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Introduction to the first-passage time

Modeling biological or physical stochastic systems often requires to handle
with one-dimensional diffusion processes.

Two types of information:
1 the marginal probability distribution function at a fixed time t.
2 the description of the whole paths.

The marginal pdf is insufficient in many applications:
financial derivatives with barriers
ruin probability of an insurance fund
optimal stopping problems
neuronal sciences
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Introduction

Introduction to the first-passage time

Some Integrate and Fire models define the spiking times as the first
hitting time of a threshold by the membrane potential. If the membrane
potential is given by a stochastic differential equation, the spiking times
are the first hitting times of the threshold by such a diffusion.

The leaky integrate-and-fire (LIF) neuron is probably one of the simplest
spiking neuron models, its input signal is given by I (t):

πm
dv(t)

dt
= −v(t) + R I (t)

v(t) represents the membrane potential at time t,
πm is the membrane time constant
R is the membrane resistance.

When the membrane potential v(t) reaches a threshold v th (spiking
threshold), it is instantaneously reset to a lower value v r (reset potential)
and the leaky integration process starts anew with the initial value v r .
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Introduction

First-passage time τL

Let (Xt , t ≥ 0) be a one-dimensional diffusion process satisfying

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x < L.

Aim: simulation of the FPT defined by τL := inf{t ≥ 0 : Xt = L}.

Different tools for simulation purposes: explicit expression of the pdf,
approximation of the stochastic process, rejection sampling...

Standard Brownian case (B0 = 0):

The optional stopping thm applied to Mt = exp{λBt − 1
2λ

2t} leads to
E[e−λτL ] = e−

√
2λL, λ ≥ 0.

Inversion of the Laplace transform:

P(τL ∈ dt) =
1√
2πt3

e−
L2
2t dt, t > 0.

Hence τL ∼ L2/G 2

where G ∼ N (0, 1).

Easy and exact simulation !
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Introduction

General one-dimensional diffusion processes:

We define the generator associated to the diffusion (Xt , t ≥ 0) by

Lf (x) =
σ2(x)

2
d2f

dx2 (x) + b(x)
df

dx
(x), for x ∈ R.

Then the Laplace transform of the FPT is the unique solution of the
following Sturm-Liouville boundary value problem on ]−∞, L[:

Lu(x) = λu(x),
u |x=L = 1
limx→−∞ u(x) = 0.

Let ψλ the unique increasing
positive solution of Lu = λu.

The following property holds:

Ex [e−λτL ] =
ψλ(x)

ψλ(L)

=
H−λ/θ(x

√
θ)

H−λ/θ(L
√
θ)
.

Ornstein-Uhlenbeck case (σ = 1, b(x) = −θx): Hermite functions

Hν(z) =
1

2Γ(−ν)

∑
m≥0

(−1)m

m!
Γ
(m − ν

2

)
(2z)m.
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Introduction

When the transition probability of (Xt) has an explicit expression...

Let us define{
f (t, x |s, y)dx := P(Xt ∈ dx |Xs = y), s ≤ t,

ϕ(t, x |s, y) = b(x)f (t, x |s, y)− 1
2
∂
∂x

[
σ2(x)f (t, x |s, y)

]
.

ϕ represents the probability current of the diffusion process.

Voltera-type integral equation (see Buonocore, Nobile, Ricciardi)

The pdf fL(t) of the FPT τL satisfies the Voltera-type equation:

fL(t) = 2ϕ(L, t|x , 0)− 2
∫ t

0
fL(s)ϕ(L, t|L, s)ds, with X0 = x .

Closed form results for the Brownian motion and for the O-U process.
In general: numerical approximation of the integral... (it works fine due to
the particular choice of the Voltera kernel – non singular !)
What about the simulation of τL ?
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Introduction

General method: time discretization

Instead of considering the approximation of the pdf, it is possible to deal
directly with an approximation of the diffusion process (Euler scheme).

X(n+1)∆ = Xn∆ + ∆b(Xn∆) +
√

∆σ(Xn∆)Gn, n ≥ 0,

where (Gn) stands for a sequence of independent Gaussian distributed r.v.

Let τ∆
L be the FPT of the discrete-time process.

Overestimation of the FPT: τL ≤
st
τ∆
L

Important to improve the algorithm:
1 a shift of the boundary (Broadie-Glasserman-Kou, Gobet-Menozzi)
2 computation of the probability for a Brownian bridge to hit the

boundary during a small time interval (Giraudo-Saccerdote-Zucca)
Advantage: rough description the paths. But: bounded time interval !
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Acceptance-rejection

Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let f and g two probability distribution functions, such
that h(x) := f (x)/g(x) is upper-bounded by a constant c > 0.
Aim: simulation of X with pdf f .

1 Generate a rv Y with pdf g .
2 Generate U uniformly distributed (independent from Y ).
3 If U ≤ h(Y )/c , then set X = Y ; otherwise go back to 1.

Important: h should be bounded and have an explicit expression !
Application to the first passage problem: the Girsanov transformation
permits to

link the distribution of the diffusion process (Xt , t ≥ 0) to the
Brownian one (Bt , t ≥ 0).
give an expression of the function h.

Girsanov’s transformation was already used for simulation purposes by
Beskos and Roberts (exact simulation on some fixed interval [0,T ]).
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Acceptance-rejection

From now on, σ = 1 (diffusion coefficient). We assume that the drift
term b ∈ C1(]−∞, L]) and introduce β(x) =

∫ x
0 b(y)dy and γ := b2+b′

2 .

Girsanov’s transformation

For any bounded measurable function ψ : R→ R, we obtain

EP[ψ(τL)1{τL<∞}] = EQ[ψ(τL)η(τL)] exp
{
β(L)− β(x)

}
,

where P (resp. Q) corresponds to X (resp. B) and

η(t) := E
[
exp−

∫ t

0
γ(L− Rs)ds

∣∣∣Rt = L− x
]
.

Here (Rt , t ≥ 0) stands for a 3-dimensional Bessel process with R0 = 0.

Proof : Girsanov + Itô’s formula + conditional distribution.

EP[ψ(τL)1{τL<∞}] = EQ

[
ψ(τL) exp

(∫ τL
0 b(Bs)dBs − 1

2

∫ τL
0 b2(Bs)ds

) ]
�
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Acceptance-rejection


EP[ψ(τL)1{τL<∞}] = EQ[ψ(τL)η(τL)] exp

{
β(L)− β(x)

}
,

η(t) := E
[
exp−

∫ t
0 γ(L− Rs)ds

∣∣∣Rt = L− x
]
.

Advantages:
Under Q, it is easy to generate τL.
An appropriate situation for a rejection method, if τL <∞ under P.

Difficulties:
the boundedness of η(t) for t ≥ 0. We suggest in a first phase to
assume: γ(x) ≥ 0 for all x ∈ R.
the non-explicit expression of η(t): we shall assume that γ(x) ≤ κ
for all x ∈ R and introduce a Poisson Point Process.

To sum up, the main assumption becomes:

0 ≤ γ(x) ≤ κ.
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Acceptance-rejection

Algorithm (A1) or (A2).
Step 1: Simulate a r.v. T = (L− x)2/G 2 with G ∼ N (0, 1).

Step 2: Simulate a 3-dimensional Bessel process (Rt) on the time
interval [0,T ] with endpoint RT = L− x and define

DR,T :=
{

(t, v) ∈ [0,T ]× R+ : v ≤ γ(L− Rt)
}
.

Step 3: Simulate a Poisson point process N on the state space
[0,T ]× R+, independent of the Bessel process, whose intensity
measure is the Lebesgue one.
Step 4: If N(DR,T ) = 0 then set Y = T otherwise go to Step 1.

Theorem (theoretical viewpoint)

The outcome Y and the FPT of the diffusion process τL are identically
distributed.
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Efficiency of the algorithm

Efficiency of the algorithm.

Remark: Be carefull with the simulation of the PPP: if you sample all
points, their averaged number is E[κT ] =∞: efficiency to be improved !

We define:

I the number of iterations (step 1)
N1, . . . ,NI the numbers of random points (Poisson
process) used for each iteration.
NΣ = I +N1 + . . .+NI the total number of r.v.

Proposition

The following upper-bound holds E[I] ≤ exp((L− x)
√
2κ).

Reduction of the number of iterations:
For (L− x), linearization by space splitting.
For κ: if 0 < γ0 ≤ γ(x) ≤ κ for all x ∈ R,

then replace γ(·)← γ(·)− γ0, κ← κ− γ0 & introduce the
simulation of IG

(
L−x√
2γ0
, (L− x)2

)
(Michael-Schucany-Haas).
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Efficiency of the algorithm

Proposition: number of r.v. during the first iteration.

Assumption: ∃Cγ > 0, ∃r < 1 such that

inf
y≤z≤L

γ(z) ≥ Cγ |y |−r , for all y ≤ −1.

Then ∃Mγ,1 > 0 and ∃Mγ,2 > 0 s.t. the number of random points satisfies

E[N1] ≤ Mγ,1 + κMγ,2(x2 + (L− x)(1+r)/2), for x < L.

Proof: Ec [N1] = HT + κIT
with HT := e−

∫ T
0 γ(L−Rw ) dw ≤ 1

IT :=
∫ T
0 e−

∫ u
0 γ(L−Rw ) dw du.

Bounds for the (3d)-Bessel bridge:

RsT ≤
st
L− x +

√
T Rs , s ∈ [0, 1].

(Rs)s≥0 is a standard Bessel bridge.

P(sup
[0,1]

Ru > Tα) ≤
√
eπ

4
√
2

πTα

sinh2(Tα)
.
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Efficiency of the algorithm

Using the agreement formula (see Chung or Pitman-Yor), we obtain

P
(

sup
u∈[0,1]

R̄u > Tα
)

= C3E
[√

τ̄1{τ̄<T−2α}

]
.

Here C3 =
√
2/Γ(3/2) and τ̄ = τ + τ̂ where τ is the first hitting time of

the level 1 for a 3-dimensional Bessel process and τ̂ an independent copy
of τ .

P
(

sup
u∈[0,1]

R̄u > Tα
)
≤ C3T

−α P
(
exp−λτ̄ > exp−λT−2α

)
≤ C3T

−α eλT
−2α

E[e−λτ̄ ] = C3T
−α eλT

−2α (2λ)1/2

C 2
3 I

2
1/2(
√
2λ)

,

for any λ > 0. Iν stands for the Bessel function of the first kind. In

particular I1/2(x) =
√

2
πx sinh x . The particular choice λ = T 2α/2 leads

to

P
(

sup
u∈[0,1]

R̄u > Tα
)
≤
√
eπ

2
√
2

πTα

2 sinh2(Tα)
. �
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Examples of generalization and numerics

Examples of generalization and numerics

Example 1. dXt = (2 + sin(Xt)) dt + dBt , X0 = 0. We have 0 ≤ γ ≤ 5.

Figure: Histogram of the hitting time distribution for 10 000 simulations
corresponding to the level L = 2 and starting position X0 = 0 (left), histogram
of the number of iterations in Algorithm (A1) in the log10-scale (right).

S.Herrmann (University of Burgundy) Dijon June ↪  17 / 26



Examples of generalization and numerics

Figure: Number of random variables used in Algorithm (A1) for 10 000
simulations with L = 2, X0 = 0 in the log10-scale (left) and mean number of
iterations versus the level height L for Algorithm (A1)shift respectively (A1)
(dashed line resp. solid line), both curves are in the log10-scale (10 000
simulations have been used for the average estimation).
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Examples of generalization and numerics

Figure: Histogram of the number of random variables in Algorithm (A1) using
space splitting for 10 000 with L = 2, X0 = 0, k = 20 (left), L = 20, k = 20
(right) both in the log10-scale.
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Examples of generalization and numerics

Figure: Averaged number of random variables used in Algorithm (A1) versus the
number of slices k with X0 = 0 and L = 5. The averaging uses 10 000
simulations.
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Examples of generalization and numerics

Example 2: Ornstein-Uhlenbeck process with b(x) = αx + β, α = −0.3,
β = 1 with starting position X0 = 0 and boundary L = 1 ensures that γ is
a positive function but b remains unbounded. We replace the original drift
term by its modified version:

bρ(x) =

{
−αx + β if − ρ ≤ x ≤ L,
αρ+ β − α(x + ρ)ex+ρ if x < −ρ.

The modified γ satisfies γρ(x) = γ(x) for x ∈ [−ρ, L] and

γρ(x) =
1
2

(αρ+ β − α(x + ρ)ex+ρ)2 − α

2
(1 + x + ρ)ex+ρ for x < −ρ.

The function γρ is now positive on the whole interval ]−∞, L] and
admits the following upper-bound:

κ =
1
2

(
αρ+ β +

α

e

)2
+

α

2e2 .

We can therefore apply Algorithm (A1) in order to simulate the
approximated first-passage time τρL .
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Examples of generalization and numerics

We define β(x) =
∫ x
0 b(y)dy and p(x) =

∫ x
0 e−β(y) dy

Proposition

We assume that limx→−∞ p(x) = −∞. Then τρL converges in distribution
towards τL as ρ→∞. Moreover

d(τL, τ
ρ
L ) := sup

{
|FτρL (t)−FτL(t)| : t ∈ R+

}
= O

(
−p(−ρ)

)
as ρ→∞.

Histogram of the hitting time
distribution for 10 000 simula-
tions, L = 1, X0 = 0 for
ρ = 5 using Algorithm (A1)
with modified drift.
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Examples of generalization and numerics

Example 3: dXt = − arctan(Xt) dt + dBt , t ≥ 0, X0 = 0, L = 1.

γ(x) = (arctan(x)2 − 1/(1 + x2))/2 satisfies −m = −1/2 ≤ γ(x) ≤ π2/8
and the first-passage time is almost surely finite.

Step 1: Simulate T : distr. of (L− x)2/G 2 given (L− x)2/G 2 ≤ t0.
Step 2: Simulate a 3-d Bessel process (Rt) on [0,T ] with RT = L− x .

Dm
R,T :=

{
(t, v) ∈ [0,T ]× R+ : v ≤ γ(L− Rt) +

mt0
T

}
.

Step 3: Simulate a PPP N on [0,T ]× R+, independent of R , with
Lebesgue intensity meas.
Step 4: If N(Dm

R,T ) = 0 then set Y = T otherwise go to Step 1.

Theorem for Algorithm (A3)

The outcome Y has the same distribution as τL given τL ≤ t0.
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Examples of generalization and numerics

Figure: Histogram of the hitting time distribution using Algorithm (A3) for
t0 = 1 and 100 000 simulations (left) and averaged number of iterations in
Algorithm (A3) versus t0 (right) for X0 = 0, L = 1 and 10 000 simulations.
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Examples of generalization and numerics

To sum up...

Condition on γ r.v. simulated Algorithm
0 ≤ γ(x) ≤ κ τL (A1) or (A2)

0 < γ0 ≤ γ(x) ≤ κ τL (A1)shift or (A2)shift
−m ≤ γ(x) ≤ κ τL given τL ≤ t0 (A3)

0 ≤ γ(x) τρL (approx.) (A1)ρ or (A2)ρ

Work in progress and open questions:
Exact simulation for unbounded γ, for time-inhomogeneous
diffusions.
Bound of the number of r.v. for general functions γ.
Exit problem from an interval for one-dimensional diffusions.
Exit time from a domain in Rd with d ≥ 2.
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