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Introduction

Introduction to the first-passage time
Modeling biological or physical stochastic systems often requires to handle
with one-dimensional diffusion processes.

Two types of information:
the marginal probability distribution function at a fixed time t.

the description of the whole paths.
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Introduction

Introduction to the first-passage time

Modeling biological or physical stochastic systems often requires to handle
with one-dimensional diffusion processes.

Two types of information:
the marginal probability distribution function at a fixed time t.
the description of the whole paths.
The marginal pdf is insufficient in many applications:
m financial derivatives with barriers
m ruin probability of an insurance fund
m optimal stopping problems

m neuronal sciences
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Introduction

Some Integrate and Fire models define the spiking times as the first
hitting time of a threshold by the membrane potential. If the membrane
potential is given by a stochastic differential equation, the spiking times
are the first hitting times of the threshold by such a diffusion.

The leaky integrate-and-fire (LIF) neuron is probably one of the simplest
spiking neuron models, its input signal is given by /(t):
dv(t)
T

—v(t) + R I(t)

m v(t) represents the membrane potential at time t,

B 7., is the membrane time constant

m R is the membrane resistance.
When the membrane potential v(t) reaches a threshold vi" (spiking
threshold), it is instantaneously reset to a lower value v (reset potential)
and the leaky integration process starts anew with the initial value v'.
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Introduction
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Introduction

First-passage time 7

Let (X¢, t > 0) be a one-dimensional diffusion process satisfying
dXt = O'(Xt)dBt -+ b(Xt)dt, XO =x<L.
Aim: simulation of the FPT defined by 7, :=inf{t > 0: X; = L}.

Different tools for simulation purposes: explicit expression of the pdf,
approximation of the stochastic process, rejection sampling...
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Introduction

First-passage time 7

Let (X¢, t > 0) be a one-dimensional diffusion process satisfying
dXt = O'(Xt)dBt -+ b(Xt)dt, XO =x<L.
Aim: simulation of the FPT defined by 7, :=inf{t > 0: X; = L}.

Different tools for simulation purposes: explicit expression of the pdf,
approximation of the stochastic process, rejection sampling...

Standard Brownian case (By = 0):

The optional stopping thm applied to M; = exp{AB; — %)\21“} leads to

E[e ] =e V2L x> 0.
Hence 7, ~ L2?/G?

where G ~ N(0,1).

L2 . .
e 2tdt, t>0. Easyand exact simulation !

Inversion of the Laplace transform:

P(r, € dt) =

21t
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Introduction

General one-dimensional diffusion processes:

We define the generator associated to the diffusion (X:, t > 0) by

o?(x) d*f df
> W(X)—Fb(x)a(x), 'FOI’XER.

Then the Laplace transform of the FPT is the unique solution of the
following Sturm-Liouville boundary value problem on | — oo, L[:

Lf(x) =

Lu(x) = Au(x), The following property holds:
u |x:L =1
limy— oo u(x) = 0. Eole—>i] — Ya(x)

e V(L)

Let 1 the unique increasing
positive solution of Lu = Au.
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Introduction

General one-dimensional diffusion processes:

We define the generator associated to the diffusion (X:, t > 0) by

o?(x) d*f df
> W(X)—Fb(x)a(x), 'FOFXER.

Then the Laplace transform of the FPT is the unique solution of the
following Sturm-Liouville boundary value problem on | — oo, L[:

Lf(x) =

Lu(x) = Au(x), The following property holds:
u |x:L =1
limy— oo u(x) = 0. By [e ] = a(x) HfA/e(X\/é)

wA(L) B H_)\/Q(L\/é)'

Let 1 the unique increasing
positive solution of Lu = Au.

m Ornstein-Uhlenbeck case (o =1, b(x) = —6x): Hermite functions
1 (1) _/m—v m
"l2) = 3 n; m! r( 2 >(2Z) ‘
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m When the transition probability of (X;) has an explicit expression...

Let us define
f(t,x|s,y)dx :=P(X; € dx|Xs = y), s<t,
{ ot xls,y) = b(x)F(t, XI5, y) = 32 [2(0)F (£.x1s,¥)].
 represents the probability current of the diffusion process.

Voltera-type integral equation (see Buonocore, Nobile, Ricciardi)

The pdf f;(t) of the FPT 7, satisfies the Voltera-type equation:

t
f(t) = 20(L, t]x,0) — 2 / el AL S, el % = s
0
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Introduction

m When the transition probability of (X;) has an explicit expression...
Let us define
f(t,x|s,y)dx :=P(X; € dx|Xs = y), s<t,
{ ot x5, y) = B()F(t xIs,y) — 3 & [P (x)F(t xIs,v)|.
 represents the probability current of the diffusion process.

Voltera-type integral equation (see Buonocore, Nobile, Ricciardi)

The pdf f;(t) of the FPT 7, satisfies the Voltera-type equation:

t
f(£) = 20(L, t|x, 0) — 2 / fL(s)p(L, L, s)ds, with Xp = x.
0

Closed form results for the Brownian motion and for the O-U process.

In general: numerical approximation of the integral... (it works fine due to
the particular choice of the Voltera kernel — non singular !)

What about the simulation of 7, ?
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Introduction

m General method: time discretization

Instead of considering the approximation of the pdf, it is possible to deal
directly with an approximation of the diffusion process (Euler scheme).

Xnt1)a = Xon + Db(Xnp) + VA 0(Xan)Gn, 02> 0,
where (G,) stands for a sequence of independent Gaussian distributed r.v.

Let TLA be the FPT of the discrete-time process.

Overestimation of the FPT: 7, < TLA
st

Important to improve the algorithm:
a shift of the boundary (Broadie-Glasserman-Kou, Gobet-Menozzi)

computation of the probability for a Brownian bridge to hit the
boundary during a small time interval (Giraudo-Saccerdote-Zucca)

Advantage: rough description the paths. But: bounded time interval !
June 252018 9 /26



Acceptance-rejection

Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let f and g two probability distribution functions, such
that h(x) := f(x)/g(x) is upper-bounded by a constant ¢ > 0.
Aim: simulation of X with pdf f.

Generate a rv Y with pdf g.
Generate U uniformly distributed (independent from Y).

If U< h(Y)/c, then set X = Y; otherwise go back to 1.
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Acceptance-rejection

Acceptance-rejection sampling: an exact simulation of the FPT
Principal idea: Let f and g two probability distribution functions, such
that h(x) := f(x)/g(x) is upper-bounded by a constant ¢ > 0.
Aim: simulation of X with pdf f.

Generate a rv Y with pdf g.

Generate U uniformly distributed (independent from Y).

If U< h(Y)/c, then set X = Y; otherwise go back to 1.

Important: h should be bounded and have an explicit expression !
Application to the first passage problem: the Girsanov transformation

permits to
m link the distribution of the diffusion process (X:, t > 0) to the
Brownian one (B:, t > 0).
m give an expression of the function h.
Girsanov's transformation was already used for simulation purposes by
Beskos and Roberts (exact simulation on some fixed interval [0, T]).
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Acceptance-rejection

From now on, o = 1 (diffusion coefficient). We assume that the drift
term b € CY(] — oo, L]) and introduce B(x) = fo y)dy and v := b2+b’.

Girsanov's transformation

For any bounded measurable function ¢ : R — R, we obtain

Ep[(71)(r,<o0)] = Eglt(re)n(mo)] exp {B(L) — B(x) },

where P (resp. Q) corresponds to X (resp. B) and

n(t) := E[exp—/otfy(L— Rs)ds|R: = L—x]

Here (R;, t > 0) stands for a 3-dimensional Bessel process with Ry = 0.

Proof : Girsanov 4+ Ité's formula + conditional distribution.

Ep[w(n)l{n<oo}]:EQ[w(TL)exp( b(Bs)dBs — L [t b2(Bs)ds)} 0
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Acceptance-rejection

Ep[Y(70)L{r, <o0)] = Balt(r)n(m)] exp { B(L) — B(x) }.
n(t) := E[exp — Ja(L— Rs)ds‘Rt =L- x]

Advantages:

m Under Q, it is easy to generate 7;.

m An appropriate situation for a rejection method, if 7, < oo under P.
Difficulties:

m the boundedness of 7(t) for t > 0. We suggest in a first phase to
assume: y(x) > 0 for all x € R.

m the non-explicit expression of 7(t): we shall assume that vy(x) < &
for all x € R and introduce a Poisson Point Process.

To sum up, the main assumption becomes:
0 <9(x) < k.
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Acceptance-rejection

Algorithm (A1) or (A2).
Step 1: Simulate a r.v. T = (L — x)?/G? with G ~ N(0,1).

Step 2: Simulate a 3-dimensional Bessel process (R;) on the time
interval [0, T| with endpoint Rt = L — x and define

Dr 1 := {(t, v) e [0, T] xRy v<~(L- Rt)}.

Step 3: Simulate a Poisson point process N on the state space
[0, T] x Ry, independent of the Bessel process, whose intensity
measure is the Lebesgue one.

Step 4: If N(Dg,7) = 0 then set Y = T otherwise go to Step 1.

Theorem (theoretical viewpoint)

The outcome Y and the FPT of the diffusion process 7; are identically
distributed.
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Efficiency of the algorithm

Efficiency of the algorithm.

Remark: Be carefull with the simulation of the PPP: if you sample all
points, their averaged number is E[x T] = co: efficiency to be improved !

m 7 the number of iterations (step 1)

. m Ni,..., N7 the numbers of random points (Poisson
We define: . :
process) used for each iteration.
B Ny =7+ Nj+ ...+ N7 the total number of r.v.
Proposition

The following upper-bound holds E[Z] < exp((L — x)v/2k).
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Efficiency of the algorithm

Efficiency of the algorithm.

Remark: Be carefull with the simulation of the PPP: if you sample all
points, their averaged number is E[x T] = co: efficiency to be improved !

m 7 the number of iterations (step 1)

m Ni,..., N7 the numbers of random points (Poisson
process) used for each iteration.

B Ny =7+ Nj+ ...+ N7 the total number of r.v.

We define:

Proposition
The following upper-bound holds E[Z] < exp((L — x)v/2k).

Reduction of the number of iterations:
m For (L — x), linearization by space splitting.
m For k1 if 0 <79 < v(x) <k forall x € R,
then replace v(-) <= v(-) — 70, K < k — 70 & introduce the
simulation of IG(\’}%, (L— x)2) (Michael-Schucany-Haas).
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Efficiency of the algorithm

Proposition: number of r.v. during the first iteration.

Assumption: 3C, > 0, Ir < 1 such that

i > = < —1.
yglr;fSL’y(z)_Cﬂy\ , forall y<-1

Then M, 1 > 0 and IM, 5 > 0 s.t. the number of random points satisfies

E[N1] < My 1+ &M, o(x® + (L — x)3+0/2)  for x < L.

Bounds for the (3d)-Bessel bridge:

Proof: E.[N1] = Hr + kit

with &TgL—x+¢7Rm seo0,1].

Hy = e~ Jo 1(L=Ru)dw < 1 (Rs)s>0 is a standard Bessel bridge.

— ver wT®
]P(Sup Ru > Ta) S - W
[0,1] 4+/2 sinh (Te)
June 25¢ 2018 15/ 26
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Efficiency of the algorithm

Using the agreement formula (see Chung or Pitman-Yor), we obtain

IF’( sup R, > Ta) = C3E[ﬁ1{;<7_za}].
uel0,1]
Here C3 = v/2/I(3/2) and 7 = 7 4 7 where 7 is the first hitting time of
the level 1 for a 3-dimensional Bessel process and 7 an independent copy
of 7.

IP’( sup R, > TO‘) <G T_O‘IP’(exp —AT > exp —)\T_2O‘>
u€l0,1]

(2/\)1/2
C312,(V2)) ’
for any A > 0. I, stands for the Bessel function of the first kind. In

particular I ;(x) = \/% sinh x. The particular choice A = T2%/2 leads
to

< C3 T~ e)\T*ZO‘E[e—)\F] — C3 T« eAT*ZQ

><\/§ mr O

P( sup R, > T :
( g = 2V/2 2sinh?(T9)

ue(0,1]
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Examples of generalization and numerics

Examples of generalization and numerics

Example 1. dX; = (2 +sin(X;)) dt + dB;, Xo = 0. We have 0 < v <5,

Figure: Histogram of the hitting time distribution for 10 000 simulations
corresponding to the level L = 2 and starting position Xy = 0 (left), histogram
of the number of iterations in Algorithm (A1) in the log,g-scale (right).
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Examples of generalization and numerics

Figure: Number of random variables used in Algorithm (A1) for 10000
simulations with L =2, Xg = 0 in the log;,-scale (left) and mean number of
iterations versus the level height L for Algorithm (A1)sphis respectively (Al)
(dashed line resp. solid line), both curves are in the log;4-scale (10000
simulations have been used for the average estimation).
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Examples of generalization and numerics
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Figure: Histogram of the number of random variables in Algorithm (A1) using
space splitting for 10000 with L =2, Xo =0, k = 20 (left), L =20, k =20
(right) both in the log,,-scale.
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Examples of generalization and numerics
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Figure: Averaged number of random variables used in Algorithm (A1) versus the
number of slices kK with Xo = 0 and L = 5. The averaging uses 10000
simulations.
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Example 2: Ornstein-Uhlenbeck process with b(x) = ax + 3, a = —0.3,
B = 1 with starting position Xo = 0 and boundary L = 1 ensures that + is
a positive function but b remains unbounded. We replace the original drift
term by its modified version:

by (x) = —ax+f if —p<x<L,
P2 ap+ B—alx + p)et? if x < —p.

The modified  satisfies v,(x) = v(x) for x € [-p, L] and

1
Yp(x) = 5(ap+ﬁ—a(x+p) e )2 — 2(1—i—x—|—p) P for x < —p.

The function 7, is now positive on the whole interval | — oo, L] and
admits the following upper-bound:

B 1( B+ a)2 . @
FE o\ e 2e2’
We can therefore apply Algorithm (A1) in order to simulate the
approximated first-passage time 7/ .
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We define 8(x) = [y b(y)dy and p(x)= [;e A dy

Proposition

We assume that limy_,_o; p(x) = —co. Then 7/ converges in distribution
towards 7; as p — oo. Moreover

d(r,F) = sup{|Fp() F. (1) : t€R+}:O(—p(—p)) as p — co.

/Z X Histogram of the hitting time
distribution for 10000 simula-
tions, L = 1, X = 0 for

p = 5 using Algorithm (A1)
with modified drift.

S.Herrmann (University of Burgundy) Dijon June 25 2018 22 /26



Example 3: dX; = —arctan(X;)dt +dB;, t>0, Xo=0, L=1

7(x) = (arctan(x)? — 1/(1 + x2))/2 satisfies —m = —1/2 < y(x) < 72/8
and the first-passage time is almost surely finite.

Step 1: Simulate T: distr. of (L — x)?/G? given (L — x)?/G? < t.
Step 2: Simulate a 3-d Bessel process (R:) on [0, T] with Rt = L — x.

mt,
DR i={(tV) €0, TIx Ry i v<a(L—R)+ 22 |

Step 3: Simulate a PPP N on [0, T] x R, independent of R, with
Lebesgue intensity meas.

Step 4: If N(Dg' ) = 0 then set Y = T otherwise go to Step 1.

Theorem for Algorithm (A3)
The outcome Y has the same distribution as 7, given 7, < tp.
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Examples of generalization and numerics

Figure: Histogram of the hitting time distribution using Algorithm (A3) for
to = 1 and 100000 simulations (left) and averaged number of iterations in
Algorithm (A3) versus tg (right) for Xo = 0, L =1 and 10000 simulations.
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Examples of generalization and numerics

To sum up...
| Conditionony | rv. simulated | Algorithm |
0<9(x) <k an (A1) or (A2)
0<v<7(x) <k 7L (A1)shife or (A2)shis
—m<y(x) <k |7 gien 1 <t (A3)
0 < v(x) 7/ (approx.) (A1)? or (A2)?
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Examples of generalization and numerics

To sum up...
] Condition on ~ \ r.v. simulated \ Algorithm ‘
0<9(x) <k TL (A1) or (A2)
0<r<v(x) <k 7L (A1 )shits or (A2)snifs
—m<~v(x)<k |1 gvenT <t (A3)
0 < v(x) 7/ (approx.) (A1)? or (A2)?

Work in progress and open questions:

m Exact simulation for unbounded ~, for time-inhomogeneous
diffusions.

m Bound of the number of r.v. for general functions ~.
m Exit problem from an interval for one-dimensional diffusions.
m Exit time from a domain in RY with d > 2.
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