proved in [18, Theorem 3.6] that c0 neither coarsely nor uni-

formly embeds into any Banach space X whose iterated duals are all sepa-
rable. In the same paper, N. Kalton introduced the notion of property Q for
a Banach space and showed that any reflexive Banach space has property
Q. Recall, a Banach space X has property Q if there exists C ≥ 1 such that
for every k ∈ N and every Lipschitz map f : ([N]k, dK)→ X, there exists an
infinite subset M of N such that

‖f(n)− f(m)‖ ≤ Cωf (1)

for all n,m ∈ [M]k.
In this section, we introduce property Qp for p ∈ (1,∞], which coincides

with property Q when p = ∞. We then give a sufficient condition for a
Banach space to have property Qp and use this in order to obtain some
applications to the theory of nonlinear embeddings between Banach spaces.

Definition 3.1. Let p ∈ (1,+∞]. We say that a Banach space X has
property Qp if there exists C ≥ 1 such that for every k ∈ N and every

Lipschitz map f : ([N]k, dK) → X, there exists an infinite subset M of N
such that

‖f(n)− f(m)‖ ≤ Cωf (1)k
1
p

for all n,m ∈ [M]k (if p =∞, we use the convention that 1/∞ = 0).
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Clearly, property Qp implies property Qq for all q < p. Hence, since every
Banach space which either coarsely or uniformly embeds into a reflexive
space has property Q [18, Corollary 4.3], the same holds for property Qp for
any p ∈ (1,∞].

The next proposition illustrates some simple permanence properties of
property Qp. Since its proof is immediate, we choose to omit it.

Proposition 3.2. Let p ∈ (1,∞] and let X be a Banach space with property
Qp. The following hold.

(i) If Y coarse Lipschitz embeds into X, then Y has property Qp.
(ii) If αX(Y ) = α, then for every ε > 0 the space Y has property Qp(α−ε).

(iii) The family ([N]k, dK)k does not equi-coarsely Lipschitz embed into
X.

(iv) If p =∞, then ([N]k, dK)k does not equi-coarsely embed into X.

The next theorem allows us to obtain new examples of spaces with prop-
erty Qp and relates this property with asymptotic uniform convexity.

Theorem 3.3. Let X be a Banach space and let p ∈ (1,+∞]. Assume that
X admits an equivalent norm which is p-AUS (or equivalently whose dual
norm is q-AUC∗, where q is the conjugate exponent of p). Then X∗ has
property Qp.

Proof. Assume, as it is allowed by Proposition 2.8, that X is separable and
that its norm is p-AUS. Therefore, the norm of X∗ is q-AUC∗, where q is the
conjugate exponent of p. Let f : ([N]k, dK)→ X∗ be a 1-Lipschitz map and
fix ε > 0. Consider M ∈ [N]ω and (Ki)

k
i=1 given by Proposition 2.12. Since

(x∗(m))m∈[M]≤k is a weak∗-null tree in X∗, it follows from Proposition 2.6
that we can find n1 < m1 < . . . < nk < mk in M so that we have the
following lower `q estimate:

‖f(n)− f(m)‖q =
∥∥∥ k∑
i=1

x∗(n1, . . . , nk)− x∗(m1, . . . ,mk)
∥∥∥q

≥ c

(
k∑
i=1

‖x∗(n1, . . . , nk)‖q + ‖x∗(m1, . . . ,mk)‖q
)
,

where c > 0, only depends on the AUC∗ modulus of X∗. Formally, we have
applied Proposition 2.6 to the weak∗-null tree (u∗(m))m∈[M]≤2k given by

u∗(n1, . . . , nl) =

{
x∗(n1, n3, . . . , nl), if l is odd
−x∗(n2, n4, . . . , nl), if l is even.

Since f is 1-Lipschitz, we deduce that

k∑
i=1

Kq
i ≤

1

2c
.

Using Hölder’s inequality and item (iii) in Proposition 2.12, this implies
that for every n,m ∈ [M]k:

‖f(n)− f(m)‖ ≤ 2
k∑
i=1

Ki + 2kε ≤ 2k1/p

(2c)1/q
+ 2kε.
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If ε was initially chosen small enough, this gives us the desired estimate. �

Let p ∈ (1,∞). We now recall the definition and some basic properties of
the James space Jp. We refer the reader to [2, Section 3.4] and references
therein for more details on the classical case p = 2. The James space Jp is
the real Banach space of all sequences x = (x(n))n∈N of real numbers with
finite p-variation and verifying limn→∞ x(n) = 0. The space Jp is endowed
with the following norm

‖x‖Jp = sup
{( k−1∑

i=1

|x(pi+1)− x(pi)|p
)1/p

: 1 ≤ p1 < p2 < . . . < pk

}
.

This is the historical example, constructed for p = 2 by R.C. James, of a
quasi-reflexive Banach space which is isomorphic to its bidual. In fact J ∗∗p
can be seen as the space of all sequences x = (x(n))n∈N of real numbers with
finite p-variation, which is Jp ⊕ Re, where e denotes the constant sequence
equal to 1.

The standard unit vector basis (en)∞n=1 is a monotone shrinking basis for
Jp. Hence, the sequence (e∗n)∞n=1 of the associated coordinate functionals is
a basis of its dual J ∗p .

N. Kalton also proved that the James space J2 and its dual J ∗2 fail
property Q (see [18, Proposition 4.7]). On the other hand, it is shown
in [26, Corollary 5.3] that the family ([N]k, dkK)k does not equi-coarsely em-
bed in Jp, nor in J ∗p for any p ∈ (1,∞). It is known that, for p ∈ (1,∞),
Jp admits an equivalent p-AUS norm and J ∗p admits an equivalent p′-AUS
norm, where p′ is the conjugate exponent of p (see [23, 28]). Therefore we
can state.

Corollary 3.4. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then Jp
has property Qp′ and J ∗p has property Qp.

A Banach space X is said to have the alternating Banach-Saks property
if every bounded sequence (xn)n in X has a subsequence (xnj )j so that

its sequence of alternating-sign Cesàro means ( 1
k

∑k
j=1(−1)jxnj )k converges

to 0. N. Kalton proved in [18, Theorem 4.5] that a Banach space with
the alternating Banach-Saks property which also has property Q must be
reflexive. We now present the p-version of this result. For that, we will need
the following theorem, which is a version of [18, Theorem 4.4] to property
Qp.

Theorem 3.5. Let C ≥ 1, p ∈ (1,∞) and X be a Banach space with
property Qp with constant C. Then, for all ε > 0 and all bounded sequences
(xn)n in X with weak∗ cluster point x∗∗ ∈ X∗∗, there exists an infinite subset
M of N so that

∥∥∥ 2k∑
j=1

(−1)jxnj

∥∥∥ ≥ (1− ε)
C

d(x∗∗, X)k1−1/p,

for all k ∈ N and all n1 < . . . < n2k ∈M.
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Proof. If x∗∗ ∈ X, the statement is trivial. Assume that θ = d(x∗∗, X) > 0.
Let B = supn∈N ‖xn‖ and pick λ > 1 and α ∈ (0, 1) so that

C−1λ−2θ − α− 2Bα ≥ (1− ε)C−1θ.

A classical argument due to James shows that, going to a subsequence of
(xn), we can assume that

(1)
∥∥∥ k∑
j=1

ajxnj −
k∑
j=1

bjxmj

∥∥∥ ≥ λ−1θ,

for all k ∈ N, all n̄ < m̄ ∈ [N]k and all a1, . . . , ak, b1, . . . , bk ≥ 0 with∑k
j=1 aj =

∑k
j=1 bj = 1.

After extracting a further subsequence, we can also assume that

(2)
∥∥∥ 2l∑
j=1

(−1)jxnj

∥∥∥ ≤ λ∥∥∥ 2k∑
j=1

(−1)jxnj

∥∥∥,
for all l < k ∈ N. Indeed, 0 is in the weak∗-closure of the sequence (xn −
x∗∗)n, but not in its norm closure. This implies that (xn − x∗∗)n admits a
λ-basic subsequence (see for instance Theorem 1.5.2 in [2]). Then (2) follows

immediately after noticing that
∑2l

j=1(−1)jxnj =
∑2l

j=1(−1)j(xnj − x∗∗).
A simple application of Ramsey theory and a (skipped) diagonalization

procedure gives an infinite subset M so that for all k ∈ N, there exists bk > 0
with the following property: for all k ∈ N and all αk1−1/p ≤ n1 < . . . < n2k,
we have that

(3)
∥∥∥ 2k∑
j=1

(−1)jxnj

∥∥∥ ∈ [bk − α, bk].

Fix k ∈ N, let Mk = {n ∈ M : n ≥ αk1−1/p} and define f : ([Mk]
k, dK)→

X by setting

f(n̄) =
k∑
j=1

xnj ,

for all n̄ ∈ [Mk]
k. It follows from (2) and (3) that ωf (1) ≤ λbk. Let us

mention that (2) is needed here because two elements of [Mk]
k at distance

1 for dK are not always strictly interlaced and therefore (3) does not apply
directly to estimate ωf (1).

Since X has property Qp, there exist n̄ < m̄ ∈ [Mk]
k with

‖f(n̄)− f(m̄)‖ ≤ λCbkk1/p.

Therefore, this and (1) give us that

bk ≥ C−1λ−2θk1−1/p.

We now prove a lower estimate for all elements of [M]2k. Fix n̄ ∈ [M]2k.

Notice that dαk1−1/pe ≤ 2k. Let m̄ ∈ [Mk]
2k be any element so that mj =
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ndαk1−1/pe+j−1, for all j ∈ {1, . . . , 2k − dαk1−1/pe + 1}. Then, we can pick

β ∈ {−1, 1} so that

∥∥∥ 2k∑
j=1

(−1)jxnj + β
2k∑
j=1

(−1)jxmj

∥∥∥ ≤
∥∥∥ dαk1−1/pe−1∑

j=1

(−1)jxnj

∥∥∥
+
∥∥∥ 2k∑
j=2k−dαk1−1/pe+2

(−1)jxmj

∥∥∥
≤ 2Bαk1−1/p.

We conclude that∥∥∥ 2k∑
j=1

(−1)jxnj

∥∥∥ ≥
∥∥∥ 2k∑
j=1

(−1)jxmj

∥∥∥− 2Bαk1−1/p

≥ C−1λ−2θk1−1/p − α− 2Bαk1−1/p

≥ (1− ε)C−1θk1−1/p.

�

We now introduce a p-version of the alternating Banach-Saks property.

Definition 3.6. Let p ∈ (1,∞) and C > 0. We say that X has the p-
alternating Banach-Saks property with constant C > 0 if for all sequences
(xn)n in BX and all k ∈ N, there exists an infinite subset M ⊂ N so that∥∥∥ k∑

j=1

(−1)jxnj

∥∥∥ ≤ Ck1/p,

for all n1 < . . . < nk ∈M.

Notice that the p-alternating Banach-Saks property implies the alternat-
ing Banach-Saks property.

Corollary 3.7. Let p, q ∈ (1,∞) be so that q > p/(p − 1) (i.e., q is larger
than the conjugate exponent of p). Let X be a Banach space with the p-
alternating Banach-Saks property and with property Qq. Then X is reflexive.

Proof. Since reflexivity is separably determined, assume that X is separable.
Let C ≥ 1 be so that X has both the p-alternating Banach-Saks property
and property Qq with constant C. Suppose X is not reflexive and pick
x∗∗ ∈ BX∗∗ \X, so that d(x∗∗, X) > 0. Let (xn)n be a sequence in BX with
x∗∗ as a weak∗ cluster point.

Fix k ∈ N. Since X has the p-alternating Banach-Saks property with
constant C, by going to a subsequence, we can assume that∥∥∥ 2k∑

j=1

(−1)jxnj

∥∥∥ ≤ 21/pCk1/p,

for all n1 < . . . < n2k ∈ N. Since X has property Qq with constant C the
previous theorem tells us that, by going to a subsequence, we can assume
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that ∥∥∥ 2k∑
j=1

(−1)jxnj

∥∥∥ ≥ 1

2C
k1−1/qd(x∗∗, X),

for all n1 < . . . < n2k ∈ N.
As k was arbitrary, this shows that

1

2C
k1−1/qd(x∗∗, X) ≤ 21/pCk1/p

for all k ∈ N. As 1− 1/q > 1/p, this gives us a contradiction. �

As another application of Theorem 3.5, we can show that Corollary 3.4
is optimal.

Corollary 3.8. Let p in (1,∞) and p′ be its conjugate exponent. Then, for
any r > p′, Jp fails property Qr and for any s > p, J ∗p fails property Qs.

Proof. We follow the proof of Proposition 4.7 in [18].
First, consider in Jp the sequence (xn)n given by xn =

∑n
i=1 ei for all

n ∈ N. We have that (xn)n converges weak∗ to e ∈ J ∗∗p \ Jp. However, it
is easy to see that there exists C > 0 such that for any n1 < · · · < n2k, we
have: ∥∥∥ 2k∑

i=1

(−1)jxnj

∥∥∥
Jp
≤ Ck1/p.

For r > p′, according to Theorem 3.5, this prevents Jp from having property
Qr.

We now consider in J ∗p the sequence (e∗n)n which is weak∗-converging to
an element λ ∈ J ∗∗∗p \ J ∗p , which is just the functional assigning its limit to
any sequence of bounded p-variation. For x ∈ Jp, we have∣∣∣〈 2k∑

i=1

(−1)je∗nj
, x〉
∣∣∣ ≤ k∑

j=1

|x(n2j)− x(n2j−1)| ≤ k1/p′‖x‖Jp .

It follows that ‖
∑2k

i=1(−1)je∗nj
‖J ∗p ≤ k1/p′ . We then deduce from Theo-

rem 3.5 that J ∗p fails property Qs for all s > p. �

Feeding Corollaries 3.4 and 3.8 into Proposition 3.2 (ii) we get information
on some compression exponents of Jq in Jp or J ∗q in J ∗p . More precisely we
have.

Proposition 3.9. Let p, q be in (1,∞) and p′, q′ be their respective conjugate
exponents.

(1) If p < q, then αJp(Jq) ≤ q′

p′ .

(2) If p > q, then αJ ∗p (J ∗q ) ≤ q
p .

Estimates on the compression exponents for the “other half” of the values
of p and q are already known (see [28] or [25]). They are based on concen-
tration properties for Lipschitz maps defined on the Hamming graphs with
values in quasi-reflexive p-AUS spaces. When one wants to use asymptotic
convexity as an obstruction for coarse Lipschitz embeddings, it is customary
to use the so-called approximate midpoint principle (see for instance [21]).
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However this method, as far as we know, only allows to show the impossibil-
ity of a coarse Lipschitz embedding, but does not provide extra information
on the compression modulus. In fact, this method was used by F. Netillard
[28] to prove that for p < q, Jq does not coarse Lipschitz embed in Jp and
that for p > q, J ∗q does not coarse Lipschitz embed in J ∗p . Our last corol-
lary is an improvement of these results. This indicates that Theorem 3.3
can serve as an alternative to the approximate midpoint principle, but only
in a non reflexive setting.

4. Concentration properties and Szlenk indices

In this section, we obtain obstructions to the embeddability of Kalton’s
graphs into some dual Banach spaces.

Theorem 4.1. Let X be a Banach space with summable Szlenk index. Then
X∗ has property Q.

Proof. Assume, as it is allowed by Proposition 2.8, that X is separable. Let
f : ([N]k, dK)→ X∗ be a 1-Lipschitz map, fix ε ∈ (0, 1

2k ). Let M ∈ [N]ω and
K1, . . . ,Kk be given by Proposition 2.12. Then it clearly follows from item
(iv) and Proposition 2.3 that

0 ∈ sK1
2

. . . sKk
2

(BX∗).

Since the Szlenk index of X is summable, we deduce that
∑k

i=1Ki ≤ 2C,
where C is the “summable Szlenk index constant” of X. Then, we deduce
from items (ii) and (iii) of Proposition 2.12 that

diam (f([M]k) ≤ 2

k∑
i=1

Ki + 2kε ≤ 4C + 1.

�

Remark 4.2. Note that Theorem 3.3 insures that if X admits an equivalent
norm whose dual norm is 1-AUC∗ then X∗ has property Q. It is known
[15] that a separable Banach space admits an equivalent norm whose dual
norm is 1-AUC∗ if and only if X is isomorphic to a subspace of c0. It is
an easy exercise to check that any subspace of c0 has a summable Szlenk
index. However, there are Banach spaces with summable Szlenk index that
do not linearly embed into c0. Before describing a few of them, let us
mention that a Banach space has a summable Szlenk index if and only if it
is asymptotic-c0 (see [10, Theorem 4.1]). The original Tsirelson space, now
denoted T ∗, is an example of a reflexive asymptotic-c0 space. Let us also
mention that there exists a non reflexive quasi-reflexive Banach space which
is asymptotic-c0 (see Section 7 in [4] and references therein). In conclusion,
Theorem 4.1 applies to spaces that are not covered by N. Kalton’s work nor
by our Theorem 3.3.

Theorem 4.3. Let X be a Banach space. If the family of Kalton’s interlaced
graphs (([N]<k, dK))k∈N equi-coarse Lipschitz embeds into X∗, then Sz(X) >
ω.



16 B. M. BRAGA, G. LANCIEN, C. PETITJEAN, AND A. PROCHÁZKA

Proof. We may assume again that X is separable (Proposition 2.8). By
Remark 2.2, we can also assume that (([N]<k, dK))k∈N equi-Lipschitz embeds
into X∗. Hence, without loss of generality, we may assume that there exists
A ∈ (0, 1] so that for any k ∈ N there exists fk : ([N]k, dK)→ X∗ such that

∀n,m ∈ [N]k, AdK(n,m) ≤ ‖f(n)− f(m)‖ ≤ dK(n,m).

Let n < m ∈ [N]k (that is such that nk < m1). By the triangle inequality
we have ∥∥∥∑

s̄�n
x∗(s̄)

∥∥∥+
∥∥∥∑
s̄�m

x∗(s̄)
∥∥∥ ≥ ‖f(n)− f(m)‖ ≥ Ak.

For a fixed k and a given ε > 0 ∈ (0, A4 ), we consider M ∈ [N]ω given by

Proposition 2.12. It then follows from item (iii) that 2
∑k

i=1Ki ≥ Ak−2kε.

Now, if we denote I = {1, . . . , k}, I1 = {i ∈ I, Ki >
A
8 } and N = |I1|, we

have that

Ak

2
− kε ≤

k∑
i=1

Ki =
∑
I\I1

Ki +
∑
I1

Ki ≤
A

8
k +N.

From our choice of ε, it follows that N ≥ Ak
8 . Finally, we deduce from item

(iv) in Proposition 2.12 and Proposition 2.3 that

0 ∈ sNA
16

(B∗X)

and therefore that Sz(X, A16) ≥ Ak
8 . Since k was arbitrary, this concludes

our proof. �

Remark 4.4. As it is recalled in the introduction, a Banach space X admits
an equivalent AUS norm if and only if Sz(X) ≤ ω and in that case there
exists p ∈ (1,∞) such that X admits an equivalent p-AUS norm. Therefore
Theorem 3.3 is a quantitative version of Theorem 4.3. In fact Theorem 4.3
is a consequence of Theorem 3.3 and these deep renorming results. We have
chosen to present here an independent, self contained elementary proof.

Let us now say that a Banach space X has proportional Szlenk index if
there exists C > 0 such that for all ε > 0, Sz(X, ε) ≤ C

ε . It is clear that a
Banach space with summable Szlenk index has proportional Szlenk index.
To the best of our knowledge, whether the converse implication is true is an
open problem. We do not know either if the dual of a Banach space with a
proportional Szlenk index has property Q, but we can prove the following
weaker concentration estimate.

Proposition 4.5. Let X be a Banach space with proportional Szlenk index.
Then, there exists M > 0 such that for any k ∈ N and every Lipschitz map
f : ([N]k, dK)→ X∗, there exists an infinite subset M of N such that:

∀n,m ∈ [M]k, ‖f(n)− f(m)‖ ≤M(1 + log k)Lip(f).

Proof. By Proposition 2.8, we can assume that X is a separable Banach
space such that for all ε > 0, Sz(X, ε) ≤ C

ε , for some C > 0. Let f :

([N]k, dkK)→ X∗ be a 1-Lipschitz map, fix ε > 0 and consider M ∈ [N]ω and

K1, . . . ,Kk given by Proposition 2.12. Let η = C
k and, for r ∈ N, denote by
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Ir the set of all i’s in {1, . . . , k} such that 2r−1η ≤ Ki ≤ 2rη, and let Nr

be the cardinality of Ir. It follows from item (iv) in Proposition 2.12 and
Proposition 2.3 that Nr ≤ Sz(X, 2r−2η) ≤ 4C

2rη and so NrKi ≤ 4C if i ∈ Ir.
Notice also that, since f is 1-Lipschitz, Ki ≤ 1 for all i ≤ k, which implies
that Ir is empty for r > log2( kC ) + 1. Let N = dlog2( kC ) + 1e. We deduce
that

k∑
i=1

Ki ≤ kη +

N∑
r=1

∑
i∈Ir

Ki ≤ kη + 4CN ≤ C + 4CN.

Finally, using item (iii) of Proposition 2.12, we get that

diam (f([M]k) ≤ 2C + 8CN + 2kε ≤ 3C + 8CN,

if ε was initially chosen small enough. In view of the definition of N , this
clearly yields the conclusion of our proposition. �

5. Optimality

In the previous section, we proved that if the family of Kalton’s interlaced
graphs equi-Lipschitz embeds into a dual Banach space X∗, then the Szlenk
index of X is at least ω2. Indeed, it is known that, when it is well defined,
the Szlenk index of a Banach space is always of the form ωα for some ordinal
α (see for instance [24]). Here we show that this result is optimal. That
is, we exhibit a separable dual Banach space with Szlenk index ω2 which
contains the interlaced graphs. To this aim we will use Lipschitz free spaces.
Recall, if (M,x0) is a pointed metric space (a Banach space X is always
considered as a pointed metric space with x0 = 0), then Lip0(M) denotes
the space of all Lipschitz maps f : M → R so that f(x0) = 0. Endowed
with the norm ‖f‖ = Lip(f), Lip0(M) is a Banach space. Given x ∈M , the
map δx : Lip0(M) → R given by δx(f) = f(x) for all f ∈ Lip0(M) belongs
to Lip0(M)∗, and we define the Lipschitz free space of M as

F(M) = span{δx ∈ Lip0(X)∗ : x ∈ X}.
We refer to the monograph [11] for the basic properties of F(M). Just note
that the map δ : x 7→ δx is an isometry from M into F(M).

In order to exhibit a separable dual Banach space with Szlenk index ω2,
the strategy will be to consider the Lipschitz free space F(M) over a metric
space M which contains the interlaced graphs, and then prove that F(M)
has the required properties. In particular, the next corollary from [13] will
be useful for proving that F(M) is isometrically a dual Banach space. In the
following statement, Cτ (M) stands for the set of maps from M to R which
are continuous with respect to some topology τ on M .

Proposition 5.1 (Corollary 3.7 of [13]). Let (M,d) be a uniformly discrete,
bounded, separable metric space with a distinguished point 0 ∈ M . Assume
that there is a Hausdorff topology τ on M such that:

(i) (M, τ) is compact
(ii) d is τ -lower semicontinuous.

If X = Lip0(M,d) ∩ Cτ (M) is equipped with the Lipschitz norm ‖ · ‖L, then
X is an isometric predual of F(M). Moreover the weak∗-topology induced
by X on F(M) coincides with τ on δ(M), that we identify with M .
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For any given k ∈ N, a concrete bi-Lipschitz copy of the metric space
([N]≤k, dK) into c0 is given by the map fk : [N]≤k → c0 defined by

∀n = (n1, . . . , nj) ∈ [N]≤k : fk(n) =

j∑
i=1

sni ,

where (sn)∞n=1 stands for the summing basis of c0. Indeed, one can easily
check that

(E) ∀n,m ∈ [N]≤k :
1

2
dK(n,m) ≤ ‖fk(n)− fk(m)‖ ≤ dK(n,m)

(see for instance [26, Proposition 2.5]).
For each k ∈ N, let

M̃k = fk
(
[N]≤k

)w∗
⊂ `∞,

which is weak∗-compact since fk
(
[N]≤k

)
is bounded. Letting 1 ∈ `∞ be the

constant sequence equal to 1, it is readily seen that

M̃k =
{ j∑
i=1

sni + `1 : j, ` ∈ N ∪ {0}, j + ` ≤ k, n1 < . . . < nj ∈ N
}
.

Hence, endowed with the usual norm ‖·‖∞ of `∞, the space M̃k is countable
and uniformly discrete. Finally, the norm ‖ · ‖∞ is trivially weak∗-lower
semicontinuous. The next corollary is therefore a direct consequence of
Proposition 5.1.

Corollary 5.2. For any k ∈ N, the free space F
(
M̃k, ‖ · ‖∞

)
is isometric to

a separable dual Banach space X∗k , where Xk = Lip0(M̃k, ‖ · ‖∞)∩Cw∗(M̃k).

Theorem 5.3. The Kalton graph ([N]<ω, dK) Lipschitz embeds into a sep-
arable dual space X∗ with Sz(X) = ω2.

Proof. Let M = ([N]<ω, dK), and consider the distinguished point 0 = ∅ ∈
[N]<ω. For each k ∈ N, let

M2k = B(0, 2k) = [N]≤2k .

So M =
⋃
k∈NM2k . Then we use Kalton’s decomposition [17, Proposition

4.3] to deduce that for every ε > 0, F(M) (1 + ε)-linearly embeds into(∑
k∈N
F(M2k , dK)

)
`1
.

For each k ∈ N, we let M̃2k be the metric subspace of `∞ as it is defined

above. For each k ∈ N, let X2k be the predual of F(M̃2k , ‖ · ‖∞) given by
Corollary 5.2. It follows from (E) that for all k ∈ N, F(M2k , dK) 2-linearly
embeds into X∗

2k
. Since M isometrically embeds into F(M), we deduce that,

for any ε > 0, M Lipschitz embeds with distorsion 2(1 + ε) into(∑
k∈N
F
(
M̃2k , ‖ · ‖∞

))
`1
≡
(∑
k∈N

X2k

)∗
c0
.
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Let X := (
∑

k∈NX2k)c0 . It remains to prove that Sz(X) = ω2. By

Theorem 4.3 we know that Sz(X) > ω and therefore Sz(X) ≥ ω2, so we
only have to prove the reverse inequality. Notice that

X2k = Lip0(M̃2k , ‖ · ‖∞) ∩ Cw∗(M̃2k)

equipped with its Lipschitz norm is isomorphic to a subspace of the Banach

space (C(M̃2k , w
∗), ‖·‖∞) of continuous functions on the compact metrisable

space (M̃2k , w
∗). Indeed, as (M̃2k , ‖ ·‖∞) is bounded and uniformly discrete,

we have that the sup-norm and the Lipschitz norm are equivalent on X2k .
Thus

X2k = {f ∈ Cw∗(M̃2k) : f(0) = 0},
which clearly is a hyperplane of Cw∗(M̃2k) and it follows, for instance from

[2, Proposition 4.4.1], that X2k is actually isomorphic to (C(M̃2k , w
∗), ‖·‖∞).

Next, we claim that the Cantor–Bendixson index of M̃2k is equal to 2k+1.
Indeed it is readily seen by induction that the first 2k derived sets are

M̃2k
(d)

=
{ j∑
i=1

sni+`1 : j, ` ∈ N∪{0}, ` ≥ d, j+` ≤ 2k, n1 < . . . < nj ∈ N
}
,

whenever d ∈
{

1, . . . , 2k
}

so the claim easily follows. This shows that X2k is
isomorphic to c0 (e.g., [2, Theorem 4.5.2]) and therefore that Sz(X2k) = ω.
Finally it follows from [9] that

Sz(X) = Sz
((∑

k∈Z
Xk

)
c0

)
≤ ω2,

and we are done. �

Remark 5.4. The proof of the last proposition shows that F([N]<ω, dK) is

isomorphic to a subspace of X∗ =
(∑

k∈NF
(
M̃2k , ‖ · ‖∞

))
`1

. In fact, the

image is even complemented in X∗. Indeed, this follows from the following
two facts (we adopt the same notation as in the proof of Theorem 5.3 above).
First, in Kalton’s decomposition, the image of F(M) is complemented in
(
∑

k F(M2k))`1 (this is proved in detail in [14, Proposition 3.5]).
Second, we claim that

(∑
F(M2k)

)
`1

is isomorphic to a 1-complemented

subspace of
(∑
F(M̃2k)

)
`1
. It is enough to show that F(M2k) is 1-complemented

in F(M̃2k) for every k ∈ N, but this simply follows from the fact that

r2k : M̃2k → f2k(M2k)
j∑
i=1

sni + `1 7→
j∑
i=1

sni

is a 1-Lipschitz retraction. �

Remark 5.5. We have proved that, for every ε > 0, ([N]<ω, dK) Lipschitz
embeds with distorsion 2(1 + ε) into a separable dual Banach space. It
is actually possible to do it with distorsion (1 + ε). To this end, instead
of using the natural embeddings of the ([N]k, dK)’s into c0 (which are of
distorsion 2), one can build concrete metric spaces containing isometrically
the interlaced graphs and which satisfy the assumptions of Proposition 5.1.
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The counterpart is that one has to define by hand the required topology
τ and then check that the distance is τ -lower semicontinous (which was
automatic with the w∗-topology in `∞). The same optimal estimate on the
Szlenk index is obtained.

6. Low distortion embedding of the grid of c0 into duals

In this section, we produce two uniformly discrete countable metric spaces
so that if they Lipschitz embeds into X∗ with Lipschitz distortion strictly
less than 3/2 or 2, respectively, then X must contain an isomorphic copy of
`1. We use this in order to prove Theorem 6.2.

We define the integer grid of c0 as

Grid(c0) = {(xn)n ∈ c0 : ∀n ∈ N, xn ∈ Z}.

So Grid(c0) is a (1, 1)-net of c0 (meaning that it is 1-separated and for every
x ∈ c0, d(x,Grid(c0)) ≤ 1). We consider it as a metric space with the metric
inherited from c0.

Proposition 6.1. Let X be a Banach space and f : Grid(c0) ∩ 2Bc0 → X∗

be a Lipschitz embedding with distortion strictly smaller than 3
2 . Then X

contains an isomorphic copy of `1.

Proof. Replacing f by λf for some appropriate λ > 0, we may assume that
there exists D ∈ [1, 3

2) so that

‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ D‖x− y‖

for all x, y ∈ Grid(c0) ∩ 2Bc0 . Fix ε > 0 such that 3− ε− 2D > 0.
Let (en)n be the canonical basis of c0. For every k ∈ N, pick xk ∈ SX

such that

〈xk, f(2ek)− f(−ek)〉 ≥ 3− ε.
We claim that the sequence (xk)k has no weakly Cauchy subsequence. In-
deed, let M = {m1 < m2 < . . .} ∈ [N]ω and set A1 = {m2k+1 : k ∈ N} and
A2 = N \A1. Then, for all k ∈ N and all m > m2k+1 we have that〈
xm2k+1

, f(1A1∩[1,m])− f(1A2∩[1,m])
〉

=
〈
xm2k+1

, f(2em2k+1
)− f(−em2k+1

)

+f(1A1∩[1,m])− f(2em2k+1
)

+f(−em2k+1
))− f(1A2∩[1,m])

〉
≥ 3− ε− 2D

and〈
xm2k

, f(1A1∩[1,m])− f(1A2∩[1,m])
〉

=
〈
xm2k

, f(−em2k
)− f(2em2k

)

+f(1A1∩[1,m])− f(−em2k
)

+f(2em2k
)− f(1A2∩[1,m])

〉
≤ −3 + ε+ 2D.

Let U be a nonprincipal ultrafilter on N and set

x∗ = w∗- lim
m,U

(
f(1A1∩[1,m])− f(1A2∩[1,m])

)
.
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The above inequalities imply that for all k ∈ N:

x∗(xm2k+1
) ≥ 3− ε− 2D and x∗(xm2k

) ≤ −3 + ε+ 2D.

This shows that (xmk
)k is not weakly Cauchy.

By Rosenthal’s `1 theorem [31], this implies that (xk)k has a subsequence
equivalent to the standard unit basis of `1. In particular, X contains an
isomorphic copy of `1 and we are done. �

Theorem 6.2. If c0 coarse Lipschitz embeds into a dual space X∗ with
coarse Lipschitz distortion strictly less than 3

2 , then X contains an isomor-
phic copy of `1.

Proof. Assume f is such a coarse Lipschitz embedding from c0 into X∗.
Replacing f with x 7→ f(nx)/n for a large enough n ∈ N, the map f
restricted to Grid(c0) ∩ 2Bc0 becomes a Lipschitz embedding with distortion
strictly smaller than 3/2. Then, it follows from Proposition 6.1 that X
contains an isomorphic copy of `1. �

We will now show that replacing Grid(c0)∩2Bc0 by an appropriate graph
M , the distortion in Proposition 6.1 can be pushed up to 2. It is not clear
if the metric space M needed for this is isometric to a subset of c0.

We define the graph M as follows. Let S = [N]<ω, G = N and H = N.
Moreover, we write G = {gi : i ∈ N} and H = {hi : i ∈ N}, where gi = hi = i
for all i ∈ N. We define M as the disjoint union

M = {0} t S tG tH

and we define a graph structure on M by putting an edge

• between 0 and any element of S,
• between A ∈ S and gk ∈ G iff k ∈ A, and
• between A ∈ S and hk ∈ H iff k /∈ A.

Then endow M with the shortest path distance, which we denote by dM . It
should be clear that dM (A,B) = 2 if A 6= B ∈ S and that dM (gk, hk) = 4
for all k ∈ N.

Proposition 6.3. Let f : (M,dM ) → X∗ be a Lipschitz embedding with
distortion strictly less than 2. Then X contains `1.

This proposition should be compared with [29, Theorem 3.1] where a
metric space (N, d) is constructed such that if N Lipschitz embeds into X
with distortion strictly less than 2 then X contains `1.

Proof. Replacing f by λf for some appropriate λ > 0, we may assume that
there exists D ∈ [1, 2) so that

‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ D‖x− y‖

for all x, y ∈M . Fix ε > 0 such that 4− ε− 2D > 0.
For every k ∈ N, let xk ∈ SX be such that 〈xk, f(gk)− f(hk)〉 ≥ 4 −

ε. We claim that (xk)k does not contain any weakly Cauchy subsequence.
Rosenthal’s `1 theorem thus implies that X contains `1. In order to prove
our claim, let M = {m1 < m2 < . . .} be an infinite subset of N. We set
A = {m2k+1 : k ∈ N} and B = N \A. Let U be a nonprincipal ultrafilter on
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N and let ξA = w∗- limm,U f(A ∩ [1,m]) and ξB = w∗- limm,U f(B ∩ [1,m]).
We have

〈
xm2k+1

, ξA − ξB
〉

=
〈
xm2k+1

, f(gm2k+1
)− f(hm2k+1

) + ξA − f(gm2k+1
)

+f(hm2k+1
)− ξB

〉
≥ 4− ε− 2D

and

〈xm2k
, ξA − ξB〉 =

〈
xm2k

, f(hm2k
)− f(gm2k

) + ξA − f(hm2k
)

+f(gm2k
)− ξB

〉
≤ −4 + ε+ 2D

for all k ∈ N. So (xmk
)k is not weakly Cauchy, and we are done. �

Remark 6.4. The results of this section have a certain importance also for the
theory of Lipschitz free spaces. Indeed, it is a well known open problem of
Kalton (see [19] the remarks after Problem 1) to determine whether F(M)
enjoys the metric approximation property (MAP) for every bounded and
uniformly discrete metric space M . One naive approach would be to show
that for such M , the free space F(M) is isometrically a dual. Then a stroke
of Grothendieck theorem would imply that F(M) has the (MAP) since,
being isomorphic to `1, it has the (AP). This approach does not work because
not all such F(M) are isometrically duals (other than the examples above
see Example 5.8 in [13]) and so Abraham Rueda Zoca proposed a refined
strategy which consists in proving that for every bounded uniformly discrete
metric space (M,d) and for every 0 < α < 1 the free space F(M,dα) of the
α-snowlaked M is isometrically a dual. Then again by Grothendieck the
space F(M,dα) would enjoy the (MAP) and by approximation as α tends
to 1, so would F(M). Strike number two: this approach does not work either
since for the metric space from Propostion 6.3 there is 0 < α0 < 1 such that
for all α0 < α < 1 the space F(M,dαM ) is not isometrically a dual. Indeed,
it is enough to take α0 such that the Banach-Mazur distance of F(M) and
F(M,dαM ) is strictly less than 2. Now, since (M,d) embeds isometrically into
F(M), it will Lipschitz embed into F(M,dαM ) with distortion < 2 whenever
α0 < α < 1. Proposition 6.3 then implies that F(M,dαM ) cannot be a dual
as it is separable. Nevertheless, one can check that the free spaces F(M,dαM )
enjoy the (MAP).

In the next section we will be dealing with a special kind of embeddings
of L1 into separable duals and so it is natural to ask whether an analogue
of Proposition 6.1 (resp. 6.3) is true for some bounded uniformly discrete
subsets of L1. The answer is negative. Indeed, since L1 is stable we can
apply [3] to see that every such set embeds isometrically into some reflexive
space.
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7. Weak sequentially continuous embeddings

In this section, we show that Problem 1.2 has a negative answer with
the further assumption that the embedding is weak-to-weak∗ sequentially
continuous.

Let X be a separable Banach space, K ⊂ X∗ and x∗ ∈ K. We say that
x∗ is a point of weak∗-to-norm continuity of K if every sequence (x∗n)n in
K which converges to x∗ in the weak∗ topology converges to x∗ in the norm
topology.

The following is a well known application of the Baire category Theorem
(see [2, Lemma 6.3.4]).

Lemma 7.1. Let X be a Banach space with separable dual and K be a weak∗

compact subset of X∗. Then K has a point of weak∗-to-norm continuity.

The next result should be compared with [2, Lemma 6.3.5], which is a
classical result in the isomorphic theory of Banach spaces.

Lemma 7.2. Suppose X and Y are Banach spaces and assume that Y ∗ is
separable. Let f : BX → Y ∗ be a norm-to-weak∗ continuous bounded map
so that its inverse exists and it is uniformly continuous. Then every closed
subset F of BX contains a point x such that f(x) is a point of weak∗-to-norm

continuity of f(F )
w∗

.

Proof. Let F be a closed subset of BX and let W be the weak∗ closure of
f(F ). Since f(F ) is bounded, W is weak∗ compact. By Lemma 7.1, there
exists y∗ ∈W which is a point of weak∗-to-norm continuity of W . Let (y∗n)n
be a sequence in f(F ) converging to y∗ in the weak∗ topology. By the choice
of y∗, the sequence (y∗n)n converges to y∗ in norm. For each n ∈ N, pick
xn ∈ F so that f(xn) = y∗n. Since (y∗n)n is a Cauchy sequence in Y ∗ and
f−1 is uniformly continuous, it follows that (xn)n is a Cauchy sequence in
X and converges in norm to some x. As F is closed, x ∈ F . Since f is
norm-to-weak∗ continuous, we have

f(x) = w∗- lim
n
f(xn) = w∗- lim

n
y∗n = y∗.

�

Lemma 7.3. Let X be either L1 or c0, and Y be a Banach space with
separable dual. There is no weak-to-weak∗ sequentially continuous bounded
map BX → Y with a uniformly continuous inverse.

Proof. Suppose f : BX → Y ∗ is a weak-to-weak∗ sequentially continuous
bounded map with uniformly continuous inverse. In particular f is norm-
to-weak∗ continuous, so using Lemma 7.2, it is enough to find a closed
F ⊂ BX such that for every x ∈ F there is a sequence (xn) ⊂ F such
that xn → x weakly but not in norm. Indeed, Lemma 7.2 furnishes a point
x ∈ F such that f(x) is a point of weak∗-to-norm continuity of f(F ). We
then have f(xn) → f(x) weak∗ and therefore in norm. Now the continuity
of f−1 yields xn → x in norm which is impossible.

We define F = {x ∈ X : ‖x‖ ∈ [1
2 , 1]}. Let x ∈ F .

• In the case X = c0 we set xn = x+en
‖x+en‖ . It is clear that xn ∈ F ,

xn → x weakly and lim inf ‖xn − x‖ ≥ 1.
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• In the case X = L1, let (rn)n be the sequence of Rademarcher
functions. Then (rnx)n is weakly null. Moreover, it is easy to see
that ‖x + rnx‖ + ‖x − rnx‖ = 2‖x‖ for all n ∈ N. Using that
lim inf ‖x ± rnx‖ ≥ ‖x‖, it follows that lim ‖x + rnx‖ = ‖x‖. We

can thus set xn = ‖x‖(x+rnx)
‖x+rnx‖ and we get again that xn ∈ F , xn → x

weakly and lim inf ‖xn − x‖ ≥ ‖x‖ ≥ 1
2 .

�

Theorem 7.4. Neither c0 nor L1 can be coarsely (resp. uniformly) em-
bedded into a separable dual Banach space by a map that is weak-to-weak∗

sequentially continuous.

Of course, it is well known that L1 embeds uniformly and coarsely into
`2 (see [5] or [27, Corollary 3.1] for a simple explicit formula).

Proof. Let X be either L1 or c0, Y be a Banach space with separable dual
and assume that there exists a weak-to-weak∗ sequentially continuous map
f : X → Y ∗ which is either a coarse or a uniform embedding.

Claim 1. There exists a coarse map g : X → `2(Y ∗) which is weak-to-weak∗

sequentially continuous and so that g−1 exists and is uniformly continuous.

Proof. If f : X → Y ∗ is a uniform embedding, there is nothing to be done.
Indeed, we may simply take g = i ◦ f , where i : Y ∗ → `2(Y ∗) is a linearly
isometric inclusion.

Suppose f is a coarse embedding. Without loss of generality, assume that
f(0) = 0. By [6, Lemma 5.1], there exist sequences of positive reals (an)n
and (bn)n so that the map g : X → `2(Y ∗) given by g(x) = (f(anx)/bn)n,
for all x ∈ X, is a well defined coarse embedding with uniformly continuous
inverse.1 Since f is weak-to-weak∗ sequentially continuous, so is g. �

Since `2(Y ∗) is the dual of `2(Y ) and separable, the result follows from
Lemma 7.3. �

Notice that Theorem 7.4 implies that, for p ∈ (1,∞), L1 does not coarsely
(resp. uniformly) embed into either `p or Lp by a weakly sequentially con-
tinuous map. In contrast with that, `q strongly embeds into `p by a weakly
sequentially continuous map for all q ≤ p (see [7, Theorem 1.8]).

Notice also that one could prove by a similar but simpler proof that if X is
a Banach space failing the point of continuity property (PCP) then X cannot
be coarsely (resp. uniformly) embedded into a separable dual Banach space
Y ∗ by a map that is weak-to-weak∗ continuous on bounded sets. The added
difficulty here is that, since we only have the sequential continuity, one has
to present the weakly convergent sequences which furnish the contradiction.
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