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Abstract. Let Ω ⊂ RN , N ≥ 2, be a smooth bounded domain. We consider a boundary value problem of
the form

−∆u = cλ(x)u+ µ(x)|∇u|2 + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω)

where cλ depends on a parameter λ ∈ R, the coefficients cλ and h belong to Lq(Ω) with q > N/2 and

µ ∈ L∞(Ω). Under suitable assumptions, but without imposing a sign condition on any of these coefficients,
we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack

inequality. This inequality, which is of independent interest, is established in the general framework of the

p-Laplacian. With this a priori bound at hand, we show the existence and multiplicity of solutions.

Résumé. Soit Ω ⊂ RN , N ≥ 2, un domaine borné régulier. Nous considérons un problème aux limites de la

forme

−∆u = cλ(x)u+ µ(x)|∇u|2 + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω)

où cλ dépend d’un paramètre λ ∈ R, les coefficients cλ et h sont des fonctions dans Lq(Ω) avec q > N/2 et
µ ∈ L∞(Ω). Sous certaines hypothèses, mais sans imposer une condition de signe sur aucun des coefficients,

nous obtenons une borne à priori supérieure sur les solutions. Notre preuve repose sur une nouvelle inégalité

de Harnack au bord. Cette inégalité, qui est d’intérêt propre, est établie dans le cadre plus général du
p-Laplacien. L’obtention d’une borne à priori nous permet de démontrer l’existence et la multiplicité de

solutions.

1. Introduction and main results

The paper deals with the existence and multiplicity of solutions for boundary value problems of the form

(Qλ) −∆u = cλ(x)u+ µ(x)|∇u|2 + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω) ,
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with cλ depending on a real parameter λ. Here Ω ⊂ RN , N ≥ 2, is a bounded domain with boundary ∂Ω of
class C1,1, cλ and h belong to Lq(Ω) for some q > N/2 and µ belongs to L∞(Ω).

This type of problem, which started to be studied by L. Boccardo, F. Murat and J.P. Puel in the 80’s,
has attracted a new attention these last years. Under the condition cλ ≤ −α0 < 0 a.e. in Ω for some
α0 > 0, the existence of a solution of (Qλ) is a particular case of the results of [7,8] and its uniqueness follows
from [5, 6]. The case cλ ≡ 0 was studied in [1, 16] and the existence requires some smallness condition on
‖µh‖N/2. The situation where one only requires cλ ≤ 0 a.e. in Ω (i.e. allowing parts of the domain where
cλ ≡ 0 and parts of it where cλ < 0 ) proved to be more complex to treat. In the recent papers [4, 12], the
authors explicit sufficient conditions for the existence of solutions of (Qλ). Moreover, in [4], the uniqueness
of solution is established (see also [3] in that direction). All these results were obtained without requiring
any sign conditions on µ and h.

In case cλ = λc 	 0, as we shall discuss later, problem (Qλ) behaves very differently and becomes much
richer. Following [26], which considers a particular case, [21] studied (Qλ) with µ(x) ≡ µ > 0 and λc 	 0 but
without a sign condition on h. The authors proved the existence of at least two solutions when λ > 0 and
‖(µh)+‖N/2 are small enough. The restriction µ constant was removed in [4] and extended to µ(x) ≥ µ1 > 0
a.e. in Ω, at the expense of adding the hypothesis h 	 0. Next, in [14], assuming stronger regularity on c and
h, the authors removed the condition h 	 0. In this paper, it is also lightened that the structure of the set
of solutions when λ > 0, crucially depends on the sign of the (unique) solution of (Q0). Note that, in [12],
the above results are extended to the p-Laplacian case. Also, in the frame of viscosity solutions and fully
nonlinear equations, under corresponding assumptions, similar conclusions have been obtained very recently
in [24].

We refer to [21] for an heuristic explanation on how the behavior of (Qλ) is affected by the change of sign
in front of the linear term. Actually, in the case where µ(x) ≡ µ is a constant, it is possible to transform
problem (Qλ) into a new one which admits a variational formulation. When cλ ≤ −α0 < 0, the associated
functional, defined on H1

0 (Ω), is coercive. If cλ � 0, the coerciveness may be lost and when cλ 	 0, in fact as
soon as c+λ 	 0, the functional is unbounded from below. In [21] this variational formulation was directly used
to obtain the solutions. In [4, 14] where µ is non constant, topological arguments, relying on the derivation
of a priori bounds for certain classes of solutions, were used.

The only known results where cλ may change sign are [13,20] (see also [17] for related problems). They both
concern the case where µ is a positive constant. In [20], assuming h 	 0, µh and c+λ small in an appropriate
sense, the existence of at least two non-negative solutions was proved. In [13], the authors show that the loss
of positivity of the coefficient of u does not affect the structure of the set of solutions of (Qλ) observed in [14]
when cλ = λc 	 0. Since µ is constant in [13, 20], it is possible to treat the problem variationally. The main
issue, to derive the existence of solutions, is then to show the boundedness of the Palais-Smale sequences.

When cλ 	 0, all the above mentioned results require either µ to be constant or to be uniformly bounded
from below by a positive constant (or similarly bounded from above by a negative constant). In [29], assuming
that the three coefficients functions are non-negative, a first attempt to remove these restrictions on µ is
presented. Following the approach of [4], the proofs of the existence results reduce to obtaining a priori
bounds on the non negative solutions of (Qλ). First it is observed in [29] that a necessary condition is the
existence of a ball B(x0, ρ) ⊂ Ω and ν > 0 such that µ ≥ ν and c ≥ ν on B(x0, ρ). When N = 2 this
condition also proves to be sufficient. If N = 3 or 4 the condition µ ≥ µ0 > 0 on a set ω ⊂ Ω such that
supp(c) ⊂ ω permits to obtain the a priori bounds. Other sets of conditions are presented when N = 3 and
N = 5. However, if the approach developed in [29], which relies on interpolation and elliptic estimates in
weighted Lebesgue spaces, works well in low dimension, the possibility to extend it to dimension N ≥ 6 is
not apparent.

In this paper we pursue the study of (Qλ) and consider situations where the three coefficients functions
cλ, µ and h may change sign. We define for v ∈ L1(Ω), v+ = max(v, 0) and v− = max(−v, 0). As observed
already in [13], the structure of the solution set depends on the size of the positive hump (i.e. c+λ ) but it is

not affect by the size of the negative hump (i.e. c−λ ). Hoping to clarify this, we now write cλ under the form
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cλ = λc+ − c− and consider the problem

(Pλ) −∆u = (λc+(x)− c−(x))u+ µ(x)|∇u|2 + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω) ,

under the assumption

(A1)



Ω ⊂ RN , N ≥ 2, is a bounded domain with boundary ∂Ω of class C1,1,

c+, c−, h
+ ∈ Lq(Ω) for some q > N/2 , µ, h− ∈ L∞(Ω) ,

c+(x) ≥ 0, c−(x) ≥ 0 and c−(x)c+(x) = 0 a.e. in Ω,

|Ω+| > 0, where Ω+ := Supp(c+)

there exists a ε > 0 such that µ(x) ≥ µ1 > 0 and c− = 0 in {x ∈ Ω : d(x,Ω+) < ε}.
For a definition of Supp(f) with f ∈ Lp(Ω), for some p ≥ 1, we refer to [9, Proposition 4.17]. Note also that
the condition that c− = 0 on {x ∈ Ω : d(x,Ω+) < ε} for some ε > 0, is reminiscent of the so-called “thick
zero set” condition first introduced in [2].

We also observe that, under the regularity assumptions of condition (A1), any solution of (Pλ) belongs to
C0,τ (Ω) for some τ > 0. This can be deduce from [22, Theorem IX-2.2], see also [3, Proposition 2.1].

As in [4, 14, 29] we obtain our results using a topological approach, relying thus on the derivation of a
priori bounds. In that direction our main result is the following.

Theorem 1.1. Assume (A1). Then, for any Λ2 > Λ1 > 0, there exists a constant M > 0 such that, for each
λ ∈ [Λ1,Λ2], any solution of (Pλ) satisfies supΩ u ≤M .

Having at hand this a priori bound, following the strategy of [4], we show the existence of a continuum of
solutions of (Pλ). More precisely, defining

(1.1) Σ := {(λ, u) ∈ R× C(Ω) : u solves (Pλ)},
we prove the following theorem.

Theorem 1.2. Assume (A1) and suppose that (P0) has a solution u0 with c+u0 	 0. Then, there exists a
continuum C ⊂ Σ such that the projection of C on the λ-axis is an unbounded interval (−∞, λ] for some
λ ∈ (0,+∞) and C bifurcates from infinity to the right of the axis λ = 0. Moreover:

1) for all λ ≤ 0, the problem (Pλ) has an unique solution uλ and this solution satisfies u0 − ‖u0‖∞ ≤
uλ ≤ u0.

2) there exists λ0 ∈ (0, λ] such that, for all λ ∈ (0, λ0), the problem (Pλ) has at least two solutions with
ui ≥ u0 for i = 1, 2.

Remark 1.1.

(a) Theorem 1.2, 1) generalizes [4, Theorem 1.2].

(b) Note that problem (P0) is given by

−∆u = −c−(x)u+ µ(x)|∇u|2 + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω) .

In [4,12] the authors give sufficient conditions to ensure the existence of a solution of (P0). Moreover,
if h ≥ 0 in Ω, [3, Lemma 2.2] implies that the solution of (P0) is non-negative.

Let us give some ideas of the proofs. As we do not have global sign conditions, the approaches used
in [4, 14, 29] to obtain the a priori bounds do not apply anymore and another strategy is required. To this
aim, we further develop some techniques first sketched in the unpublished work [27]. These techniques, in the
framework of viscosity solutions of fully nonlinear equations, now lies at the heart of the paper [24]. We also
make use of some ideas from [17]. First we show, in Lemma 4.1, that it is sufficient to control the behavior
of the solutions on Ω+. By compactness, we are then reduced to study what happens around an (unknown)
point x ∈ Ω+. We shall consider separately the alternative cases x ∈ Ω+ ∩ Ω and x ∈ Ω+ ∩ ∂Ω. A local
analysis is made respectively in a ball or a semiball centered at x. If similar analysis, based on the use of
Harnack type inequalities, had previously been performed in other contexts when x ∈ Ω, we believe it is not
the case when x ∈ ∂Ω. For x ∈ ∂Ω, the key to our approach is the use of boundary weak Harnack inequality.
Actually a major part of the paper is devoted to establishing this inequality. This is done in a more general
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context than needed for (Pλ). In particular it also cover the case of the p-Laplacian with a zero order term.
We believe that this “boundary weak Harnack inequality”, see Theorem 3.1, is of independent interest and
will proved to be useful in other settings. Its proof uses ideas introduced by B. Sirakov [28]. In [28] such
type of inequalities is established for an uniformly elliptic operator and viscosity solutions. However, since
our context is quite different, the result of [28] does not apply to our situation and we need to work out an
adapted proof.

We now describe the organization of the paper. In Section 2, we present some preliminary results which
are needed in the development of our proofs. In Section 3, we prove the boundary weak Harnack inequality
for the p-Laplacian. The a priori bound, namely Theorem 1.1, is proved in Section 4. Finally Section 5 is
devoted to the proof of Theorem 1.2.

Notation.

1) In RN , we use the notations |x| =
√

x2
1 + . . . + x2

N and BR(y) = {x ∈ RN : |x− y| < R}.
2) We denote R+ = (0,+∞), R− = (−∞, 0) and N = {1, 2, 3, . . .}.
3) For h1, h2 ∈ L1(Ω) we write

• h1 ≤ h2 if h1(x) ≤ h2(x) for a.e. x ∈ Ω,
• h1 � h2 if h1 ≤ h2 and meas({x ∈ Ω : h1(x) < h2(x)}) > 0.

2. Preliminary results

In this section, we collect some results which will play an important role throughout the work. First of
all, let us consider the boundary value problem

(2.1) −∆u+H(x, u,∇u) = f, u ∈ H1
0 (ω) ∩ L∞(ω).

Here ω ⊂ RN is a bounded domain, f ∈ L1(ω) and H : ω × R× RN → R is a Carathéodory function.

Definition 2.1. We say that α ∈ H1(ω) ∩ L∞(ω) is a lower solution of (2.1) if α+ ∈ H1
0 (ω) and, for all

ϕ ∈ H1
0 (ω) ∩ L∞(ω) with ϕ ≥ 0, we have∫

ω

∇α∇ϕdx+

∫
ω

H(x, α,∇α)ϕdx ≤
∫
ω

f(x)ϕdx .

Similarly, β ∈ H1(ω) ∩ L∞(ω) is an upper solution of (2.1) if β− ∈ H1
0 (ω) and, for all ϕ ∈ H1

0 (ω) ∩ L∞(ω)
with ϕ ≥ 0, we have ∫

ω

∇β∇ϕdx+

∫
ω

H(x, β,∇β)ϕdx ≥
∫
ω

f(x)ϕdx .

Next, we consider the boundary value problem

(2.2) −∆u+ a(x)u = b(x) , u ∈ H1
0 (ω) ,

under the assumption

(2.3)

{
ω ⊂ RN , N ≥ 2 , is a bounded domain,

a, b ∈ Lr(ω) for some r > N/2.

Remark 2.1. With the regularity imposed in the following lemmas and in the absence of a gradient term
in the equation, we do not need the lower and upper solutions to be bounded. The full Definition 2.1 will
however be needed in other parts of the paper.

Lemma 2.1. (Local Maximum Principle) Under the assumption (2.3), assume that u ∈ H1(ω) is a lower
solution of (2.2). For any ball B2R(y) ⊂ ω and any s > 0, there exists C = C(s, r, ‖a‖Lr(B2R(y)), R) > 0 such
that

sup
BR(y)

u+ ≤ C
[( ∫

B2R(y)

(u+)sdx
)1/s

+ ‖b+‖Lr(B2R(y))

]
.

Proof. See for instance [18, Theorem 8.17] and [23, Corollary 3.10]. �
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Lemma 2.2. (Boundary Local Maximum Principle) Under the assumption (2.3), assume that u ∈
H1(ω) is a lower solution of (2.2) and let x0 ∈ ∂ω. For any R > 0 and any s > 0, there exists C =
C(s, r, ‖a‖Lr(B2R(x0)∩ω), R) > 0 such that

sup
BR(x0)∩ω

u+ ≤ C
[( ∫

B2R(x0)∩ω
(u+)sdx

)1/s

+ ‖b+‖Lr(B2R(x0)∩ω)

]
.

Proof. See for instance [18, Theorem 8.25] and [23, Corollary 3.10 and Theorem 3.11]. �

Remark 2.2. Lemmas 2.1 and 2.2 proof’s are done in [18] for a ∈ L∞(ω) and s > 1. Nevertheless, as it is
remarked on page 193 of that book, the proof is valid for a ∈ Lr(ω) with r > N/2 and, following closely the
proof of [23, Corollary 3.10], the proofs can be extended for any s > 0.

Lemma 2.3. (Weak Harnack Inequality) Under the assumption (2.3), assume that u ∈ H1(ω) is a
non-negative upper solution of (2.2). Then, for any ball B4R(y) ⊂ ω and any 1 ≤ s < N

N−2 there exists

C = C(s, r, ‖a‖Lr(B4R(y)), R) > 0 such that

inf
BR(y)

u ≥ C
[( ∫

B2R(y)

usdx
)1/s

− ‖b−‖Lr(B4R(y))

]
.

Proof. See for instance [18, Theorem 8.18] and [23, Theorem 3.13]. �

Now, inspired by [10, Lemma 3.2] (see also [15, Appendix A] ), we establish the following version of the
Brezis-Cabré Lemma.

Lemma 2.4. Let ω ⊂ RN , N ≥ 2, be a bounded domain with boundary ∂ω of class C1,1 and let a ∈ L∞(ω)
and f ∈ L1(ω) be non-negative functions. Assume that u ∈ H1(ω) is an upper solution of

−∆u+ a(x)u = f(x) , u ∈ H1
0 (ω) .

Then, for every B2R(y) ⊂ ω, there exists C = C(R, y, ω, ‖a‖∞) > 0 such that

inf
ω

u(x)

d(x, ∂ω)
≥ C

∫
BR(y)

f(x) dx .

Proof. First of all, as a and f are non-negative, by the weak maximum principle, it follows that

inf
ω

u(x)

d(x, ∂ω)
≥ 0 .

Now let B2R(y) ⊂ ω . By the above inequality, we can assume without loss of generality that∫
BR(y)

f(x) dx > 0 .

We split the proof into three steps.

Step 1: There exists c1 = c1(R, y, ω, ‖a‖∞) > 0 such that

(2.4)
u(x)

d(x, ∂ω)
≥ c1

∫
BR(y)

f(x) dx , ∀ x ∈ BR/2(y) .

Since f is non-negative, observe that u is a non-negative upper solution of

−∆u+ a(x)u = 0 , u ∈ H1
0 (ω) .

Hence, by Lemma 2.3, there exists a constant c2 = c2(R, ‖a‖∞) > 0 such that

(2.5) u(x) ≥ c2
∫
BR(y)

u dx , ∀ x ∈ BR/2(y) .

Now, let us denote by ξ the solution of

(2.6)

{
−∆ξ + ‖a‖∞ξ = χBR(y) , in ω ,

ξ = 0 , on ∂ω .
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By [11, Theorem 3], there exists a constant c3 = c3(R, y, ω, ‖a‖∞) > 0 such that, for all x ∈ ω, ξ(x) ≥
c3d(x, ∂ω). Thus, since B2R(y) ⊂ ω , f is non-negative and d(x, ∂ω) ≥ R for x ∈ BR(y), it follows that∫

BR(y)

u dx =

∫
ω

u
(
−∆ξ + ‖a‖∞ξ

)
dx ≥

∫
ω

f(x) ξ dx ≥ c3
∫
ω

f(x) d(x, ∂ω) dx ≥ c3R
∫
BR(y)

f(x) dx .

Hence, substituting the above information in (2.5) we obtain for c4 = c2c3R

(2.7) u(x) ≥ c4
∫
BR(y)

f(x) dx , ∀ x ∈ BR/2(y) ,

from which, since ω ⊂ RN is bounded, (2.4) follows.

Step 2: There exists c5 = c5(R, y, ω, ‖a‖∞) > 0 such that

(2.8)
u(x)

d(x, ∂ω)
≥ c5

∫
BR(y)

f(x) dx , ∀ x ∈ ω \BR/2(y).

Let w be the unique solution of

(2.9)


−∆w + ‖a‖∞w = 0 , in ω \BR/2(y) ,

w = 0 , on ∂ω ,

w = 1 , on ∂BR/2(y) .

Still by [11, Theorem 3], there exists c6 = c6(R, y, ω, ‖a‖∞) > 0 such that w(x) ≥ c6d(x, ∂ω) for all x ∈
ω \BR/2(y). On the other hand, let us introduce

v(x) =
u(x)

c4
∫
BR(y)

f(x) dx
,

with c4 given in (2.7). Observe that v is an upper solution of (2.9). Hence, by the standard comparison

principle, it follows that v(x) ≥ w(x) for all x ∈ ω \BR/2(y) and (2.8) follows.

Step 3: Conclusion.

The result follows from (2.4) and (2.8). �

3. Boundary weak Harnack inequality

In this section we present a boundary weak Harnack inequality that will be central in the proof of Theorem
1.1. As we believe this type of inequality has its own interest, we establish it in the more general framework
of the p-Laplacian. Recalling that ∆pu = div(|∇u|p−2∇u) for 1 < p <∞, we introduce the boundary value
problem

(3.1) −∆pu+ a(x)|u|p−2u = 0 , u ∈W 1,p
0 (ω) .

Let us also recall that u ∈ W 1,p(ω) is an upper solution of (3.1) if u− ∈ W 1,p
0 (ω) and, for all ϕ ∈ W 1,p

0 (ω)
with ϕ ≥ 0, it follows that ∫

ω

|∇u|p−2∇u∇ϕdx+

∫
ω

a(x)|u|p−2uϕdx ≥ 0 .

We then prove the following result.

Theorem 3.1. (Boundary Weak Harnack Inequality) Let ω ⊂ RN , N ≥ 2, be a bounded domain
with boundary ∂ω of class C1,1 and let a ∈ L∞(ω) be a non-negative function. Assume that u is a non-
negative upper solution of (3.1) and let x0 ∈ ∂ω. Then, there exist R > 0, ε = ε(p,R, ‖a‖∞, ω) > 0 and
C = C(p,R, ε, ‖a‖∞, ω) > 0 such that, for all R ∈ (0, R] ,

inf
BR(x0)∩ω

u(x)

d(x, ∂ω)
≥ C

(∫
BR(x0)∩ω

( u(x)

d(x, ∂ω)

)ε
dx
)1/ε

.

As already indicated, in the proof of Theorem 3.1 we shall make use of some ideas from [28].
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Before going further, let us introduce some notation that we will be used throughout the section. We
define

r := r(N, p) =


N(p− 1)

N − p
if p < N,

+∞ if p ≥ N,
and denote by Qρ(y) the cube of center y and side of length ρ, i.e.

Qρ(y) = {x ∈ RN : |xi − yi| < ρ/2 for i = 1, . . . , N}.

In case the center of the cube is ρe with e = (0, 0, . . . , 1/2), we use the notation Qρ = Qρ(ρe).

Let us now introduce several auxiliary results that we shall need to prove Theorem 3.1. We begin recalling
the following comparison principle for the p-Laplacian.

Lemma 3.2. [30, Lemma 3.1] Let ω ⊂ RN , N ≥ 2, be a bounded domain and let a ∈ L∞(ω) be a non-negative
function. Assume that u , v ∈W 1,p(ω) satisfy (in a weak sense){

−∆pu+ a(x)|u|p−2u ≤ −∆pv + a(x)|v|p−2v , in ω ,

u ≤ v , on ∂ω .

Then, it follows that u ≤ v.

As a second ingredient, we need the weak Harnack inequality.

Theorem 3.3. [23, Theorem 3.13] Let ω ⊂ RN , N ≥ 2, be a bounded domain and let a ∈ L∞(ω) be a
non-negative function. Assume that u ∈W 1,p(ω) is a non-negative upper solution of

−∆pu+ a(x)|u|p−2u = 0 , u ∈W 1,p
0 (ω) ,

and let Qρ(x0) ⊂ ω. Then, for any σ, τ ∈ (0, 1) and γ ∈ (0, r), there exists C = C(p, γ, σ, τ, ρ, ‖a‖∞) > 0
such that

inf
Qτρ(x0)

u ≥ C
(∫

Qσρ(x0)

uγ dx
)1/γ

.

In the next result, we deduce a more precise information on the dependence of C with respect to ρ. This
is closely related to [31, Theorem 1.2] where however the constant still depends on ρ.

Corollary 3.4. Let a be a non-negative constant and γ ∈ (0, r). There exists C = C(p, γ, a) > 0 such that,
for all 0 < ρ̃ ≤ 1, any u ∈W 1,p(Q 3ρ̃

2
(e)) non-negative upper solution of

(3.2) −∆pu+ a|u|p−2u = 0 , u ∈W 1,p
0 (Q 3ρ̃

2
(e)),

satisfies

inf
Qρ̃(e)

u ≥ C ρ̃−N/γ
(∫

Qρ̃(e)

uγ dx
)1/γ

.

Proof. Let C = C(p, a, γ) > 0 be the constant given by Theorem 3.3 applied with ρ = 3
2 and σ = τ = 2

3 .

This means that if v ∈W 1,p(Q 3
2
(e)) is a non-negative upper solution of

(3.3) −∆pv + a|v|p−2v = 0 , v ∈W 1,p
0 (Q 3

2
(e)),

then

inf
Q1(e)

v(y) ≥ C
(∫

Q1(e)

vγ dy
)1/γ

.

As 0 < ρ̃ ≤ 1, observe that if u is a non-negative upper solution of (3.2), then v defined by v(y) =
u(ρ̃y′, ρ̃(yN − 1

2 ) + 1
2 ), where y = (y′, yN ) with y′ ∈ RN−1, is a non-negative upper solution of (3.3). Thus,

we can conclude that

inf
Qρ̃(e)

u(x) = inf
Q1(e)

v(y) ≥ C
(∫

Q1(e)

vγ dy
)1/γ

= Cρ̃−N/γ
(∫

Qρ̃(e)

uγ dx
)1/γ

.

�
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Finally, we introduce a technical result of measure theory.

Lemma 3.5. [19, Lemma 2.1] Let E ⊂ F ⊂ Q1 be two open sets. Assume there exists α ∈ (0, 1) such that:

• |E| ≤ (1− α)|Q1|.
• For any cube Q ⊂ Q1, |Q ∩ E| ≥ (1− α)|Q| implies Q ⊂ F .

Then, it follows that |E| ≤ (1− cα)|F | for some constant c = c(N) ∈ (0, 1).

Now, we can perform the proof of the main result. We prove the boundary weak Harnack inequality for
cubes and as consequence we obtain the desired result.

Lemma 3.6 (Growth lemma). Let a be a non-negative constant. Given ν > 0, there exists k = k(p, ν, a) >
0 such that, if u ∈W 1,p(Q 3

2
) is a non-negative upper solution of

−∆pu+ a |u|p−2u = 0 , u ∈W 1,p
0 (Q 3

2
) ,

and the following inequality holds

(3.4) |{x ∈ Q1 : u(x) > xN}| ≥ ν.
Then u(x) > kxN in Q1.

Remark 3.1. Before we prove the Lemma, observe that there is no loss of generality in considering a a
non-negative constant instead of a ∈ L∞(Q 3

2
) non-negative. If u ≥ 0 satisfies

−∆pu+ a(x)|u|p−2u ≥ 0 , in Q 3
2
,

then u satisfies also
−∆pu+ ‖a‖∞ |u|p−2u ≥ 0 , in Q 3

2
.

Proof. Let us define Sδ = Q 3
2
\ Q 3

2−δ
(

3
2e
)

and fix c1 = c1(ν) ∈ (0, 1
2 ) small enough in order to ensure that

|Sδ| ≤ ν
2 for any 0 < δ ≤ c1.

Step 1: For all δ ∈ (0, c1], it follows that |{x ∈ Q 3
2−δ
(

3
2e
)

: u(x) > xN}| ≥ ν
2 .

Directly observe that

{x ∈ Q1 : u(x) > xN} ⊂ {x ∈ Q 3
2

: u(x) > xN} ⊂ {x ∈ Q 3
2−δ
(3

2
e
)

: u(x) > xN} ∪ Sδ.

Hence, Step 1 follows from (3.4) and the choice of c1.

Step 2: For any ε > 0 and all δ ∈ (0, c1], the following inequality holds

(3.5)
(∫

Q 3
2
−δ

(
3
2 e
) uε dx)1/ε

≥ δ

2

(ν
2

)1/ε
.

Since u ≥ 0 and, for any x ∈ Q 3
2−δ
(

3
2e
)

we have xN ≥ δ
2 , it follows that∫

Q 3
2
−δ(

3
2 e)

uε dx ≥
∫
{x∈Q 3

2
−δ(

3
2 e): u(x)≥xN}

uε dx

≥
∫
{x∈Q 3

2
−δ(

3
2 e):u(x)≥xN}

(δ
2

)ε
dx =

(δ
2

)ε ∣∣∣{x ∈ Q 3
2−δ
(3

2
e
)

: u(x) ≥ xN
}∣∣∣.

Step 2 follows then from Step 1.

Step 3: For any ε ∈ (0, r) and all δ ∈ (0, c1], there exists Cδ = Cδ(p, ε, δ, a) > 0 such that

inf
Q 3

2
−δ

(
3
2 e
) u(x)

xN
≥ δ Cδ

3

(ν
2

)1/ε

.

By Theorem 3.3 applied with ρ = 3
2 , x0 = 3

2e and τ = σ = 1 − 2
3δ, there exists a constant Cδ =

Cδ(p, ε, δ, a) > 0 such that

inf
Q 3

2
−δ

(
3
2 e
)u(x) ≥ Cδ

(∫
Q 3

2
−δ

(
3
2 e
) uε dx)1/ε

.
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Since for all x ∈ Q 3
2−δ
(

3
2e
)

we have xN ≤ 3
2 , Step 3 follows from the above inequality and Step 2.

Step 4: Conclusion.

We fix ε ∈ (0, r), define kδ = δ Cδ
3

(
ν
2

)1/ε
and introduce η : [− 3−2c1

4 , 3−2c1
4 ]N−1 → R a C∞ function

satisfying

η(x1, . . . , xN−1) =

0, if (x1, . . . , xN−1) ∈
[
− 1

2 ,
1
2

]N−1
,

c1
2 , if (x1, . . . , xN−1) ∈ ∂RN−1

([
− 3−2c1

4 , 3−2c1
4

]N−1)
,

and

0 ≤ η(x1, . . . , xN−1) ≤ c1
2

for (x1, . . . , xN−1) ∈
[
− 3−2c1

4 , 3−2c1
4

]N−1
.

Moreover, we consider the auxiliary function

vδ(x1, . . . , xN ) =
1

δ

(
xN − η(x1, . . . , xN−1)

)2
+
(
xN − η(x1, . . . , xN−1)

)
defined in

ωδ =
{

(x1, . . . , xN ) ∈
[
− 3−2c1

4 , 3−2c1
4

]N−1 ×
[
0, c12

]
: η(x1, . . . , xN−1) ≤ xN ≤

δ

2

}
.

Observe that, in ωδ, we have 0 ≤ xN −η(x1, . . . , xN−1) ≤ δ
2 . Hence, there exists c2 = c2(p, ν, a) ∈ (0, c1] such

that, for all 0 < δ ≤ c2,

−∆pvδ + a|vδ|p−2vδ ≤ −
2

δ
(p− 1) + 2p−1

∣∣∣N−1∑
i=1

∂

∂xi

[(N−1∑
i=1

(
∂η

∂xi
)2 + 1

) p−2
2 ∂η

∂xi

]∣∣∣+
3a

4
δ ≤ 0 , in ωδ.

On the other hand, we define uδ = 2u
kδ

and immediately observe that

−∆puδ + a|uδ|p−2uδ ≥ 0 , in ωδ .

Now, since by Step 3, we have

uδ ≥
2kδ
kδ

δ

2
= δ ≥ vδ, for xN =

δ

2
,

it follows that

uδ ≥ vδ on ∂ωδ.

Then, applying Lemma 3.2, it follows that, for any δ ∈ (0, c2], vδ ≤ uδ in ωδ. For δ = c2/2, we obtain in
particular

u(x) ≥ 1

2
k c2

2
v c2

2
(x) =

1

2
k c2

2

( 2

c2
x2
N + xN

)
≥ 1

2
k c2

2
xN , in ω c2

2
∩Q1 .

The result then follows from the above inequality and Step 3. �

Lemma 3.7. Let a ∈ L∞(Q4) be a non-negative function. Assume that u ∈ W 1,p(Q4) is a non-negative
upper solution of

(3.6) −∆pu+ a(x)|u|p−2u = 0 , u ∈W 1,p
0 (Q4) ,

satisfying

inf
Q1

u(x)

xN
≤ 1 .

Then, there exist M = M(p, ‖a‖∞) > 1 and µ ∈ (0, 1) such that

(3.7)
∣∣{x ∈ Q1 : u(x)/xN > M j}

∣∣ < (1− µ)j , ∀ j ∈ N .

Proof. Let us fix some notation that we use throughout the proof. We fix γ ∈ (0, r) and consider C1 =
C1(p, ‖a‖∞) > 0 the constant given by Corollary 3.4. We introduce α ∈ (0, 1) and fix C2 ∈ (0, 1) the constant

given by Lemma 3.5. Moreover, we choose ν = (1 − α)
(

1
4

)N
and denote by k = k(ν, p, ‖a‖∞) ∈ (0, 1) the

constant given by Lemma 3.6 applied to an upper solution of

(3.8) −∆pu+ 2p‖a‖∞|u|p−2u = 0 , u ∈W 1,p
0 (Q 3

2
) ,
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with the chosen ν. Let us point out that, if u is a non-negative upper solution of (3.6), then u is a non-negative
upper solution of (3.8). Finally, we consider

M ≥ max
{1

k
,

4

C1
(1− α)−1/γ

}
,

and we are going to show that (3.7) holds with µ = αC2.

First of all, observe that {x ∈ Q1 : u(x)/xN > M} ⊂ {x ∈ Q1 : ku(x) > xN}. Hence, since
infQ1

ku(x)/xN ≤ k, Lemma 3.6 implies that

(3.9) |{x ∈ Q1 : u(x)/xN > M}| ≤ |{x ∈ Q1 : ku(x) > xN}| < ν < 1− α < 1− C2α

and, in particular, (3.7) holds for j = 1. Now, let us introduce, for j ∈ N \ {1},

E = {x ∈ Q1 : u(x)/xN > M j} and F = {x ∈ Q1 : u(x)/xN > M j−1} .

Since M > 1 and j ∈ N \ {1}, observe that (3.9) implies that

(3.10) |E| = |{x ∈ Q1 : u(x)/xN > M j}| ≤ |{x ∈ Q1 : u(x)/xN > M}| ≤ 1− α ,

and the first assumption of Lemma 3.5 is satisfied.

Claim: For every cube Qρ(x0) ⊂ Q1 such that

(3.11) |E ∩Qρ(x0)| ≥ (1− α)|Qρ(x0)| = (1− α)ρN .

we have Qρ(x0) ⊂ F .

Let us denote x0 = (x′0, x0N ) with x′0 ∈ RN−1. We define the new variable y =
(x′−x′0

ρ′ , xNρ′
)
, where

ρ′ = 2x0N , and the rescaled function v(y) = 1
ρ′u(ρ′y′ + x′0, ρ

′yN ). Then v is a non-negative upper solution of

(3.12) −∆pv + 2p‖a‖∞|v|p−2v = 0 , in Q4/ρ′
(
− x′0/ρ′, 2/ρ′

)
.

Moreover, observe that

x ∈ E ∩Qρ(x0) if and only if y ∈ {y ∈ Qρ/ρ′(e) : v(y)/M j > yN} ,

and so, that (3.11) is equivalent to

(3.13) |{y ∈ Qρ/ρ′(e) : v(y)/M j > yN}| ≥ (1− α)|Qρ/ρ′(e)| = (1− α)
( ρ
ρ′
)N
.

Observe also that the embedding Qρ(x0) ⊂ Q1 implies that ρ ≤ ρ′ ≤ 2 − ρ and |x0,i| ≤ 1−ρ
2 for i ∈

{1, . . . , N − 1}. In particular, we have Q 3
2
⊂ Q4/ρ′

(
− x′0/ρ′, 2/ρ′

)
. Hence v is an upper solution of (3.8).

Now, we distinguish two cases:

Case 1: ρ ≥ ρ′/4. Observe that v/M j is a non-negative upper solution of (3.8). Moreover, as ρ ≤ ρ′, (3.13)
implies that

|{y ∈ Q1 : v(y)/M j > yN}| ≥ |{y ∈ Qρ/ρ′(e) : v(y)/M j > yN}| ≥ ν .
Hence, by Lemma 3.6, v(y)/M j > kyN in Q1 and so, by the definition of k, v(y)/yN > M j−1 in Qρ/ρ′(e).

This implies that u(x)/xN > M j−1 in Qρ(x0).

Case 2: ρ < ρ′/4. Recall that v/M j is a non-negative upper solution of (3.8). Hence, v/M j is also a
non-negative upper solution of

−∆pu+ 2p‖a‖∞|u|p−2u = 0 , in Q 3ρ
2ρ′

(e) ⊂ Q 3
2
,

Thus, by Corollary 3.4, we deduce that

(3.14) inf
Qρ/ρ′ (e)

v(y)

M j
≥ C1

(( ρ
ρ′
)−N ∫

Qρ/ρ′ (e)

( v

M j

)γ
dy
)1/γ

.

Now, let us introduce

G = {y ∈ Qρ/ρ′(e) : v(y)/M j > 1/4} ,
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and, as yN > 1/4 for all y ∈ Qρ/ρ′(e), observe that (3.13) implies the following inequality

|G| ≥ |{y ∈ Qρ/ρ′(e) : v(y)/M j > yN}| ≥ (1− α)
( ρ
ρ′
)N

.

Hence, we deduce that∫
Qρ/ρ′ (e)

( v

M j

)γ
dy ≥

∫
G

( v

M j

)γ
dy >

(1

4

)γ |G| ≥ (1

4

)γ
(1− α)

( ρ
ρ′
)N
,

and so, by (3.14), that

inf
Qρ/ρ′ (e)

v

M j
>
C1

4
(1− α)1/γ .

Finally, using that M ≥ 4
C1

(1 − α)−1/γ and that yN ≤ 1 in Qρ/ρ′(e), we deduce that v(y) > M j−1yN in

Qρ/ρ′(e). Thus, we can conclude that u(x)/xN > M j−1 in Qρ(x0).

In both cases we prove that u(x)/xN > M j−1 in Qρ(x0). This means that Qρ(x0) ⊂ F and so, the Claim
is proved.

Since (3.10) and the Claim hold, we can apply Lemma 3.5 and we obtain that |E| ≤ (1− C2α)|F | , i.e.

|{x ∈ Q1 : u(x)/xN > M j}| ≤ (1− C2α) |{x ∈ Q1 : u(x)/xN > M j−1}| , ∀ j ∈ N \ {1} .
Iterating in j and using (3.9), the result follows with µ = C2α ∈ (0, 1) depending only on N . �

Theorem 3.8 (Boundary weak Harnack inequality for cubes). Let a ∈ L∞(Q4) be a non-negative
function. Assume that u ∈W 1,p(Q4) is a non-negative upper solution of

−∆pu+ a(x)|u|p−2u = 0 , u ∈W 1,p
0 (Q4),

Then, there exist ε = ε(p, ‖a‖∞) > 0 and C = C(p, ε, ‖a‖∞) > 0 such that

inf
Q1

u(x)

xN
≥ C

(∫
Q1

(u(x)

xN

)ε
dx
)1/ε

.

Proof. Let us split the proof into three steps.

Step 1: Assume that infQ1

u(x)
xN
≤ 1. Then, there exist ε = ε(p, ‖a‖∞) > 0 and C = C(p, ε, ‖a‖∞) > 0 such

that, for all t ≥ 0,

|{x ∈ Q1 : u(x)/xN > t}| ≤ C min{1, t−2ε} .
Let us define the real valued function

f(t) = |{x ∈ Q1 : u(x)/xN > t}| ,
and let M and µ be the constants obtained in Lemma 3.7. We define

C = max{(1− µ)−1,M2ε} > 1 and ε = −1

2

ln(1− µ)

lnM
> 0 .

If t ∈ [0,M ], we easily get

|{x ∈ Q1 : u(x)/xN > t}| ≤ 1 ≤ CM−2ε ≤ C min{1, t−2ε}.
Hence, let us assume t > M > 1. Without loss of generality, we assume t ∈ [M j ,M j+1] for some j ∈ N, and
it follows that

ln t

lnM
− 1 ≤ j ≤ ln t

lnM
.

Since f is non-increasing and 1− µ ∈ (0, 1), the above inequality and Lemma 3.7 imply

(3.15) f(t) ≤ f(M j) ≤ (1− µ)j ≤ (1− µ)
ln t
lnM−1 .

Finally, observe that

(3.16) ln
(

(1−µ)
ln t
lnM−1

)
=
( ln t

lnM
− 1
)

ln(1−µ) = ln t
ln(1− µ)

lnM
− ln(1−µ) ≤ −2ε ln t+ lnC = ln(Ct−2ε) .

The Step 1 then follows from (3.15), (3.16) and the fact that min{1, t−2ε} = t−2ε for t ≥ 1.
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Step 2: Assume that infQ1

u(x)
xN
≤ 1. Then, there exists C = C(p, ε, ‖a‖∞) > 0 such that

(3.17)

∫
Q1

(u(x)

xN

)ε
dx ≤ C < +∞ .

Directly, applying [18, Lemma 9.7], we obtain that∫
Q1

(u(x)

xN

)ε
dx = ε

∫ ∞
0

tε−1|{x ∈ Q1 : u(x)/xN > t}| dt .

Hence, (3.17) follows from Step 1.

Step 3: Conclusion.

Let us introduce the function

v =
u

infy∈Q1

u(y)
yN

+ β
,

where β > 0 is an arbitrary positive constant. Obviously, v satisfies the hypothesis of Step 2. Hence, applying
Step 2, we obtain that ∫

Q1

(u(x)

xN

)ε( 1

infy∈Q1

u(y)
yN

+ β

)ε
dx ≤ C ,

or equivalently that

1

C1/ε

(∫
Q1

(u(x)

xN

)ε
dx
)1/ε

≤ inf
Q1

u(x)

xN
+ β .

Letting β → 0 we obtain the desired result. �

Proof of Theorem 3.1. Thanks to the regularity of the boundary, there exists R > 0 and a diffeomorphism
ϕ such that ϕ(BR(x0) ∩ ω) ⊂ Q1 and ϕ(BR(x0) ∩ ∂ω) ⊂ {x ∈ ∂Q1 : xN = 0}. The result then follows from
Theorem 3.8. �

We end this section by presenting a corollary of Theorem 3.1. Consider the equation

(3.18) −∆u+ a(x)u = b(x) , u ∈ H1
0 (ω) ,

under the assumption

(3.19)


ω ⊂ RN , N ≥ 2, is a bounded domain with boundary ∂ω of class C1,1 ,

a ∈ L∞(ω) , b− ∈ Lp(ω) for some p > N and b+ ∈ L1(ω) ,

a ≥ 0 a.e. in ω .

Corollary 3.9. Under the assumption (3.19), assume that u ∈ H1(ω) is a non-negative upper solution of
(3.18) and let x0 ∈ ∂ω. Then, there exist R > 0, ε = ε(R, ‖a‖∞, ω) > 0, C1 = C1(R, ε, ‖a‖∞, ω) > 0 and
C2 = C2(ω, ‖a‖∞) > 0 such that, for all R ∈ (0, R],

inf
BR(x0)∩ω

u(x)

d(x, ∂ω)
≥ C1

(∫
BR(x0)∩ω

( u(x)

d(x, ∂ω)

)ε
dx
)1/ε

− C2‖b−‖Lp(ω) .

In order to prove Corollary 3.9 we need the following lemma

Lemma 3.10. Let ω ⊂ RN , N ≥ 2, be a bounded domain with boundary ∂ω of class C1,1 and let a ∈ L∞(ω)
and g ∈ Lp(ω), p > N , be non-negative functions. Assume that u ∈ H1(ω) is a lower solution of

−∆u+ a(x)u = g(x) , u ∈ H1
0 (ω) .

Then there exists C = C(ω, ‖a‖∞) > 0 such that

sup
ω

u(x)

d(x, ∂ω)
≤ C‖g‖Lp(ω) .
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Proof. First of all, observe that it is enough to prove the result for v solution of{
−∆v + a(x)v = g(x) , in ω ,

v = 0 , on ∂ω .

as, by the standard comparison principle it follows that u ≤ v. Applying [18, Theorem 9.15 and Lemma 9.17]

we deduce that v ∈W 2,p
0 (ω) and there exists C1 = C1(ω, ‖a‖∞) > 0 such that

‖v‖W 2,p(ω) ≤ C1‖g‖Lp(ω) .

Moreover, as p > N , by Sobolev’s inequality, we have C2 = C2(ω, ‖a‖∞) with

‖v‖C1(ω) ≤ C2‖g‖Lp(ω) ,

and so, we easily deduce that
v(x) ≤ C3‖g‖Lp(ω)d(x, ∂ω) , ∀ x ∈ ω .

Hence, since u ≤ v, the result follows from the above inequality. �

Proof of Corollary 3.9. Let w ≥ 0 be the solution of

(3.20)

{
−∆w + a(x)w = b−(x) , in ω ,

w = 0 , on ∂ω .

Observe that v = u+ w satisfies

(3.21)

{
−∆v + a(x)v ≥ 0, in ω ,

v ≥ 0 , on ∂ω .

Hence, by Theorem 3.1, there exist R > 0, ε = ε(p,R, ‖a‖∞, ω) > 0 and C = C(p,R, ε, ‖a‖∞, ω) > 0 such
that, for all R ∈ (0, R] ,

(3.22) inf
BR(x0)∩ω

v(x)

d(x, ∂ω)
≥ C

(∫
BR(x0)∩ω

( v(x)

d(x, ∂ω)

)ε
dx
)1/ε

.

On the other hand, by Lemma 3.10, there exists C2 = C2(ω, ‖a‖∞) > 0 such that

(3.23) sup
ω

w(x)

d(x, ∂ω)
≤ C2‖b−‖Lp(ω) .

From (3.22), (3.23) and using that u = v−w, the corollary follows observing that w ≥ 0 and hence v ≥ u. �

4. A priori bound

This section is devoted to the proof of Theorem 1.1. As a first step we observe that, to obtain our a priori
upper bound on the solutions of (Pλ), we only need to control the solutions on Ω+. This can be proved under
a weaker assumption than (A1). More precisely, we assume

(B)


Ω ⊂ RN , N ≥ 2, is a bounded domain with boundary ∂Ω of class C0,1,

c+, c− and h belong to Lq(Ω) for some q > N/2 , µ belong to L∞(Ω) ,

c+(x) ≥ 0, c−(x) ≥ 0 and c−(x)c+(x) = 0 a.e. in Ω,

|Ω+| > 0, where Ω+ := Supp(c+),

and we prove the next result.

Lemma 4.1. Assume that (B) holds. Then, there exists M > 0 such that, for any λ ∈ R, any solution u of
(Pλ) satisfies

− sup
Ω+

u− −M ≤ u ≤ sup
Ω+

u+ +M.

Remark 4.1. Let us point out that if c+ ≡ 0, i.e. |Ω+| = 0, the problem (Pλ) reduces to

(4.1) −∆u = −c−(x)u+ µ(x)|∇u|2 + h(x), u ∈ H1
0 (Ω) ∩ L∞(Ω),

which is independent of λ. If (4.1) has a solution, by [4, Proposition 4.1] it is unique and so, we have an a
priori bound.
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Proof. In case problem (Pλ) has no solution for any λ ∈ R, there is nothing to prove. Hence, we assume the

existence of λ̃ ∈ R such that (Pλ̃) has a solution ũ. We shall prove the result with M := 2‖ũ‖∞. Let u be an
arbitrary solution of (Pλ).

Step 1: u ≤ supΩ+
u+ +M .

Setting D := Ω\Ω+ we define v = u− sup
∂D

u+. We then obtain

−∆v = −c−(x)v + µ(x)|∇v|2 + h(x)− c−(x) sup
∂D

u+ ≤ −c−(x)v + µ(x)|∇v|2 + h(x) , in D .

As v ≤ 0 on ∂D, the function v is a lower solution of

(4.2) −∆z = −c−(x)z + µ(x)|∇z|2 + h(x) , u ∈ H1
0 (D) ∩ L∞(D).

Setting ṽ = ũ+ ‖ũ‖∞ we observe that

−∆ṽ = −c−(x)ṽ + µ(x)|∇ṽ|2 + h(x) + c−(x)‖ũ‖∞ ≥ −c−(x)ṽ + µ(x)|∇ṽ|2 + h(x) , in D ,

and thus, as ṽ ≥ 0 on ∂D, the function ṽ is an upper solution of (4.2). By [3, Lemma 2.1], we know that

u, ũ ∈ H1(Ω) ∩W 1,N
loc (Ω) ∩ C(Ω) and hence, v, ṽ ∈ H1(D) ∩W 1,N

loc (D) ∩ C(D). Applying [3, Lemma 2.2] we
conclude that v ≤ ṽ in D namely, that

u− sup
∂D

u+ ≤ ũ+ ‖ũ‖∞ , in D.

This gives that
u ≤ ũ+ ‖ũ‖∞ + sup

∂D
u+ , in D,

and hence
u ≤M + sup

Ω+

u+ , in Ω.

Step 2: u ≥ − supΩ+
u− −M .

We now define v = u+ sup
∂D

u− and obtain v ≥ 0 on ∂D as well as

−∆v = −c−(x)v + µ(x)|∇v|2 + h(x) + c−(x) sup
∂D

u− ≥ −c−(x)v + µ(x)|∇v|2 + h(x) , in D .

Thus v is an upper solution of (4.2). Now defining ṽ = ũ− ‖ũ‖∞, again, we have ṽ ≤ 0 on ∂D as well as

−∆ṽ = −c−(x)ṽ + µ(x)|∇ṽ|2 + h(x)− c−(x)‖ũ‖∞ ≤ −c−(x)ṽ + µ(x)|∇ṽ|2 + h(x) , in D .

Thus ṽ is a lower solution of (4.2). As previously we have that v, ṽ ∈ H1(D) ∩ W 1,N
loc (D) ∩ C(D) and

applying [3, Lemma 2.2] we obtain that ṽ ≤ v in D. Namely

ũ− ‖ũ‖∞ ≤ u+ sup
∂D

u− , in D.

Thus
u ≥ ũ− ‖ũ‖∞ − sup

∂D
u− , in D,

and without restriction we get that
u ≥ − sup

Ω+

u− −M , in Ω,

ending the proof. �

Now, let u ∈ H1
0 (Ω) ∩ L∞(Ω) be a solution of (Pλ). Following [4, Proposition 6.1], we introduce

(4.3) wi(x) =
1

µi

(
eµiu(x) − 1

)
and gi(s) =

1

µi
ln(1 + µis), i = 1, 2 ,

where µ1 is given in (A1) and µ2 = esssupµ(x). Observe that

u = gi(wi) and 1 + µiwi = eµiu, i = 1, 2 ,

and that, by standard computations,

(4.4) −∆wi = (1 + µiwi)
[
(λc+(x)− c−(x))gi(wi) + h(x)

]
+ eµiu|∇u|2(µ(x)− µi).
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Using (4.4) we shall obtain a uniform a priori upper bound on u in a neighborhood of any fixed point
x ∈ Ω+. We consider the two cases x ∈ Ω+ ∩ Ω and x ∈ Ω+ ∩ ∂Ω separately.

Lemma 4.2. Assume that (A1) holds and that x ∈ Ω+ ∩ Ω. For each Λ2 > Λ1 > 0, there exist MI > 0 and
R > 0 such that, for any λ ∈ [Λ1,Λ2], any solution u of (Pλ) satisfies supBR(x) u ≤MI .

Proof. Under the assumption (A1) we can find a R > 0 such that µ(x) ≥ µ1 > 0, c− ≡ 0 in B4R(x) ⊂ Ω and
c+ 	 0 in BR(x). For simplicity, in this proof, we denote BmR = BmR(x), for m ∈ N.

Since c− ≡ 0 and µ(x) ≥ µ1 in B4R, observe that (4.4) reduces to

(4.5) −∆w1 + µ1h
−(x)w1 ≥ λ(1 + µ1w1)c+(x)g1(w1) + h+(x)(1 + µ1w1)− h−(x) , in B4R.

Let z2 be the solution of

(4.6) −∆z2 + µ1h
−(x)z2 = −Λ2c+(x)

e−1

µ1
, z2 ∈ H1

0 (B4R).

By classical regularity arguments (see for instance [22, Theorem III-14.1]), z2 ∈ C(B4R). Hence, there exists
D = D(x, µ1,Λ2, ‖h−‖Lq(B4R), ‖c+‖Lq(B4R), q, R) > 0 such that

(4.7) z2 ≥ −D in B4R.

Moreover, by the weak maximum principle [18, Theorem 8.1], we have that z2 ≤ 0. Now defining v1 =

w1 − z2 + 1
µ1

, and since min[−1/µi,+∞[(1 + µis)gi(s) = − e
−1

µi
, we observe that v1 satisfies

(4.8) −∆v1 + µ1h
−(x)v1 ≥ Λ1c+(x)(1 + µ1w1)g1(w1)+ , in B4R.

Also, since w1 > −1/µ1, we have v1 > 0 in B4R. Note also that 0 < 1 + µ1w1 = µ1v1 + µ1z2 in B4R. Now,
we split the rest of the proof into four steps.

Step 1: There exist C1 = C1(x,Λ1,Λ2, R, µ1, q, ‖h−‖L∞(B4R), ‖c+‖Lq(B4R)) > 0 such that

(4.9) k := inf
BR

v1(x) ≤ C1.

In case µ1 infBR v1(x) ≤ 1 + µ1D, where D is given by (4.7), the Step 1 is proved. Hence, we assume that

(4.10) µ1v1(x) ≥ 1 + µ1D, ∀ x ∈ BR.

In particular, µ1v1 + µ1z2 ≥ 1 on BR. Now, by Lemma 2.4 applied on (4.8) with ω = B4R, there exists
C = C(R, ‖h−‖L∞(B4R), µ1,Λ1, x) > 0 such that,

k ≥ C
∫
BR

c+(y)
(
µ1v1(y) + µ1z2(y)

)
ln
(
µ1v1(y) + µ1z2(y)

)
dy

≥ C
∫
BR

c+(y) (µ1k − µ1D) ln
(
µ1k − µ1D

)
dy

= C(µ1k − µ1D) ln
(
µ1k − µ1D

)
‖c+‖L1(BR).

As c+ 	 0 in BR, comparing the growth in k of the various terms, we deduce that k must remain bounded
and thus the existence of C1 = (x,Λ1,Λ2, R, µ1, q, ‖h−‖L∞(B4R), ‖c+‖Lq(B4R)) > 0 such that (4.9) holds.

Step 2: For any 1 ≤ s < N
N−2 , there exists C2 = C2(x, µ1, R, s,Λ1,Λ2, q, ‖h−‖L∞(B4R), ‖c+‖Lq(B4R)) > 0

such that ∫
B2R

(1 + µ1w1)s dx ≤ C2.

Applying Lemma 2.3 to (4.8), we deduce the existence of C = C(s, µ1, R, ‖h−‖Lq(B4R)) > 0 such that(∫
B2R

vs1 dx
)1/s

≤ C inf
BR

v1 .

The Step 2 follows from Step 1 observing that 0 ≤ 1 + µ1w1 = µ1v1 + µ1z2 ≤ µ1v1.
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Step 3: For any 1 ≤ s < N
N−2 , we have, for the constant C2 > 0 introduced in Step 2, that∫

B2R

(
1 + µ2w2

)µ1s
µ2 dx ≤ C2.

This directly follows from Step 2 since, by the definition of wi, we have

(1 + µ2w2)
µ1
µ2 = (eµ2u)

µ1
µ2 = eµ1u = (1 + µ1w1).

Step 4: Conclusion.

We will show the existence of C3 = C3(x, µ1, µ2, R,Λ1,Λ2, q, ‖h−‖L∞(B4R), ‖c+‖Lq(B4R)) > 0 such that

sup
BR

w2 ≤ C3 .

Thus, thanks to the definition of w2, we can conclude the proof. Let us fix s ∈ [1, N
N−2 ), r ∈ (N2 , q) and

α = (q−r)µ1s
µ2qr

and let cα > 0 such that

ln(1 + x) ≤ (1 + x)α + cα, ∀ x ≥ 0.

We introduce the auxiliary functions

a(x) = Λ2c+(x)(1 + µ2w2)α + cαΛ2c+(x) + µ2h
+(x),

b(x) =
Λ2

µ2
c+(x)(1 + µ2w2)α + cα

Λ2

µ2
c+(x) + h+(x) + c−(x)

e−1

µ2
,

and, as µ(x) ≤ µ2, we deduce from (4.4) that w2 satisfies{
−∆w2 ≤ a(x)w2 + b(x) in Ω ,

w2 = 0 on ∂Ω.

Now, as q/r > 1, by Step 3 and Hölder inequality, it follows that∫
B2R

(c+(x)(1 + µ2w2)α)rdx ≤ ‖c+‖rLq(B2R)

(∫
B2R

(1 + µ2w2)
αqr
q−r dx

) q−r
q

≤ ‖c+‖rLq(B2R)

(∫
B2R

(1 + µ2w2)
µ1s
µ2 dx

) q−r
q ≤ C

q−r
q

2 ‖c+‖rLq(B2R).

Hence, there exists D(x, µ1, µ2, s, R,Λ1,Λ2, q, ‖h−‖L∞(B4R), ‖c+‖Lq(B4R), r, ‖h+‖Lq(B2R)) > 0 such that

(4.11) max{ ‖a‖Lr(B2R), ‖b‖Lr(B2R)} ≤ D .

Applying then Lemma 2.1, there exists C(x, µ1, µ2, s, R,Λ1,Λ2, q, ‖h−‖Lq(B4R), ‖c+‖Lq(B4R)) > 0 such that

sup
BR

w+
2 ≤ C

[( ∫
B2R

(w+
2 )

µ1
µ2
sdx
) µ2
µ1s

+ ‖b‖Lr(B2R)

]
≤ C

[( ∫
B2R

(w+
2 )

µ1
µ2
sdx
) µ2
µ1s

+D
]
.

On the other hand, by Step 3, we get∫
B2R

(w+
2 )

µ1
µ2
sdx ≤ C(µ1, µ2, s)

∫
B2R

(1 + µ2w2)
µ1
µ2
sdx ≤ C(µ1, µ2, s)C2 ,

and the result follows. �

Lemma 4.3. Assume that (A1) holds and that x ∈ Ω+ ∩ ∂Ω. For each Λ2 > Λ1 > 0, there exist R > 0 and
MB > 0 such that, for any λ ∈ [Λ1,Λ2], any solution of (Pλ) satisfies supBR(x)∩Ω u ≤MB .

Proof. Let R > 0 given by Theorem 3.1. Under the assumption (A1), we can find R ∈ (0, R/2] and Ω1 ⊂ Ω
with ∂Ω1 of class C1,1 such that B2R(x) ∩ Ω ⊂ Ω1 and µ(x) ≥ µ1 > 0, c− ≡ 0 and c+ 	 0 in Ω1.
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Since c− ≡ 0 and µ(x) ≥ µ1 in Ω1, observe that (4.4) reduces to

(4.12) −∆w1 + µ1h
−(x)w1 ≥ λ(1 + µ1w1)c+(x)g1(w1) + h+(x)(1 + µ1w1)− h−(x) , in Ω1

Let z2 be the solution of

(4.13) −∆z2 + µ1h
−(x)z2 = −Λ2c+(x)

e−1

µ1
, z2 ∈ H1

0 (Ω1).

As in Lemma 4.2, z2 ∈ C(Ω1) and there exists a D = D(µ1,Λ2, ‖h−‖Lq(B4R), ‖c+‖Lq(B4R), q,Ω1) > 0 such

that −D ≤ z2 ≤ 0 on Ω1. Now defining v1 = w1 − z2 + 1
µ1

we observe that v1 satisfies

(4.14) −∆v1 + µ1h
−(x)v1 ≥ Λ1c+(x)(1 + µ1w1)g1(w1)+ , in Ω1.

and v1 > 0 on Ω1. Note also that 0 < 1 + µ1w1 = µ1v1 + µ1z2 on Ω1. Next, we split the rest of the proof
into three steps.

Step 1: There exists C1 = C1(Ω1, x,Λ1,Λ2, R, µ1, q, ‖h−‖L∞(Ω1), ‖c+‖Lq(Ω1)) > 0 such that

inf
B2R(x)∩Ω1

v1(x)

d(x, ∂Ω1)
≤ C1 .

Choose R2 > 0 and y ∈ Ω such that B4R2
(y) ⊂ B2R(x)∩Ω and c+ 	 0 in BR2

(y). As in Step 1 of Lemma
4.2, there exists C = C(Ω1, y,Λ1,Λ2, R2, µ1, q, ‖h−‖L∞(Ω1), ‖c+‖Lq(Ω1)) > 0 such that

inf
BR2

(y)
v1(x) ≤ C .

We conclude by observing, since B4R2
(y) ⊂ B2R(x) ∩ Ω1, that

inf
B2R(x)∩Ω1

v1(x)

d(x, ∂Ω1)
≤ inf
BR2

(y)

v1(x)

d(x, ∂Ω1)
≤ 1

3R2
inf

BR2
(y)
v1(x).

Step 2: There exist ε = ε(R,µ1, ‖h−‖L∞(Ω1),Ω1) > 0 and C2 = C2(x, µ1, R,R, s,Λ1,Λ2, q, ‖h−‖L∞(Ω1),
‖c+‖Lq(Ω1)) > 0 such that (∫

B2R(x)∩Ω

(1 + µ1w1)ε dx
)1/ε

≤ C2.

By Theorem 3.1 applied on (4.14) and Step 1, we obtain constants ε = ε(R,µ1, ‖h−‖L∞(Ω1),Ω1) > 0 and

C = C(Ω1, x, µ1, ε, R,Λ1,Λ2, q, ‖h−‖L∞(Ω1), ‖c+‖Lq(Ω1)) > 0 such that(∫
B2R(x)∩Ω1

( v1(x)

d(x, ∂Ω1)

)ε
dx
)1/ε

≤ C .

This clearly implies, since Ω1 ⊂ Ω, that(∫
B2R(x)∩Ω1

v1(x)εdx
)1/ε

≤ C diam(Ω) .

The Step 2 then follows observing that 0 ≤ 1 + µ1w1 = µ1v1 + µ1z2 ≤ µ1v1 and taking into account that
B2R(x) ∩ Ω = B2R(x) ∩ Ω1.

Step 3: Conclusion.

Arguing exactly as in Step 3 and 4 of Lemma 4.2, using Lemma 2.2 and Step 2, we show the existence of
C3 = C3(x, µ1, µ2, R,Λ1,Λ2, ‖h−‖L∞(Ω1), ‖c+‖Lq(B2R(Ω1)) > 0 such that

sup
BR(x)∩Ω

w2 ≤ C3 .

Hence, the proof of the lemma follows by the definition of w2. �
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Proof of Theorem 1.1. Arguing by contradiction we assume the existence of sequences {λn} ⊂ [Λ1,Λ2],
{un} solutions of (Pλ) for λ = λn and of points {xn} ⊂ Ω such that

(4.15) un(xn) = max{un(x) : x ∈ Ω} → ∞ , as n→∞ .

Observe that Lemma 4.1 and (4.15) together imply the existence of a sequence of points yn ∈ Ω+ such that

(4.16) un(yn) = max{un(y) : y ∈ Ω+} → ∞ , as n→∞ .

Passing to a subsequence if necessary, we may assume that λn → λ ∈ [Λ1,Λ2] and yn → y ∈ Ω+. Now, let us
distinguish two cases:

• If y ∈ Ω+∩Ω, Lemma 4.2 shows that we can find RI > 0 and MI > 0 such that, if u ∈ H1
0 (Ω)∩L∞(Ω)

is a solution of (Pλ), then supBRI (y) u ≤MI . This contradicts (4.16).

• If y ∈ Ω+ ∩ ∂Ω, Lemma 4.3 shows that we can find RB > 0 and MB > 0 such that, if u ∈
H1

0 (Ω) ∩ L∞(Ω) is a solution of (Pλ), then supBRB (y)∩Ω u ≤MB . Again, this contradicts (4.16).

As (4.16) cannot happen, the result follows. �

5. Proof of Theorem 1.2

Let us begin with a preliminary result.

Lemma 5.1. Under the assumption (A1), assume that (P0) has a solution u0 for which there exist x ∈ Ω
and R > 0 such that c+u0 	 0, c− ≡ 0 and µ ≥ 0 in BR(x). Then there exists Λ ∈ (0,∞) such that, for
λ ≥ Λ, the problem (Pλ) has no solution u with u ≥ u0 in BR(x).

Proof. Let us introduce c(x) := min{c+(x), 1}. Observe that 0 � c ≤ c+ and define γ1
1 > 0 as the first

eigenvalue of the problem

(5.1)

{
−∆ϕ = γc(x)ϕ in BR(x),

ϕ = 0 on ∂BR(x).

By standard arguments, there exists ϕ1
1 ∈ C1

0(BR(x)) an associated first eigenfunction such that ϕ1
1(x) > 0

for all x ∈ BR(x) and, denoting by n the outward normal to ∂BR(x), we also have

(5.2)
∂ϕ1

1(x)

∂n
< 0 , on ∂BR(x).

Now, let us introduce the function φ ∈ H1
0 (Ω) ∩ L∞(Ω), defined as

φ(x) =

{
ϕ1

1(x) , x ∈ BR(x),

0 x ∈ Ω \BR(x),

and suppose that u is a solution of (Pλ) such that u ≥ u0 in BR(x). First observe that, in view of (5.2) and

as u ≥ u0 on BR(x), there exists a constant C > 0 independent of u such that

(5.3)

∫
∂BR(x)

u
∂ϕ1

1

∂n
dS ≤ C.

Thus on one hand, using (5.1) and (5.3), we obtain

(5.4)

∫
Ω

(
∇φ∇u+ c−(x)φu

)
dx =

∫
BR(x)

∇ϕ1
1∇u dx = −

∫
BR(x)

u∆ϕ1
1 dx+

∫
∂BR(x)

u
∂ϕ1

1

∂n
dS

≤ −
∫
BR(x)

u∆ϕ1
1 dx+ C = γ1

1

∫
BR(x)

c(x)ϕ1
1 u dx+ C ≤ γ1

1

∫
Ω

c+(x)φu dx + C.

On the other hand, considering φ as test function in (Pλ) we observe that

(5.5)

∫
Ω

(
∇φ∇u+ c−(x)φu

)
dx = λ

∫
Ω

c+(x)uφ dx+

∫
Ω

(
µ(x)|∇u|2 + h(x)

)
φdx .
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From (5.4) and (5.5), we then deduce that, for a D > 0 independent of u.

(5.6)

(γ1
1 − λ)

∫
Ω

c+(x)φu dx ≥
∫

Ω

(
µ(x)|∇u|2 + h(x)

)
φdx− C

=

∫
BR(x)

(
µ(x)|∇u|2 + h(x)

)
ϕ1

1 dx− C ≥ −D.

As c+u0 	 0 in BR(x), we have that∫
Ω

c+(x)φu dx ≥
∫

Ω

c+(x)φu0 dx > 0.

Hence, for λ > γ1
1 large enough, we obtain a contradiction with (5.6). �

Proof of Theorem 1.2. We treat separately the cases λ ≤ 0 and λ > 0.

Part 1: λ ≤ 0.

Observe that for λ ≤ 0 we have λc+ − c− ≤ −c− and hence the result follows from [4, Lemma 5.1,
Proposition 4.1, Proposition 5.1, Theorem 2.2] as in the proof of [4, Theorem 1.2]. Moreover, observe that
u0 is an upper solution of (Pλ). Hence we conclude that uλ ≤ u0 by [3, Lemmas 2.1 and 2.2].

Part 2: λ > 0.

Consider, for λ ≥ 0 the modified problem

(Pλ) −∆u+ u = (λc+(x)− c−(x) + 1) ((u− u0)+ + u0) + µ(x)|∇u|2 + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω).

As in the case of (Pλ), any solution of (Pλ) belongs to C0,τ (Ω) for some τ > 0. Moreover, observe that u is
a solution of (Pλ) if and only if it is a fixed point of the operator Tλ defined by Tλ : C(Ω) → C(Ω) : v 7→ u
with u the solution of

−∆u+ u− µ(x)|∇u|2 = (λc+(x)− c−(x) + 1) ((v − u0)+ + u0) + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω).

Applying [4, Lemma 5.2], we see that Tλ is completely continuous. Now, we denote

Σ := {(λ, u) ∈ R× C(Ω) : u solves (Pλ)}

and we split the rest of the proof into three steps.

Step 1: If u is a solution of (Pλ) then u ≥ u0 and hence it is a solution of (Pλ).

Observe that (u− u0)+ + u0 − u ≥ 0. Also we have that λc+(x)((u− u0)+ + u0) ≥ λc+(x)u0 ≥ 0. Hence,
we deduce that a solution u of (Pλ) is an upper solution of

(5.7) −∆u = −c−(x) ((u− u0)+ + u0) + µ(x)|∇u|2 + h(x) , u ∈ H1
0 (Ω) ∩ L∞(Ω).

Then the result follows from [3, Lemmas 2.1 and 2.2] noting that u0 is a solution of (5.7).

Step 2: u0 is the unique solution of (P 0) and i(I − T 0, u0) = 1.

Again the uniqueness of the solution of (P 0) can be deduced from [3, Lemmas 2.1 and 2.2]. Now, in order
to prove that i(I − T 0, u0) = 1, we consider the operator St defined by St : C(Ω)→ C(Ω) : v 7→ u with u the
solution of

−∆u+ u− µ(x)|∇u|2 = t[(−c−(x) + 1) (u0 + (v − u0)+ − (v − u0 − 1)+) + h(x)] , u ∈ H1
0 (Ω) ∩ L∞(Ω).

First, observe that there exists R > 0 such that, for all t ∈ [0, 1] and all v ∈ C(Ω),

‖Stv‖∞ < R.

This implies that

deg(I − S1, B(0, R)) = deg(I,B(0, R)) = 1.

By [3, Lemmas 2.1 and 2.2], we see that u0 is the only fixed point of S1. Hence, by the excision property of
the degree, for all ε > 0 small enough, it follows that

deg(I − S1, B(u0, ε)) = deg(I − S1, B(0, R)) = 1.
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Thus, as for ε < 1, S1 = T 0, we conclude that

i(I − T 0, u0) = lim
ε→0

deg(I − T 0, B(u0, ε)) = lim
ε→0

deg(I − S1, B(u0, ε)) = 1.

Step 3: Existence and behavior of the continuum.

By [25, Theorem 3.2] (see also [4, Theorem 2.2]), there exists a continuum C ⊂ Σ such that C ∩ ([0,∞)×
C(Ω)) is unbounded. By Step 1, we know that if u ∈ C then u ≥ u0 and is a solution of (Pλ). Thus applying
Lemma 5.1, we deduce that ProjRC ∩ [0,∞) ⊂ [0,Λ]. By Theorem 1.1 and Step 1, we deduce that for every
Λ1 ∈ (0,Λ), there is an a priori bound on the solutions of (Pλ) for λ ∈ [Λ1,Λ]. Hence, the projection of
C ∩ ([Λ1,Λ) × C(Ω)) on C(Ω) is bounded, and so, we deduce that C emanates from infinity to the right of
λ = 0. Finally, since C contains (0, u0) with u0 the unique solution of (P0), we conclude that there exists
λ0 ∈ (0,Λ) such that problem (Pλ), and thus problem (Pλ), has at least two solutions satisfying u ≥ u0 for
λ ∈ (0, λ0). �
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