VARIOUS SLICING INDICES ON BANACH SPACES
P. HAJEK* AND G. LANCIEN

ABSTRACT. We give a short and direct proof for the computation of the
Szlenk index of the C'(K) spaces, when K is a countable compact space and
determine their Lavrientiev indices. We also compute the Szlenk index of
certain C(«) spaces, where « is an uncountable ordinal. Finally, we show
that if the Szlenk index of a Banach space is w (first infinite ordinal), then
its weak*-dentability index is at most w? and that this estimate is optimal.

1. INTRODUCTION - NOTATION

We start with the definition of the Szlenk derivation and the Szlenk index
that have been first introduced in [23] and used there to show that there is no
universal space for the class of separable reflexive Banach spaces. So consider
a real Banach space X and K a weak*-compact subset of X*. For ¢ > 0 we let
V be the set of all relatively weak*-open subsets V' of K such that the norm
diameter of V' is less than ¢ and s. K = K \ U{V : V € V}. Then we define
inductively s®K for any ordinal o by s¢™ K = s.(s*K) and s?K = NgasP K
if o is a limit ordinal. We denote by By« the closed unit ball of X*. We then
define Sz(X, ¢) to be the least ordinal « so that s® By« = (), if such an ordinal
exists. Otherwise we write Sz(X,e) = oo. The Szlenk index of X is finally
defined by Sz(X) = sup., Sz(X, ¢).

Note that our definition is in general different from the definition of W.
Szlenk, but equivalent to it, as soon as X is a separable Banach space which
does not contain any isomorphic copy of ¢;(N) (see [13]).

We also introduce an alternative convex Szlenk index. If K is weak*-compact
and convex we may define c. K = @ *s.K (namely, the weak*-closed convex
hull of s.K). Then Cz(X,¢) and Cz(X) are defined as before, using instead
the derivation c..

Finally, if K is weak*-compact and convex, we call weak*-slice of K any non
empty set of the form S = {z* € K, a*(z) > t}, where z € X and t € R.
Then we denote by & the set of all weak*-slices of K of norm diameter less
than e and d. K = K\ U{S : S € S§}. From this derivation, we define similarly
the weak*-dentability indices of X that we denote Dz(X, ) and Dz(X).
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We recall now standard facts about ordinals. For that purpose, we follow
the notation of [19]. An ordinal « is identified with the set of ordinals 5 such
that § < «, w is the first infinite ordinal and w, is the first uncountable ordinal.
For an ordinal o, we denote a+ = o+ 1. We always consider that the sets of
ordinals are topological spaces equipped with the order topology. Then, for any
ordinal «a, C'(a+) is the space of all real valued continuous functions on [0, o]
equipped with the supremum norm and Cy(a) = {f € C(a+), f(a) = 0}.
Note that for any infinite o, C(a+) is isomorphic to Cy(a). Through the
natural isometries, we will identify the dual space of C(a+) to ¢1([0,«]) and
the dual space of Cy(a) to ¢1(]0,)). For @ and  countable ordinals, we set
eqo() =1 if a = f and 0 otherwise.

The isomorphic classification of the spaces C'(a+), for a countable, is due
to C. Bessaga and A. Pelczynski [3]. Subsequently, C. Samuel [20] performed
the exact computation of Sz(C(a+)), for « countable, which implied that
the Szlenk index perfectly determines the isomorphic classes of the separable
C(a+) spaces. It is underlined in the survey paper of H.P. Rosenthal [19] that
Samuel’s proof is rather involved and relies on a deep result of D.E. Alspach
and Y. Benyamini [1], but also contains more information. It is also suggested
that one should look for a more direct approach. We propose such a proof in
section 3. We also compute the Lavrientiev index of C'(a+). Finally, we show
that the Szlenk index does not distinguish the isomorphic classes of the non
separable C(a+) spaces.

Let us now recall that it follows from the classical theory of Asplund spaces
(see for instance [7] and references therein) that for a Banach space X, each
of the following conditions: Dz(X) # oo, Cz(X) # oo and Sz(X) # oo is
equivalent to X being an Asplund space. In particular, if X is a separable
Banach space, each of the conditions Dz(X) < wy, Cz(X) < w; and Sz(X) <
wy is equivalent to the separability of X*. In [15] it is shown, using an approach
from descriptive set theory due to B. Bossard (see [5] and [6]), that there is
a universal function ¥ : w; — wy, such that if X is an Asplund space with
Sz(X) < wy, then Dz(X) < 9(Sz(X)). In section 4, we look for a concrete
expression of ¢ and give its first interesting value, namely ¢ (w) = w?. Our
argument relies in part on a deep result of Knaust, Odell and Schlumprecht
([12]) on the linear structure of spaces with Szlenk index at most w.

2. ELEMENTARY PROPERTIES OF THE SLICING INDICES

Our first proposition can be found in [15], but this phenomenon was first
observed for Lavrientiev indices by A. Sersouri in [22].

Proposition 2.1. Let X be a Banach space. If s*°(Bx+) # 0, for some
ordinal o and ¢ > 0, then S« X) > w**t. In particular, if X is an Asplund
space, then Sz(X) = w®, for some ordinal .
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Next, we prove the following simple but useful fact.

Proposition 2.2. Let X be a Banach space and o an ordinal. Assume that
Ve>0 30(e) >0 s2(Bx+) C (1 —0d(¢))Bxs.

Then
Sy X) < aw

Proof. Let € > 0. An easy homogeneity argument shows that for any n € N :
S?‘n<BX*> C (]. — 5(6))nBX*

Consequently, there exists an integer N so that s*V(Bx-) C =By« and there-
fore s&N1(By.) = ). This finishes the proof. O

Remark 2.3. The analogues of Propositions 2.1 and 2.2 are also true for the
weak*-dentability index and the convex Szlenk index.

Proposition 2.4. For any Banach space X,
S X d X) = SzX).

Proof. 1t is clearly enough to show that Sz(X @& X) < Sz(X). We may also
assume that X @& X is equipped with the norm ||(z,2')|| = ||=| + ||«||. First,
we show that for any A and B weak*-compact subsets of X* and for any € > 0,

(2.1) s:(Ax B) C (A x 5.(B)) U (s:(A) x B).

Indeed, let (z*,y*) ¢ (A x s.(B)) U (s:(A) x B). We need to prove that
(x*,y*) ¢ s.(A x B) and thus may assume that (z*,y*) € A x B. Thus there
exist U and V weak*-open subsets of X* containing respectively z* and y*
such that U N A and V N B have diameter less than e. Then W =U x V is a
weak*-open subset of (X @; X)* = X* @, X*, containing (z*,y*) and so that
the diameter of W N (A x B) is less than €. So (z*,y*) ¢ s.(A x B).

On the other hand, a straightforward transfinite induction yields that for any
C and D weak*-compact subsets of X* x X*

(2.2) Ve >0 Va s&(CUD)C (s2(C)Us2(D)).

The next step is to show by transfinite induction that for any A and B weak*-
compact subsets of X*

(2.3) Ve >0 Va>0 s2"(Ax B)C(Axs(B)U(s"(A) x B).

£

The case a = 0 is given by (2.1). Suppose now that the above statement is
true for any 8 < a. If a is a limit ordinal, then it is clearly also true for a. So
let us assume that o = 4 1 and that the statement is true for 8. Then, it
follows from an iterated application of (2.2) that



4 P. HAJEK* AND G. LANCIEN

n

(2.4) vneN s2""(Ax B) C | (s275(A4) x 5270 (B)).

k=0
Therefore for any (z*,y*) € s*°"' (Bx+ x Bx-), we have
VneN Jk(n) <n z*e s‘;’ﬁ‘k(")(BX*) and y* € s‘;ﬁ‘("_k(”))(BX*).

If (k(n)), is unbounded, then z* € s*”"'(Bx.). Otherwise, (n — k(n)), is
unbounded and y* € s*”"" (Bx-). This finishes the inductive proof of (2.3)
Finally, we conclude the proof of Proposition 2.4 by combining (2.3) and

Proposition 2.1
0J

3. A DIRECT COMPUTATION OF Sz((C(K)) FOR K COUNTABLE COMPACT
TOPOLOGICAL SPACE

We shall need in this section the following Lemma, which is the easy part
of the fundamental classification result of Bessaga and Pelczynski (Lemma 1

of [3]).

Lemma 3.1. Let o and 8 be two ordinals so thatw < a < wy and a < 5 < a®.
Then C(a+) is isomorphic to C(8+).

We will now give a new and direct proof of the following theorem, due to
C. Samuel [20].

Theorem 3.2. For any 0 < a < wq,
SAC(w*"4)) = w*.

Proof. Showing the inequality Sz(C(w*"+)) > w®*! is the easy part of the
proof. Indeed, using the fact that the set (e,),<p is 2-separated for the norm
of £1(]0,p]) and w*-homeomorphic to [0,5], we get that for any 5 < wy,
Sz(C(wP+),1) > B (see [19] for details). Then Lemma 3.1 implies that for any
n in N, C(w*"+) is isomorphic to C(w**"+) and therefore Sz(C(w*"+)) >
w®.n, which yields the desired inequality. Note that Proposition 2.1 also allows
to conclude that Sz(C'(w*"+)) > wotl.

So we now concentrate on the converse inequality. For a fixed 0 < a < wy,
we denote Z = ¢1([0,w*")) equipped with the weak*-topology induced by
Co(w®"). Then, for all v < w*", we set Z,, = ¢1([0,7]) equipped with the weak*-
topology induced by C(v+) and P, the canonical projection from Z onto Z,.
The following Lemma is the crucial step of our argument (in this statement,
the Szlenk derived sets are meant with the weak*-topologies described above
for Z and Z.,).
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Lemma 3.3. Let o < wy, ¥ < w*”, B <w; and ¢ > 0.
If 2 € sh.(By) and | Pyz|| > 1 —¢, then P,z € s2(Byz,).

Proof. We will use a transfinite induction on 3. The statement is trivially true
for § = 0. Assume it is true for any p < . If 8 is a limit ordinal, then clearly,
it is also true for 5. So assume = pu+1 and let z € By such that || P, z|| > 1—¢
and P,z ¢ s?(Bz,). We need to show that z ¢ s5 (Byz), so we may assume that
z € sh.(Byz) and therefore that P,z € s#(By,). Then, there is a weak*-open
subset V' of Z, containing P,z such that d =diam(V Ns#(Bz,)) <e. We may
assume that

V= ﬂ{x € Zy, filz) > aif,
i=1
where a; € R and f; € C(v+). Since | P,z|| > 1 — ¢, we may also assume that
| fill =1 and a; > 1 — €, which implies that V N (1 —)Bz = 0.
We now define functions g; € Co(w*”) by ¢; = f; on [1,7] and ¢g; = 0 on
(v,w*"). Then we consider the weak*-open subset of Z:

U= ﬂ{y € Z, gi(y) > a;}.

=1

It is clear that z € U N sk (Bz). For any y € U N sh(Bz), Py € V, so
| Pyy|| > 1 —¢ and by the induction hypothesis P,y € V N s#(Bz,). Therefore
for all y, v € UNsh.(By), |Pyy—P,y'|| < d < e. Since moreover |Pyy|| > 1—¢
and ||Pyy'|] > 1 — ¢, we have that ||y — ¢/|| < d+ 2¢ < 3e. This shows that

= ¢ s5_(By) and finishes our induction.
0

In order to conclude the proof of Theorem 3.2, it is enough to show that

(3.5) VO<a<w Vy<w” Ve>0 s (Bgz)=0.

This will be done by transfinite induction on «. If o = 0, then for any
v < w, Z, is finite dimensional and therefore s.(Bz ) = (). So the statement
is true for a = 0. It also passes easily to limit ordinals. So assume now that
it is true for a. Then Lemma 3.3 implies that

(3.6) Ve >0 s2°(By) C (1— %)BZ,

where Z = (1([0,w*")) is equipped with the weak*-topology induced by Cp(w*").
It now follows from (3.6) and Proposition 2.2 that

(3.7) Ve >0 s (Bg) =10
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Now, Lemma 3.1 implies that for any w*” <~y < w**", C'(y+) is isomorphic
to C(w*"+) and therefore to Cy(w*”). So SEJQH(BZW) = (), for any £ > 0 and

any v < w*""". This finishes our induction.
]

It should be noted that the isomorphic classes of the separable C'(a+) spaces
are also determined by other ordinal indices. For instance, D.E. Alspach, R.
Judd and E. Odell studied in [2] the ordinal index [(X), introduced by J.
Bourgain in [4], which measures the presence of ¢; in a separable Banach
space X. Among other thing they proved that

YO<a<w I(Cw+)) =wtert

We will now add a remark on the Lavrientiev index of the C'(a+) spaces.
If (M,d) is a compact metrizable space, the functions of first Baire class from
M into R can be classified with the help of different ordinal indices: the
separation, oscillation and convergence indices. The separation index was
introduced by M. Lavrientiev [17] and a thorough study of these three indices
was done by A. Kechris and A. Louveau [11]. We will concentrate on the
oscillation index. For f: M — R and € > 0, we define the derivation

bre(M)=M\U{V : V is an open subset of M and diam(f(V)) < €}.

Then the oscillation indices of f, 5(f, ) and B(f) = sup..o 5(f, ) are defined
in the usual way. If X is a separable Banach space, Bx+ equipped with the
weak*-topology is a compact metrizable space on which we can compute the
oscillation index §(z**) for any z** € X**. Then we define the Lavrientiev
index of X by:
B(X)= sup B(z™).
e X

Clearly, 5(X) = 1 if and only if X is reflexive. On the other hand f(X) <
wy if and only if X does not contain any isomorphic copy of ¢; (this is an
improvement due to J. Bourgain [4] of the celebrated result of E. Odell and
H.P. Rosenthal [18]). We shall now indicate how S(C(K’)) can be computed.
We wish to thank the referee for pointing out an incomplete argument in the
first proof of this result.

Proposition 3.4. For any countable compact space K
B(C(K)) = SC(K)).

Proof. 1t is clear that for any Banach space X, f(X) < Sz(X). So, in view
of Theorem 3.2 and of the version of Proposition 2.1 for the index 5(X) due
to A. Sersouri [22], it is enough to find 2™ € C(K)* = l(K) such that
be-. 1(Bexy-) # 0, whenever K is a countable compact space whose Cantor
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derived set K“*) #£ (). So assume that K is countable compact and K“) = ()
and denote by L, the set of limit ordinals less than w®. Then consider

= Z Z (—1>k1K(ﬁ+k)\K(ﬁ+k+1) € lo(K).
BELy 0<k<w
Recall that e, € C(K)* is the evaluation at ¢ € K and denote by M the
closed unit ball of C'(K)* equipped with the weak*-topology. We will show by
transfinite induction that

(3.8) Vy <w?, {e, t€ KO\ KO} ol (M).

The statement is clearly true for v = 0.
Assume that it is true for  and consider t € K0T\ KO+2) Since the isolated
points of a countable compact space I’ are dense in F', there exists a sequence
(t,) in K\ KO+Y converging to ¢t. This implies that (e;, ) is weak*-converging
to e;. But z** is built in such a way that, for all n € N, |z**(e;, — e;)| = 2.
Since, by induction hypothesis, (e, ) is included in b)..,(M), we get that
€ € bz;th(M)
Let now 7 be a limit ordinal and assume our statement true for all g < ~.
Let t € KO\ KOTD. We now fix < 7. Using the density of the isolated
points of K we deduce the existence of a sequence (t,) in K¥ \ K+
converging to t. By our induction hypothesis we obtain that (e;,) is included
in bgl(M) This later set being weak*-closed, we have that e, € bil(M)
Since, this is true for any § < «, we finally get that e, € b).. ,(M). This
finishes our induction.
It follows from (3.8) that for any v < w®, b)..,(M) # 0 and by weak*
compactness that b2 | (M) # 0.

O

We conclude this section with a few remarks on the spaces C'(a+), when «
is a simple uncountable ordinal. First we obtain

Proposition 3.5.
S2(C(w+)) = w.w

Proof. For any o < wy, Sz(C(w*+),1) > a and C(w*+) embeds isometrically
in C(w1+), so Sz(C(w1+),1) > wy. Since wy is a limit ordinal, we actually ob-
tain, using weak*-compactness, that Sz(C'(w1+),1) > wy. Then it follows from
Proposition 2.1 that Sz(C'(w1+)) > wi.w. On the other hand, the techniques
of Lemma 3.3 yield similarly that Sz(C(wi+)) < wy.w. O

Corollary 3.6. For any w; < o < wy.w
Sz(Cla+)) = w.w
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Proof. For any w; < a < wy.w, C(w;+) embeds in C(a+) and C(a+) embeds
in some finite sum C(wi+) @ ... @ C(wi+). Then Propositions 2.4 and 3.5
imply that
Sz(C(wi+)) = wi.w = Sz(C(a+)).
0

Remark 3.7. Z. Semadeni [21] proved that for w; < a < f < wy.w, C(a+)
and C(f+) are isomorphic if and only if wy.n < a < 8 < wy.(n + 1) for
some integer n. So, unlike in the separable case, the Szlenk index does not
distinguish the isomorphic classes for the non separable C'(a+) spaces.

4. COMPARING THE WEAK*-DENTABILITY INDEX AND THE SZLENK INDEX
The main result of this section is the following.

Theorem 4.1. Let X be a Banach space. If Sx(X) < w, then Dz(X) < w?.
This estimate is optimal. More precisely

Corollary 4.2. Let X be a Banach space which is not superreflexive and such
that S2(X) < w. Then Dz X) = w?. In particular Dz(co) = w?.

Proof. This a direct consequence of Theorem 4.1, the analogue of Proposition
2.1 for Dz, and the following standard fact: Dz(X) < w if and only if X is
superreflexive (see [14] or [10]). O

We shall need the following finite dimensional result.

Proposition 4.3. Let X be a finite dimensional normed space, D be a closed
convex subset of X with non empty interior and C' be a closed bounded convex
subset of X strictly containing D. Then, for any § > 0, there is a sequence
(H;)2, of open half spaces in X such that

00 k
C\|JHi=D and Vk>1 diam[(C'\ | JH;) N Hy11)] < 6.

=1 =1
Proof. Let 1 be the Haar measure on X.

Lemma 4.4. Let B be a closed bounded convex subset of X such that D C B.
Then for any § > 0, there is an open half space H in X satisfying

HND=0, diam(BNH) < d and u(H N B) > 0.

Proof. Since X is finite dimensional, B is the closed convex hull of its strongly
exposed points (see [8] and references therein). So there exists © € B\ D
which is strongly exposed in B. Consequently, there is an open half space H
in X such that z € H, HN D = §) and diam(H N B) < §. Since D has non
empty interior, so does H N B. 0
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End of proof of Proposition 4.3. We set By = C' and, using Lemma 4.4, we
build by induction a sequence (B,,) such that B, = B, \ Hy1, where H, 4
is an open half space so that

(49) Hn+1 ND= Q) and diam(Hn+1 N Bn) <0

and also such that 2u(H, 1 N B,,) is greater than the supremum of u(H N By,)
over all open half spaces H satisfying H N D = () and diam(H N B,,) < §.

If this process stops after n steps, then C'\ |J_, H; = D, and it is enough
to set H; = H, for all n > i to get the desired conclusion. So let us assume
that this process does not end. Let B = (", B,. We only need to show that
B = D. If not, then Lemma 4.4 insures the existence of an open half space H
so that

(4.10) HND =1, diam(BNH) < d and u(H N B) > 0.

By compactness, we get that for n large enough, diam(B, N H) < 4.
Besides, > >° | u(Hy11 N By,) < co. Therefore, for n big enough,

2p(Hp1 N Bn) < w(H N B) < u(H N B,y),

which is in contradiction with the way the sequence (H,,) was constructed. So
B=D.
O

Proof of Theorem 4.1. Since the conditions Sz(X) < w and Dz(X) < w? are
separably determined (see [15]), we may assume that X is separable. Then
we can use a fundamental result of H. Knaust, E. Odell and T. Schlumprecht
[12] , which asserts that there is a dual Banach space Z = Y*, so that X*
embeds for the norm and weak* topologies into Y* and such that Y* admits
a boundedly complete finite dimensional decomposition (F},)>° ; satisfying the
following estimate, for some p € [1,4+00): for every block basic sequence
(2)7—1, with respect to the finite dimensional decomposition (F,)

J J
(4.11) A= [E21
j=1 j=1

Thus, it is enough to show that Dz(Y) < w?.

We denote by (E,)2;, the shrinking finite dimensional decomposition of Y,
whose dual decomposition is (F,)22,. For N € N, we set Zy = F1 @ ... ® Fiy
and Py the projection from X onto Zy whose kernel is & Zf: Ny e Let
now £ > 0 and (H;)$°, be the family of open half spaces given by Proposition
43, for X = Zy, C = By,, D = (1 — ?)» By, and some 6 in (0,2). We
denote as before, By = C' and B, = C'\ Ule H;, for £ > 1. Then we have the
following analogue of Lemma 3.3

Lemma 4.5. Let k € N. If 2 € d5_(Byz) and | Pyz||P > 1—¢P, then Pyz € By.
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Proof. The proof will be done by induction on k. The statement is clearly
true for k£ = 0, so assume it is satisfied for some k£ > 0. Let z € Bz such that
|Pyvz||P > 1 — &P and Pyz ¢ Byi1. We need to show that z ¢ di'(By). So

we may assume that z € d5_(By) and therefore, by induction hypothesis, that
Pyz € By. Hence, by the proof of Proposition 4.3:

(4.12) Pyz € Hyy1 N By, Hkﬂﬂ(l—ap)%BZN =, and diam(Hy,1NBy) <

The set Hyyq can be written Hyyy = {x € Zy, f(z) > a}, where a € R
and f € Z%. We can write f = (fi, .., fx) in the decomposition (E,.., Ex) of
Zy = E1&..@Ey. Now we define g = (f1, .., fn,0,..,0,..) in the decomposition
(En), of Y and Gyyy1 = {z € Z, g(x) > a}. Then z € Gy Nd5.(Bz).
Moreover, for any z € Gjy Nd5.(Bz), Pvx € Hyyq, so ||Pyz|P > 1 — &P
and it follows from the induction hypothesis that Pyx € Bj. Thus, for all
x,7' € Gy NdE(By), ||Pvx — Pya'|] < 6. On the other hand, ||Pyx|[P >
1 —¢eP and |Py2’||P > 1 —P. So it follows from (4.11) that ||z — Pyz|| < ¢
and [|2’ — Pya'|| < . Therefore diam(Gj Nd5.(Bz)) < § + 2e < 3¢ and
2 ¢ d37(Bz).

[

End of proof of Theorem 4.1. 1t follows now from Lemma 4.5 that
Ve >0 d“(By) C (1— (g)p)%BZ.

Finally, the analogue, for the weak*-dentability index, of Proposition 2.2 yields
that Dz(Y) < w?.
O

Remark 4.6. If we denote, for a countable ordinal a:

Y(a) = sup Dz(X).
Sz(X)<a
It is clear that (1) = w and we just showed that ¥ (w) = w?.
The values of ¥ (w®), for a > 2 are not known. However, there is an uncount-
able set S C [1,w;) such that ¢ is the identity on S. The proof of this fact,
which relies on the so-called “pressing down Lemma” can be found in [16].

We finish this section by explaining how a general comparison of Cz(X) and
Dz(X) is given by a recent work of F. Garcia, L. Oncina, J. Orihuela and S.
Troyanski [9]. First recall that for a bounded subset B of a metric space X,
the Kuratowski index of non compactness of B, denoted by a(B) is defined
to be the infimum of all € > 0 such that B can be covered by a finite union
of balls of diameter less than . Now, for a Banach space X, we define a new
derivation as follows: if K is a weak*-compact and convex subset of X* and
e > 0, we set T the set of all weak*-slices S of K so that a(S) < e. Then
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kK = K\U{S : S € T}. Finally, using this derivation, we define in the usual
way the indices Kz(X,¢e) and Kz(X) that we call weak*-Kuratowski indez of
X. The following result is due to F. Garcia, L. Oncina, J. Orihuela and S.
Troyanski [9] (see Proposition 7 and the details of its proof).

Theorem 4.7. For any Banach space X,

DA X) < w”. Kz X).
Then we have

Proposition 4.8. For any Banach space X :
Cz(X) = Kz(X) and therefore DzX) < w”.CxX).

Proof. 1t is enough to show that for any ¢ > 0 and any convex weak*-compact
subset K of X*:

Cae(K) C koo (K) C c.(K).

Let z* € K\ ¢.(K). Since ¢.(K) is convex and weak*-closed, the Hahn-Banach
theorem insures the existence of a weak*-slice S of K such that z* € S and
S Nec(K) = 0. Now, for any y* € S, y* € K\ c.(K) C K \ 5.(K) and
therefore, we can pick a weak*-neighborhood V- of y* such that the norm
diameter of Vj» N K is less than . Since S s weak*-compact, it can be
covered by a finite collection V.., V. and therefore by a finite family of balls
of diameter less than 2¢. Thus z* € K \ ko.(K), and the second inclusion is
proved.
Let x* € K \ koo (K). There exist a weak*-open slice S of K and closed balls
By, .., B, of X* with diameter less than 2¢ such that z* € S and S C U", B;.
For y* € S, we set I = {i, y* € B;}. Then S\ Uj¢;B; is a weak*-open subset
of K containing y* and included in U;c; B;. Since y* belongs to all B; for ¢ € I,
the diameter of U;e;B; is at most 4e. Thus y* ¢ s4.(K) and s4(K) C K\ S.
Since K \ S is convex and weak*-closed, we also have ¢;.(K) C K\ S, and
therefore x* € K \ ¢4c(K), which ends the proof of the first inclusion.

O
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