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Abstract. Consider the nonlinear scalar field equation

−∆u = f(u) in RN , u ∈ H1(RN ), (0.1)

where N ≥ 3 and f satisfies the general Berestycki-Lions conditions. We are interested in the existence of

positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very

recently Mederski [30] made a major advance in that direction through the development, in an abstract setting,

of a new critical point theory for constrained functionals. In this paper we propose an alternative, more

elementary approach, which permits to recover Mederski’s results on (0.1). The keys to our approach are an

extension to the symmetric mountain pass setting of the monotonicity trick, and a new decomposition result

for bounded Palais-Smale sequences.
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1 Introduction

We consider nonlinear scalar field equations

−∆u = f(u) in RN , u ∈ H1(RN ), (1.1)

where N ≥ 3 and f satisfies the assumptions stated below:

(f1) f : R→ R is continuous and odd.

(f2) −∞ < lim inft→0 f(t)/t ≤ lim supt→0 f(t)/t < 0.
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Nonlinear scalar field equations with general nonlinearity

(f3) limt→∞ f(t)/|t|
N+2
N−2 = 0.

(f4) There exists ζ > 0 such that F (ζ) > 0, where F (t) :=
∫ t

0 f(s)ds for t ∈ R.

In the fundamental papers [7, 8], Berestycki and Lions introduced the assumptions (f1) − (f4)

for the first time when dealing with (1.1). The main feature of these assumptions is that they are

almost necessary to get a nontrivial solution to (1.1), see however Remark 6.1 below. It turns out

that these assumptions are also sufficient. Indeed, with the aid of variational methods, by studying

certain constrained problems, Berestycki-Lions showed the existence of a ground state solution which

is positive and radially symmetric in [7], and obtained infinitely many radial solutions in [8].

After these two papers by Berestycki and Lions, still under the assumptions (f1) − (f4), several

advances in the understanding of the set of solutions to (1.1) (including but not limited to those listed

below) were made in subsequent works. From now and throughout the paper, Problem (1.1) will refer

to equation (1.1) considered under the assumptions (f1)− (f4).

An important observation on Problem (1.1) is pointed out in [22]. In that paper, the authors

showed that the associated energy functional

J(u) :=
1

2

∫
RN
|∇u|2dx−

∫
RN

F (u)dx

has a mountain pass geometry, that is,

cmp := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) > 0,

where Γ :=
{
γ ∈ C([0, 1], H1(RN )) | γ(0) = 0, J(γ(1)) < 0

}
. It was also proved that the ground state

solutions are actually mountain pass solutions, which are considered as structurally stable. This fact

turns out to be very useful in the studies of the corresponding singular perturbation problems and

non-autonomous cases, especially when one tries to relax the more restricted conditions assumed on

the nonlinearity to the almost optimal ones like (f2)− (f4), see, e.g., [9, 10, 12, 23].

We also would like to mention the work [11], in which it was shown that any ground state solution

of Problem (1.1) is radially symmetric (up to a translation), has a constant sign and is monotone with

respect to the radial variable.

In a more recent paper [16], Hirata, Ikoma and Tanaka revisited Problem (1.1) in H1
O(RN ) the

subspace of radially symmetric functions of H1(RN ), and showed further that the functional J has

a symmetric mountain pass geometry. By using the mountain pass and symmetric mountain pass

approaches developed in [1], they managed to find a positive radial ground state solution (namely, a

nontrivial radial solution minimizing J among all the nontrivial radial solutions) and infinitely many

radial solutions through the unconstrained functional J . This is in contrast to the situation in [7, 8]

where the solutions were constructed through certain constrained problems. The core of the proof

developed in [16] is the use of a suitable extended functional on the augmented space R ×H1
O(RN ).

This technique of adding one dimension of space was first introduced in [20] to deal with a nonlinear

eigenvalue problem, and we refer readers to [4, 5, 13, 14, 17, 29, 31] for its recent applications to

various problems.

The most recent advance on (1.1), assuming just (f1)− (f4), was made by Mederski in [30] where

the existence and multiplicity of nonradial solutions to (1.1), were established for the first time. More

precisely, Mederski found at least one nonradial solution for any N ≥ 4, and showed the existence of

infinitely many distinct nonradial solutions if in addition N 6= 5. These results give a partial positive

answer to a question which was posed by Berestycki and Lions (see [8, Section 10.8]) and had been open

for more than thirty years. The proofs in [30] are based on a new constrained approach, developed
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in an abstract setting, applied to treat (1.1), see [30] for more details. As another application of his

approach, Mederski gave a new proof of the existence of a ground state for Problem (1.1).

Let us now present the main results of this paper. As it will be clear these results are not new but

to derive them we propose a new approach which we believe has its own interest. Theorems 1.1 and

1.2 stated below which concern ground states and radial solutions respectively, are well known since

the papers [7, 8].

Theorem 1.1 Assume that (f1)− (f4) hold, then (1.1) has a positive ground state solution.

Remark 1.1 As one will see, Theorem 1.1 will be proved by a mountain pass argument in H1(RN ).

Even though it was already shown in [22] that the functional J has a mountain pass geometry and that

the mountain pass value cmp corresponds to the infimum of the nonzero critical levels of J , a direct

proof as we present here seemed to be missing.

Theorem 1.2 Assume that (f1)− (f4) hold, then (1.1) has infinitely many distinct radial solutions.

Remark 1.2 Reestablishing Theorem 1.2 here is not just for the sake of completeness, but aims to

show that the use of the Radial Lemma due to Strauss [34] (see also [7]) is not essential for obtaining

radial solutions. Actually, what one really needs is the fact that the embedding H1
O(RN ) ↪→ Lp(RN )

is compact for all 2 < p < 2N/(N − 2), see Corollary 3.4, Remark 3.2 and our proof developed for

Theorem 1.2.

To state our results on the existence and multiplicity results of nonradial solutions, some notations

are needed. Assume that N ≥ 4 and 2 ≤ M ≤ N/2. Let us fix τ ∈ O(N) such that τ(x1, x2, x3) =

(x2, x1, x3) for x1, x2 ∈ RM and x3 ∈ RN−2M , where x = (x1, x2, x3) ∈ RN = RM × RM × RN−2M .

We define

Xτ :=
{
u ∈ H1(RN ) | u(τx) = −u(x) for all x ∈ RN

}
. (1.2)

It is clear that Xτ does not contain nontrivial radial functions. Let H1
O1

(RN ) denote the subspace of

invariant functions with respect to O1, where O1 := O(M) × O(M) × id ⊂ O(N) acts isometrically

on H1(RN ). We also consider O2 := O(M) × O(M) × O(N − 2M) ⊂ O(N) acting isometrically

on H1(RN ) with the subspace of invariant functions denoted by H1
O2

(RN ). Here, we agree that the

components corresponding to N −2M do not exist when N = 2M . Obviously, H1
O2

(RN ) is a subspace

of H1
O1

(RN ), and H1
O2

(RN ) = H1
O1

(RN ) when N = 2M .

Now our results on nonradial solutions can be stated as follows.

Theorem 1.3 Assume that (f1) − (f4) hold, N ≥ 5 and N − 2M 6= 0. Then (1.1) has a nonradial

solution v ∈ H1
O1
∩Xτ that minimizes J among all the nontrivial solutions belonging to H1

O1
∩Xτ . In

particular, v changes signs and J(v) > 2cmp.

Theorem 1.4 Assume that (f1)− (f4) hold, N = 4 or N ≥ 6, and N − 2M 6= 1. Then (1.1) has a

nonradial solution v0 ∈ H1
O2
∩Xτ which minimizes J among all the nontrivial solutions belonging to

H1
O2
∩Xτ , and admits infinitely many distinct nonradial solutions {vk}∞k=1 ⊂ H1

O2
∩Xτ . In particular,

all these solutions change signs, J(v0) > 2cmp and J(vk)→ +∞ as k →∞.

The first paper dealing with the existence of nonradial solutions for equations of the type of (1.1)

is due to Bartsch and Willem [6]. They work in dimension N = 4 and N ≥ 6 under subcritical

growth conditions and an Ambrosetti-Rabinowitz type condition. Actually the idea of considering

subspaces of H1(RN ) as H1
O2

(RN ) originates from [6]. Note also the work [27] in which the problem
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is solved when N = 5 by introducing the O1 action on H1(RN ). Finally in [32] Musso, Pacard and

Wei, obtained nonradial solutions for any dimension N ≥ 2, see also [3]. However in all these works

stronger assumptions than (f1) − (f4) need to be imposed. For example a nondegeneracy condition

in [3, 32] which allows to apply a Lyapunov-Schmidt type reduction.

Let us now give some elements concerning the proofs of Theorems 1.1 - 1.4. First note that in

contrast to the approaches in [7, 8, 16, 30] we shall work directly with the unconstrained functional J ,

in particular we shall not rely on the technique of adding one dimension of space, and use the mountain

pass and symmetric mountain pass approaches. We know from [7, Theorem A.VI] that the energy

functional J is of class C1. When one wants to show that C1-functionals have critical points and when

no general abstract result is available, a convenient first step is to show the existence of Palais-Smale

sequences. This is usually done by using a quantitative deformation lemma (e.g., [36, Lemma 2.3])

or Ekeland’s variational principle [15], if the functionals have certain convenient geometric structures.

When considering the functional J in H1(RN ) or H1
O(RN ), we can conclude easily to the existence of

Palais-Smale sequences since it is already known, in these two cases, that J has both a mountain pass

geometry and a symmetric mountain pass geometry, see [16, 22] or Lemma 4.1 below. However when

trying to obtain nonradial solutions we have to consider J restricted to the subspaces H1
O1

(RN ) ∩Xτ

or H1
O2

(RN ) ∩Xτ which do not contain H1
O(RN ). Then, combined with the fact that we just assume

(f1) − (f4), the geometry of J is not so apparent. Fortunately, inspired by [8, Theorem 10], and at

the expense of some technicalities, we manage in Lemma 4.2 to justify the geometric properties which

will insure the existence of Palais-Smale sequences.

We having obtained Palais-Smale sequences, the next obstacle is to show that these sequences are

bounded. This step is particularly challenging under weak conditions as (f1)− (f4). To overcome this

obstacle we establish a new abstract result, Theorem 2.2, which is based on the monotonicity trick,

in the spirit of [21, Theorem 1.1]. We recall that [21, Theorem 1.1] has been used extensively to deal

with nonlinear variational partial differential equations where the existence of a bounded Palais-Smale

sequence (at the mountain pass level) is problematic. Our extension, Theorem 2.2, can be used to

derive multiple bounded Palais-Smale sequences (at the symmetric mountain pass levels). Let us point

out that Theorem 2.2 is not just an alternative to the technique of adding one dimension of space

[16, 20], which essentially works only for autonomous problems, but a tool which can be used to find

multiple bounded Palais-Smale sequences of unconstrained functionals also in non-autonomous cases.

Actually the derivation of Theorem 2.2 is, we believe, one of the interest of our paper.

Having dealt with the issue of the boundedness of Palais-Smale sequences, we must also study

their convergence. Indeed since (1.1) is set on RN and (f1) − (f4) are weak conditions, some efforts

are needed to show the convergence of bounded Palais-Smale sequences (with respect to the norm of

H1(RN )).

The troublesome case is when we consider J in H1(RN ) the embedding from which into Lp(RN )

is not compact for any 2 < p < 2N/(N − 2). To deal with this case, a usual way is to analyze the

lack of compactness of bounded Palais-Smale sequences through the derivation of a decomposition

result for the sequences. However, since the nonlinearity f we consider is not assumed to have a

subcritical growth of order |t|p−1 for large |t| with 2 < p < 2N/(N − 2) and limt→0 f(t)/t does not

exist, we cannot use one of the many decomposition results in the literature. Fortunately, motivated

by [19, Proposition 4.2] and [30, Proposition 4.4], we manage to establish a decomposition result only

under the conditions (f2) and (f3), see Theorem 3.1. With the aid of Theorem 3.1, we can recover

compactness at the mountain pass level cmp > 0 in the following sense: let {un} ⊂ H1(RN ) be any

bounded Palais-Smale sequence of J at the level cmp > 0, up to a subsequence, there exists a sequence

{yn} ⊂ RN such that the translated Palais-Smale sequence {un(· + yn)} is strongly convergent in

H1(RN ), see Lemma 5.2.
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In the same spirit, when we consider the functional J in X = H1
O1

(RN ) ∩Xτ with 2 ≤M < N/2,

a variant of Theorem 3.1 can be established and then, up to translations in {0} × {0} × RN−2M ,

the compactness can be regained at the mountain pass level for the restricted functional J |X , see

Corollary 3.5 and Lemma 5.5. In the easier case where J is considered in X = H1
O(RN ) with N ≥ 3 or

X = H1
O2

(RN )∩Xτ with N ≥ 4 and N −2M 6= 1, the compactness issue can be addressed completely

and satisfactorily. Indeed, since the embedding X ↪→ Lp(RN ) is compact for all 2 < p < 2N/(N − 2),

in view of the proof of Theorem 3.1, we can show that the restricted functional J |X satisfies the

bounded Palais-Smale condition, see Corollaries 3.4 and 3.6.

This paper is organized as follows.

In Section 2, we establish Theorem 2.2 the new abstract result which is built under the symmetric

mountain pass setting. In Section 3, merely under the conditions (f2) and (f3), we establish Theorem

3.1, our decomposition result and present several variants. In Section 4, still in preparation of the

proofs of our main results, we introduce a family of C1-functionals and work out several uniform

geometric properties of them. In Section 5, we complete the proofs of Theorems 1.1-1.4 by the

mountain pass and symmetric mountain pass approaches. In Section 6, we make some miscellaneous

but interesting remarks. For example, using Theorems 1.3 and 1.4 and a scaling argument from

[28], we show the existence and multiplicity of nonradial sign-changing solutions for an autonomous

Kirchhoff-type equation with Berestycki-Lions nonlinearity, these results being original. Finally, in

the Appendix, we prove Lemma 5.7 which says that the sequence of symmetric mountain pass values

goes to +∞. This property is used to show the multiplicity result of nonradial solutions claimed in

Theorem 1.4.

2 Monotonicity trick

Assume that (X, ‖ · ‖) is a real Banach space with dual space X−1, I ⊂ (0,∞) is a nonempty compact

interval. Let {Iλ}λ∈I be a family of C1-functionals on X being of the form

Iλ(u) = A(u)− λB(u) for every λ ∈ I,

where A,B are both functionals of class C1, A(0) = 0 = B(0), B is nonnegative on X, and either

A(u)→ +∞ or B(u)→ +∞ as ‖u‖ → ∞.

2.1 Mountain pass setting

We say that {Iλ}λ∈I has a uniform mountain pass geometry if, for every λ ∈ I, the set

Γλ := {γ ∈ C([0, 1], X) | γ(0) = 0, Iλ(γ(1)) < 0}

is nonempty and

cmp,λ := inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) > 0.

The following result is an alternative version of [21, Theorem 1.1] which is well suited to our needs.

Theorem 2.1 ([21, Theorem 1.1]) If {Iλ}λ∈I has a uniform mountain pass geometry, then

(i) for almost every λ ∈ I, Iλ admits a bounded Palais-Smale sequence {uλn} ⊂ X at the mountain

pass level cmp,λ, that is,

sup
n∈N
‖uλn‖ <∞, Iλ(uλn)→ cmp,λ and I ′λ(uλn)→ 0 in X−1;
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(ii) the mapping λ 7→ cmp,λ is left continuous.

Proof. Item (i) can be proved by modifying the proof of [21, Theorem 1.1] accordingly, since

Γλ′ ⊂ Γλ for all λ′ < λ.

For any given γ ∈ Γλ, there exists δ = δ(γ) > 0 such that (λ− δ, λ) ⊂ I and

γ ∈ Γλ′ for all λ′ ∈ (λ− δ, λ).

Thus, arguing as the proof of [21, Lemma 2.3], we obtain Item (ii). �

Remark 2.1 The idea to make uses of the monotonicity of the dependence of some minimax values

upon a real parameter is due to Struwe [35] who however use it only on specific problems. The first

abstract version of this trick is formulated in [21] in a mountain pass setting. See also [24], where the

condition that B is nonnegative on X is removed, at the expense of loosing the continuity from the

left of the mapping λ 7→ cmp,λ. Finally let us mention [2] in which the result of [21] is rebuilt under a

abstract minimax setting.

2.2 Symmetric mountain pass setting

When A,B are even, we can extend [21, Theorem 1.1]. For this purpose, we need to introduce a new

geometric condition. For every k ∈ N, let Dk := {x ∈ Rk | |x| ≤ 1} and Sk−1 := {x ∈ Rk | |x| = 1}.
A family of even functionals {Iλ}λ∈I is said to have a uniform symmetric mountain pass geometry

if, for every k ∈ N, there exists an odd continuous mapping γ0k : Sk−1 → X \ {0} such that

max
l∈Sk−1

Iλ(γ0k(l)) < 0 uniformly in λ ∈ I,

the class of mappings Γk :=
{
γ ∈ C(Dk, X) | γ is odd and γ = γ0k on Sk−1

}
is nonempty, and

ck,λ := inf
γ∈Γk

max
l∈Dk

Iλ(γ(l)) > 0.

We shall see that Iλ has a bounded Palais-Smale sequence at the level ck,λ, for every k ∈ N and

almost every λ ∈ I, if this geometric condition is satisfied. Indeed, this is guaranteed by Theorem 2.2

below which can be seen as a natural extension of Theorem 2.1.

Theorem 2.2 Assume in addition that A,B are even. If {Iλ}λ∈I has a uniform symmetric mountain

pass geometry, then

(i) for almost every λ ∈ I, Iλ admits a bounded Palais-Smale sequence {uλk,n} ⊂ X at each level

ck,λ (k ∈ N), that is,

sup
n∈N
‖uλk,n‖ <∞, Iλ(uλk,n)→ ck,λ and I ′λ(uλk,n)→ 0 in X−1;

(ii) for every k ∈ N, the mapping λ 7→ ck,λ is left continuous.

Remark 2.2 Theorem 2.2 will provide infinitely many bounded Palais-Smale sequences if the condi-

tion that ck,λ → +∞ as k →∞ for any fixed λ ∈ I is assumed further. In general, this extra condition

can be verified in specific applications. A result that is similar to Theorem 2.2 has been established in

[38] for even functionals but in the setting of fountain theorems. See also [18] for a related result.
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Proof of Theorem 2.2. Since Γk is independent of λ for every k ∈ N and Iλ is even for all λ ∈ I,

Theorem 2.2 can be proved by modifying the proofs of [21, Theorem 1.1 and Lemma 2.3] accordingly.

For every k ∈ N, since the mapping λ 7→ ck,λ is non-increasing, the derivative of ck,λ with respect

to λ, denoted by c′k,λ, exists almost everywhere. Let Ik ⊂ I be the set in which c′k,λ exists and define

J :=
⋂
k∈N Ik. Obviously, J is independent of k ∈ N and I \ J has zero measure. We first prove

Item (ii) in Claim 1 below. The proof of Item (i) will be completed by showing that, for any λ ∈ J ,

Iλ admits a bounded Palais-Smale sequence at each level ck,λ (k ∈ N), see Claim 3. For the proof of

Claim 3, a key preliminary result is established in Claim 2.

Claim 1. Item (ii) holds. Namely, for every k ∈ N, the mapping λ 7→ ck,λ is left continuous.

Proof of Claim 1. We assume by contradiction that, for some k0 ∈ N, there exist λ0 ∈ I and

{λn} ⊂ I such that λn < λ0 for all n ∈ N, λn → λ0 as n→∞, but

ck0,λ0 < lim
n→∞

ck0,λn .

Let δ := limn→∞ ck0,λn − ck0,λ0 > 0. By the definition of ck0,λ0 , we can find γ0 ∈ Γk0 such that

max
l∈Dk0

Iλ0(γ0(l)) ≤ ck0,λ0 +
1

3
δ.

Using the fact that Iλ(u) = Iλ0(u) + (λ0 − λ)B(u) for all λ ∈ I and u ∈ X, we have

max
l∈Dk0

Iλ(γ0(l)) ≤ ck0,λ0 +
1

3
δ + (λ0 − λ)max

l∈Dk0
B(γ0(l)) for all λ < λ0.

Since Dk0 is compact and B is continuous in u ∈ X, it follows that maxl∈Dk0 B(γ0(l)) ≤ C for some

C > 0. Thus, for any n ∈ N sufficiently large,

max
l∈Dk0

Iλn(γ0(l)) ≤ ck0,λ0 +
2

3
δ < ck0,λn .

We reach a contradiction, since the definition of ck0,λn gives us that

max
l∈Dk0

Iλn(γ0(l)) ≥ ck0,λn for all n ∈ N.

We now turn to the proof of Item (i). Since I \ J has zero measure, we only need to show that,

for any λ ∈ J , Iλ has a bounded Palais-Smale sequence at each level ck,λ (k ∈ N). For this purpose,

the following technical result is helpful. Assume that λ ∈ J fixed and {λn} ⊂ I is a strictly increasing

sequence such that λn → λ as n→∞.

Claim 2. For every k ∈ N, there exist a sequence of mappings {γk,n} ⊂ Γk and a positive constant

K = K(c′k,λ) > 0 such that the following statements hold:

(S1) ‖γk,n(l)‖ ≤ K if γk,n(l) satisfies

Iλ(γk,n(l)) ≥ ck,λ − (λ− λn). (2.1)

(S2) maxl∈Dk Iλ(γk,n(l)) ≤ ck,λ + (−c′k,λ + 2)(λ− λn).

Proof of Claim 2. For every k ∈ N, since Γk is independent of λ, we can find a sequence of

mappings {γk,n} ⊂ Γk such that

max
l∈Dk

Iλn(γk,n(l)) ≤ ck,λn + (λ− λn). (2.2)
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We will show that, for n ∈ N sufficiently large, {γk,n} satisfies (S1) and (S2). When γk,n(l) satisfies

(2.1), we have

Iλn(γk,n(l))− Iλ(γk,n(l))

λ− λn
≤
ck,λn + (λ− λn)− ck,λ + (λ− λn)

λ− λn
≤
ck,λn − ck,λ
λ− λn

+ 2.

Since c′k,λ exists, there is n(k, λ) ∈ N such that, for all n ≥ n(k, λ),

−c′k,λ − 1 ≤
ck,λn − ck,λ
λ− λn

≤ −c′k,λ + 1, (2.3)

and then
Iλn(γk,n(l))− Iλ(γk,n(l))

λ− λn
≤ −c′k,λ + 3.

Consequently, for all n ≥ n(k, λ),

B(γk,n(l)) =
Iλn(γk,n(l))− Iλ(γk,n(l))

λ− λn
≤ −c′k,λ + 3,

and then, by (2.2),

A(γk,n(l)) = Iλn(γk,n(l)) + λnB(γk,n(l)) ≤ ck,λn + (λ− λn) + λn(−c′k,λ + 3) ≤ C.

Since either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞, (S1) follows directly from the uniform

boundedness of A(γk,n(l)) and B(γk,n(l)). The proof of (S2) is also not difficult. Indeed, (2.3) gives

that

ck,λn ≤ ck,λ + (−c′k,λ + 1)(λ− λn) for all n ≥ n(k, λ). (2.4)

Using (2.2), (2.4) and the fact that Iλn(v) ≥ Iλ(v) for all v ∈ X, we get

max
l∈Dk

Iλ(γk,n(l)) ≤ max
l∈Dk

Iλn(γk,n(l)) ≤ ck,λn + (λ− λn) ≤ ck,λ + (−c′k,λ + 2)(λ− λn).

The proof of Claim 2 is complete.

Let λ ∈ J fixed. For every k ∈ N and any α > 0, we define

Nk,α := {u ∈ X | ‖u‖ ≤ K + 1 and |Iλ(u)− ck,λ| ≤ α} ,

where K > 0 is the positive constant given in Claim 2. By the definition of ck,λ and Claim 2, it follows

directly that Nk,α is nonempty. One should also note that Nk,α ⊂ Nk,β for any 0 < α < β.

Claim 3. For every k ∈ N and any given α > 0, we have

inf
{
‖I ′λ(u)‖X−1 | u ∈ Nk,α

}
= 0.

This indicates the existence of a bounded Palais-Smale sequence of Iλ at each level ck,λ (k ∈ N).

Proof of Claim 3. We assume by contradiction that, for some k ∈ N, there exists α > 0 such that

‖I ′λ(u)‖X−1 ≥ α for any u ∈ Nk,α.

Without loss of generality, we may assume further that

0 < α <
1

2
ck,λ.

Recall that Iλ is even. A classical deformation argument then says that there exist ε ∈ (0, α) and an

odd homeomorphism η : X → X, such that

(i) η(u) = u if |Iλ(u)− ck,λ| ≥ α, (2.5)
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(ii) Iλ(η(u)) ≤ Iλ(u) for any u ∈ X, (2.6)

(iii) Iλ(η(u)) ≤ ck,λ − ε for any u ∈ X that satisfies ‖u‖ ≤ K and Iλ(u) ≤ ck,λ + ε. (2.7)

Let {γk,n} ⊂ Γk be the sequence of mappings obtained in Claim 2. We can find sufficiently large but

fixed m ∈ N such that

(−c′k,λ + 2)(λ− λm) ≤ ε. (2.8)

We now estimate maxl∈Dk Iλ(η(γk,m(l))).

• If u = γk,m(l) satisfies Iλ(u) ≤ ck,λ − (λ− λm), we know from (2.6) that

Iλ(η(u)) ≤ ck,λ − (λ− λm). (2.9)

• If u = γk,m(l) satisfies Iλ(u) > ck,λ − (λ− λm), in view of Claim 2 and (2.8), we have that

‖u‖ ≤ K and Iλ(u) ≤ ck,λ + ε.

Then, by (2.7), it follows that

Iλ(η(u)) ≤ ck,λ − ε ≤ ck,λ − (λ− λm). (2.10)

Thus, combining (2.9) and (2.10), we get

max
l∈Dk

Iλ(η(γk,m(l))) ≤ ck,λ − (λ− λm) < ck,λ.

While, since the homeomorphism η is odd, by (2.5), it is easy to verify that η(γk,m) ∈ Γk. Then

max
l∈Dk

Iλ(η(γk,m(l))) ≥ ck,λ,

we reach a contradiction.

Conclusion. Obviously, Item (i) now follows directly from Claim 3 and the fact that I \ J has

zero measure. Since Item (ii) is already proved in Claim 1, the proof of Theorem 2.2 is complete. �

3 Decomposition of bounded Palais-Smale sequences

In this section, motivated by [19, Proposition 4.2] and [30, Proposition 4.4], we establish a decompo-

sition result of bounded Palais-Smale sequences for a subcritical autonomous C1-functional. Several

variants are also derived in certain special cases. These results are necessary for us to recover a

sufficient compactness when we try to prove the main theorems of this paper.

For future reference let us introduce

Definition 3.1 (Bounded Palais-Smale condition) Let X be a real Banach space. We say that

a C1-functional I : X → R satisfies the bounded Palais-Smale condition if any bounded Palais-Smale

sequence for I converges, up to a subsequence.

9
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3.1 Main decomposition result

We work on H1(RN ) with the standard norm

‖ · ‖H1(RN ) :=

(∫
RN
|∇ · |2 + | · |2dx

)1/2

,

and consider a C1-functional I : H1(RN )→ R of the following form

I(u) :=
1

2

∫
RN
|∇u|2dx−

∫
RN

G(u)dx.

Here N ≥ 3, G(t) :=
∫ t

0 g(s)ds for all t ∈ R and g is a continuous (but not necessarily odd) function

satisfying (f2) and (f3). Our main decomposition result is stated as follows.

Theorem 3.1 (Main decomposition result) Under the above assumptions let {un} ⊂ H1(RN ) be

a bounded Palais-Smale sequence for the functional I at any level β ∈ R. Then up to a subsequence

of {un} there exists an integer l ∈ N and, for each 1 ≤ k ≤ l, there is a sequence
{
ykn
}
⊂ RN and an

element wk ∈ H1(RN ) such that the following statements hold:

(i) y1
n = 0 for all n ∈ N, and |yin − y

j
n| → ∞ as n→∞ for 1 ≤ i < j ≤ l.

(ii) un(·+ ykn) ⇀ wk in H1(RN ) with I ′(wk) = 0 for all 1 ≤ k ≤ l, and wk 6= 0 if 2 ≤ k ≤ l.

(iii) β = limn→∞ I(un) =
∑l

k=1 I(wk).

(iv) Let vln := un −
∑l

k=1w
k(· − ykn) for every n ∈ N. Then ‖vln‖H1(RN ) → 0 as n→∞.

Remark 3.1 (i) The main feature of Theorem 3.1 is that it is established under the very weak

conditions (f2) and (f3). In particular, we do not require the existence of a limit for g(t)/t

as t → 0. To the best of our knowledge, the first decomposition result with such a feature is

due to Ikoma, but it is for a non-autonomous functional involving a fractional operator, see [19,

Proposition 4.2].

(ii) We highlight that similar decomposition results are expected to hold for non-autonomous (or

autonomous) C1-functionals without (or with) nonlocal terms, e.g., the functionals considered

in [23, Theorem 5.1], [26, Lemma 3.4] and [37, Lemma 3.6] but under weak conditions like (f2)

and (f3). Of course, the conclusions may be modified according to the specific problem under

study; see, e.g., [26, Lemma 3.4].

To prove Theorem 3.1, we need a Brezis-Lieb type result and a variant of [25, Lemma I.1] stated

as follows. The Brezis-Lieb type result can be obtained by using Vitali convergence theorem as the

proof of [30, Eq. (3.11)], and the variant of Lions lemma is only a slightly modified version of [30,

Lemma 3.1].

Lemma 3.2 (Brezis-Lieb type result) Assume that a function Ψ : R → R of class C1 satisfies

Ψ(0) = 0 and ∣∣Ψ′(t)∣∣ ≤ C (|t|+ |t|N+2
N−2

)
for all t ∈ R, (3.1)

and let {un} ⊂ H1(RN ) be a bounded sequence that converges almost everywhere to u ∈ H1(RN ) and

such that limn→∞Ψ(un) exists. Then

lim
n→∞

∫
RN

Ψ(un)dx =

∫
RN

Ψ(u)dx+ lim
n→∞

∫
RN

Ψ(un − u)dx.

10
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Lemma 3.3 (Variant of Lions lemma) Assume that a sequence {un} ⊂ H1(RN ) is bounded and

lim
n→∞

sup
y∈RN

∫
B(y,r)

|un|2dx = 0 for some r > 0. (3.2)

Then ∣∣∣∣∫
RN

Ψ(un)dx

∣∣∣∣ ≤ ∫
RN
|Ψ(un)| dx→ 0 as n→∞,

for any continuous function Ψ : R→ R satisfying

lim
t→0

Ψ(t)

t2
= lim

t→∞

Ψ(t)

|t|
2N
N−2

= 0.

Proof of Theorem 3.1. For the benefit of the reader, we shall divide the proof into three steps.

Step 1. Let y1
n = 0 for all n ∈ N. By the H1(RN )-boundedness of {un}, we have that up to a

subsequence un(· + y1
n) ⇀ w1 in H1(RN ) for some w1 ∈ H1(RN ), u(· + y1

n) → w1 in Lploc(R
N ) for all

p ∈ [1, 2∗), and un(· + y1
n) → w1 almost everywhere in RN . Since g satisfies (f2) and (f3), with the

aid of [34, Compactness Lemma 2] (or [7, Lemma A.I]), one can conclude that

lim
n→∞

∫
RN

∣∣ [g(un)− g(w1)
]
φ
∣∣dx ≤ ‖φ‖L∞(RN ) lim

n→∞

∫
supp(φ)

∣∣g(un)− g(w1)
∣∣dx = 0

for any φ ∈ C∞0 (RN ). Noting that I ′(un) → 0, we obtain I ′(w1)φ = limn→∞ I
′(un)φ = 0. Thus

I ′(w1) = 0. Without loss of generality, we may also assume that limn→∞
∫
RN G(un)dx exists. Set

v1
n := un − w1(· − y1

n) = un − w1 for every n ∈ N. By (f2) and (f3), we see that G satisfies (3.1). In

view of Lemma 3.2, we have

lim
n→∞

∫
RN

G(un)dx =

∫
RN

G(w1)dx+ lim
n→∞

∫
RN

G(v1
n)dx.

Clearly, this implies that

β = lim
n→∞

I(un) = I(w1) + lim
n→∞

I(v1
n).

Step 2. Assume that m ≥ 1 and, for each 1 ≤ k ≤ m, there is a sequence
{
ykn
}
⊂ RN and an

elements wk ∈ H1(RN ) such that the following statements hold:

(S1) y1
n = 0 for all n ∈ N, and |yin − y

j
n| → ∞ as n→∞ for 1 ≤ i < j ≤ m.

(S2) un(·+ ykn) ⇀ wk in H1(RN ) with I ′(wk) = 0 for all 1 ≤ k ≤ m, and wk 6= 0 if 2 ≤ k ≤ m.

(S3) Let vmn := un −
∑m

k=1w
k(· − ykn) for all n ∈ N. We have that {vmn } is bounded in H1(RN ),

lim
n→∞

∫
RN

G(vmn )dx exists (3.3)

and

β =
m∑
k=1

I(wk) + lim
n→∞

I(vmn ). (3.4)

Letting

σm := lim sup
n→∞

(
sup
y∈RN

∫
B(y,1)

|vmn |2dx
)
,

we distinguish the two cases: non-vanishing and vanishing.

11
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• Non-vanishing: that is σm > 0. Then, up to a subsequence of {un}, (S1)− (S3) hold for m+ 1.

Actually, up to a subsequence, there exists a sequence {ym+1
n } ⊂ RN such that

lim
n→∞

∫
B(ym+1

n ,1)
|vmn |2dx > 0.

Then |ym+1
n − ykn| → ∞ for every 1 ≤ k ≤ m (since vmn (· + ykn) → 0 in L2

loc(RN )) and, up to a

subsequence, vmn (·+ ym+1
n ) ⇀ wm+1 in H1(RN ) for some wm+1 ∈ H1(RN ) \ {0}. Clearly,

un(·+ ym+1
n ) = vmn (·+ ym+1

n ) +
m∑
k=1

wk(· − ykn + ym+1
n ) ⇀ wm+1 in H1(RN ).

As in Step 1 we obtain that I ′(wm+1) = 0, since {un(·+ ym+1
n )} is a bounded Palais-Smale sequence

of I. Let vm+1
n := vmn − wm+1(· − ym+1

n ) for every n ∈ N. We know from (3.3) and Lemma 3.2 that

lim
n→∞

∫
RN

G(vmn (·+ ym+1
n ))dx =

∫
RN

G(wm+1)dx+ lim
n→∞

∫
RN

G(vm+1
n (·+ ym+1

n ))dx.

Then, by (3.4),

β =
m∑
k=1

I(wk) + lim
n→∞

I(vmn ) =

m∑
k=1

I(wk) + lim
n→∞

I(vmn (·+ ym+1
n ))

=

m∑
k=1

I(wk) +
[
I(wm+1) + lim

n→∞
I(vm+1

n (·+ ym+1
n ))

]
=

m+1∑
k=1

I(wk) + lim
n→∞

I(vm+1
n ).

Thus, up to a subsequence of {un}, (S1)− (S3) hold for m+ 1.

• Vanishing: that is σm = 0. Then Theorem 3.1 holds with l = m. Actually, since we have (S1),

(S2) and (3.4), we only need to show that ‖vmn ‖H1(RN ) → 0 as n → ∞. For this purpose, we use an

argument from [19]. Let

ν := −1

2
lim sup
t→0

g(t)

t
∈ (0,∞),

and define ϕ(t) := g(t) + νt for all t ∈ R. Obviously, ϕ is a continuous function satisfying (f2) and

(f3). Since I ′(un)→ 0, I ′(wk) = 0 for all 1 ≤ k ≤ m, and {vmn } is bounded in H1(RN ), we have

min{1, ν}‖vmn ‖2H1(RN ) ≤
∫
RN
|∇vmn |2 + ν|vmn |2dx

= I ′(un)vmn +

∫
RN

ϕ(un)vmn dx−
m∑
k=1

[
I ′(wk(· − ykn))vmn +

∫
RN

ϕ(wk(x− ykn))vmn dx

]

= on(1) +

∫
RN

[
ϕ(un)−

m∑
k=1

ϕ(wk(x− ykn))

]
vmn dx =: on(1) + Λn.

We shall show that lim supn→∞ Λn ≤ 0.

For any n ≥ 1 and M > 0, set Ωn,M := {x | |vmn (x)| ≥M}. By Hölder’s inequality, we have∫
Ωn,M

∣∣∣∣∣ϕ(un)−
m∑
k=1

ϕ(wk(x− ykn))

∣∣∣∣∣ |vmn |dx
≤

(
‖ϕ(un)‖Lp∗ (Ωn,M ) +

m∑
k=1

‖ϕ(wk(· − ykn))‖Lp∗ (Ωn,M )

)
‖vmn ‖L2∗ (RN ), (3.5)

12
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where p∗ := 2N/(N + 2) < 2. Since {vmn } is bounded in L2∗(RN ), one can obtain that

C1 ≥ ‖vmn ‖2
∗

L2∗ (RN )
≥ ‖vmn ‖2

∗

L2∗ (Ωn,M )
≥M2∗ ·meas(Ωn,M ),

where C1 > 0 is independent of n and M . In particular,

sup
n≥1

meas(Ωn,M )→ 0 as M →∞. (3.6)

Also, for any v ∈ H1(RN ), one has

‖v‖p
∗

Lp∗ (Ωn,M )
≤

(∫
Ωn,M

1dx

)1−p∗/2

·

(∫
Ωn,M

|v|p
∗· 2
p∗ dx

)p∗/2
=
[
meas(Ωn,M )

]1−p∗/2 · ‖v‖p∗
L2(RN )

.

Since ϕ satisfies (f2) and (f3), for any ε > 0, we can find Cε > 0 such that

|ϕ(t)|p∗ ≤ Cε|t|p
∗

+ ε|t|2∗ for all t ∈ R.

Thus it follows from Holder’s inequality and the boundedness of {un} that

sup
n≥1

(
‖ϕ(un)‖p

∗

Lp∗ (Ωn,M )
+

m∑
k=1

‖ϕ(wk(· − ykn))‖p
∗

Lp∗ (Ωn,M )

)

≤ sup
n≥1

∫
Ωn,M

[
Cε|un|p

∗
+ ε|un|2

∗
+

m∑
k=1

(
Cε|wk(x− ykn)|p∗ + ε|wk(x− ykn)|2∗

)]
dx

≤ C2

{
Cε · sup

n≥1

[
meas(Ωn,M )

]1−p∗/2
+ ε

}
,

where C2 > 0 is independent of ε, n and M . Clearly, by (3.5) and (3.6), we get

lim sup
M→∞

sup
n≥1

∫
Ωn,M

∣∣∣∣∣ϕ(un)−
m∑
k=1

ϕ(wk(x− ykn))

∣∣∣∣∣ |vmn |dx ≤ C1/2∗

1 C2ε.

Since ε > 0 is arbitrary, we deduce that

lim sup
M→∞

sup
n≥1

∫
Ωn,M

∣∣∣∣∣ϕ(un)−
m∑
k=1

ϕ(wk(x− ykn))

∣∣∣∣∣ |vmn |dx = 0. (3.7)

On the other hand, denote by χn,M the characteristic function of the set {x | |vmn (x)| ≤ M}.
Clearly, for each 1 ≤ j ≤ m and any R > 0, one has∫

BR(yjn)
χn,M

∣∣∣∣∣ϕ(un)−
m∑
k=1

ϕ(wk(x− ykn))

∣∣∣∣∣ |vmn |dx
=

∫
BR(0)

χn,M (x+ yjn)

∣∣∣∣∣∣ϕ(un(x+ yjn))− ϕ(wj)−
∑
k 6=j

ϕ(wk(x+ yjn − ykn))

∣∣∣∣∣∣ |vmn (x+ yjn)|dx

≤M
∫
BR(0)

∣∣ϕ(un(x+ yjn))− ϕ(wj)
∣∣+
∑
k 6=j

∣∣∣ϕ(wk(x+ yjn − ykn))
∣∣∣
 dx.

Since un(· + yjn) → wj in Lploc(R
N ) for all p ∈ [1, 2∗), |yjn − ykn| → ∞ for each k 6= j, and ϕ satisfies

(f2) and (f3), we conclude from [34, Compactness Lemma 2] (or [7, Lemma A.I]) that

lim
n→∞

∫
BR(yjn)

χn,M

∣∣∣∣∣ϕ(un)−
m∑
k=1

ϕ(wk(x− ykn))

∣∣∣∣∣ |vmn |dx = 0 for each j and all R > 0. (3.8)

13
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Set VR := RN \ ∪mj=1BR(yjn). By (f2) and (f3), there exists C3 > 0 such that

|ϕ(t)| ≤ C3

(
|t|+ |t|2∗−1

)
for all t ∈ R.

Thus, for each 1 ≤ k ≤ m, we have∫
VR

χn,M |ϕ(wk(x− ykn))vmn |dx ≤ C3

∫
VR

(
|wk(x− ykn)|+ |wk(x− ykn)|2∗−1

)
|vmn |dx

≤ C3

(
‖wk(· − ykn)‖L2(VR)‖vmn ‖L2(VR) + ‖wk(· − ykn)‖2∗−1

L2∗ (VR)
‖vmn ‖L2∗ (VR)

)
≤ C3

(
‖wk‖L2(BcR(0))‖vmn ‖L2(RN ) + ‖wk‖2∗−1

L2∗ (BcR(0))
‖vmn ‖L2∗ (RN )

)
= oR(1), (3.9)

where oR(1)→ 0+ uniformly in n and M as R→∞. Similarly, one can obtain that∫
VR

χn,M |ϕ(un)|

(
m∑
k=1

|wk(x− ykn)|

)
dx = oR(1). (3.10)

The remaining task is to estimate the term
∫
VR
ϕ(un)χn,Mundx. Since ϕ satisfies (f2), one can find

τ > 0 such that ϕ(t)t ≤ 0 for all |t| ≤ τ . For p ∈ (2, 2∗) fixed and any ε > 0, by (f3), there exists

Cp,ε > 0 such that |ϕ(t)t| ≤ ε|t|2∗ + Cp,ε|t|p for all |t| ≥ τ . Clearly,∫
VR

ϕ(un)χn,Mundx =

∫
VR

ϕ(χn,Mun)χn,Mundx

≤
∫
VR∩{x| |un(x)|≥τ}

ϕ(χn,Mun)χn,Mundx

≤ ε‖un‖2
∗

L2∗ (RN )
+ Cp,ε‖un‖pLp(VR).

Since σm = 0, we know from Lemma 3.3 that limn→∞ ‖vmn ‖Lp(RN ) = 0, and thus

lim sup
n→∞

‖un‖Lp(VR) ≤ lim sup
n→∞

(
‖vmn ‖Lp(VR) +

m∑
k=1

‖wk(· − ykn)‖Lp(VR)

)
= oR(1).

This implies that lim supn→∞
∫
VR
ϕ(un)χn,Mundx ≤ εC4 +Cp,εoR(1), where C4 > 0 is independent of

ε, n and R. Letting R→∞, we obtain

lim sup
R→∞

(
lim sup
n→∞

∫
VR

ϕ(un)χn,Mundx

)
≤ εC4. (3.11)

We can now conclude the proof. Recall that vmn = un −
∑m

k=1w
k(· − ykn). By (3.9), (3.10) and

(3.11), we have

lim sup
R→∞

[
lim sup
n→∞

∫
VR

(
ϕ(un)−

m∑
k=1

ϕ(wk(x− ykn))

)
χn,Mv

m
n dx

]
≤ εC4.

Since ε > 0 is arbitrary, in view also of (3.8), we know that

lim sup
n→∞

∫
RN

(
ϕ(un)−

m∑
k=1

ϕ(wk(x− ykn))

)
χn,Mv

m
n dx ≤ 0. (3.12)

Combining (3.12) with (3.7), we conclude that lim supn→∞ Λn ≤ 0. Thus limn→∞ ‖vmn ‖H1(RN ) = 0.

The proof of the vanishing case is complete.
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Step 3. We proceed by iteration as in Step 2. Since there is a uniformly positive constant ρ > 0

such that ‖w‖H1(RN ) ≥ ρ for any nontrivial critical point w of I (see, e.g., [22, Remark 1.3]), we have

lim
n→∞

‖vmn ‖2H1(RN ) = lim
n→∞

‖un‖2H1(RN ) −
m∑
k=1

‖wk‖2H1(RN ) ≤ lim
n→∞

‖un‖2H1(RN ) − (m− 1)ρ2

if σm > 0. Thus the vanishing case must occur for some m0 ∈ N and Theorem 3.1 holds with l = m0.

The proof of Theorem 3.1 is complete. �

3.2 Some variants of Theorem 3.1

The first special case of Theorem 3.1 occurs when we consider I on H1
O(RN ), the subspace of radially

symmetric functions of H1(RN ). In this case, we have the following compactness result.

Corollary 3.4 Each bounded Palais-Smale sequence {un} of the restricted functional I|H1
O(RN ) has a

strongly convergent subsequence in H1
O(RN ).

Proof. The proof is nothing but a direct consequence of the proof of Theorem 3.1. Indeed, an

inspection of the proof of the vanishing case in Step 2 tells us that we only need to show that

‖v1
n‖Lp(RN ) → 0 for some p ∈ (2, 2∗). This is clearly satisfied, since the embedding H1

O(RN ) ↪→ Lp(RN )

is compact and v1
n ⇀ 0 in H1

O(RN ). �

Now we require additionally that the function g is odd. Then, the functional I is well-defined on

the subspaces of Xτ ; see (1.2) for the definition of Xτ . Under this additional assumption two variants

of Theorem 3.1 which will be used to find nonradial solutions are now presented.

Assume that 2 ≤ M < N/2. For a bounded sequence {un} ⊂ H1
O1

(RN ), we know from [30,

Corollary 3.2] that the conclusion of Lemma 3.3 still holds when the condition (3.2) is replaced by the

following one

lim
r→∞

(
lim
n→∞

sup
z∈RN−2M

∫
B((0,0,z),r)

|un|2dx
)

= 0.

Thus, redefining σm (introduced in the proof of Theorem 3.1 for m ∈ N) as follows

σm := lim
r→∞

(
lim
n→∞

sup
z∈RN−2M

∫
B((0,0,z),r)

|vmn |2dx
)

and modifying the proof of Theorem 3.1 accordingly, we obtain the following variant of Theorem 3.1.

Corollary 3.5 Assume that 2 ≤ M < N/2. Let {un} ⊂ X1 := H1
O1

(RN ) ∩Xτ be a bounded Palais-

Smale sequence of the restricted functional I|X1 at any level β ∈ R. Then up to a subsequence of {un}
there exists an integer l ∈ N and, for each 1 ≤ k ≤ l, there is a sequence

{
ykn
}
⊂ {0} × {0} × RN−2M

and an element wk ∈ X1 such that the following statements hold:

(i) y1
n = 0 for all n ∈ N, and |yin − y

j
n| → ∞ as n→∞ for 1 ≤ i < j ≤ l.

(ii) un(·+ ykn) ⇀ wk in X1 with (I|X1)′(wk) = 0 for all 1 ≤ k ≤ l, and wk 6= 0 if 2 ≤ k ≤ l.

(iii) β = limn→∞ I(un) =
∑l

k=1 I(wk).

(iv) Let vln := un −
∑l

k=1w
k(· − ykn) for every n ∈ N. Then ‖vln‖H1(RN ) → 0 as n→∞.

When N ≥ 4 and N − 2M 6= 1, we can say more if we choose X2 := H1
O2

(RN ) ∩ Xτ as the

working space and restrict the functional I to X2. Indeed, in this case, the embedding X2 ↪→ Lp(RN )

is compact for all 2 < p < 2N/(N − 2), see, e.g., [36, Corollary 1.25]; then, by repeating the proof of

Corollary 3.4, we can show that
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Corollary 3.6 Assume that N ≥ 4 and N − 2M 6= 1. Then each bounded Palais-Smale sequence of

the restricted functional I|X2 has a strongly convergent subsequence in X2. Namely I|X2 satisfies the

bounded Palais-Smale condition.

Remark 3.2 Note that, in Corollaries 3.4 and 3.6, the strong convergence is directly obtained using

the fact that the working space is compactly embedded into Lp(RN ) for all 2 < p < 2N/(N − 2). It

does not involve the Radial Lemma due to Strauss [34] (see also [7]).

4 Approximate functionals

In this section, we introduce a family of approximate functionals and work out several uniform geo-

metric properties of them. As one will see, with suitable choices of the working spaces, the introduced

family of C1-functionals satisfies the assumptions of Theorems 2.1 and 2.2. This makes possible to

find bounded Palais-Smale sequences of J .

Let

µ := −1

2
lim sup
t→0

f(t)

t
∈ (0,∞). (4.1)

We define continuous functions fi, Fi (i = 1, 2) on R as follows:

f1(t) :=

{
max{f(t) + 2µt, 0} for t ≥ 0,

min{f(t) + 2µt, 0} for t < 0,

f2(t) := f1(t)− f(t) for t ∈ R,

and

Fi(t) :=

∫ t

0
fi(s)ds for t ∈ R, i = 1, 2.

Condition (f4) says that F1(ζ) − F2(ζ) > 0 for some ζ > 0. Thus, there exists λ0 ∈ (0, 1) such that

λ0F1(ζ)− F2(ζ) > 0. For t ∈ R and λ ∈ [λ0, 1], let

fλ(t) := λf1(t)− f2(t) and F λ(t) :=

∫ t

0
fλ(s)ds.

We now introduce a family of even functionals of class C1 as follows

Jλ(u) :=
1

2

∫
RN
|∇u|2dx−

∫
RN

F λ(u)dx,

where u ∈ H1(RN ) and λ ∈ [λ0, 1]. Since F1 is nonnegative, F2(t) ≥ µt2 for all t ∈ R, and

Jλ(u) =

∫
RN

1

2
|∇u|2 + F2(u)dx− λ

∫
RN

F1(u)dx =: A(u)− λB(u),

we see that Jλ is of the form assumed at the very beginning of Section 2, and

J(u) = J1(u) ≤ Jλ(u) ≤ Jλ0(u) for any u ∈ H1(RN ) and λ ∈ [λ0, 1]. (4.2)

Next we present some uniform geometric properties of the functionals Jλ. Since f and fλ0 satisfy

(f1)− (f4), by Lemma 2.4 in [16] and (4.2) above, we have the following lemma.

Lemma 4.1 Assume that N ≥ 3. Then the functional Jλ satisfies the properties stated below.
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(i) There exist r0 > 0 and ρ0 > 0 (independent of λ ∈ [λ0, 1]) such that

Jλ(u) ≥ J(u) > 0 for all 0 < ‖u‖H1(RN ) ≤ r0,

Jλ(u) ≥ J(u) ≥ ρ0 for all ‖u‖H1(RN ) = r0.

(ii) For every k ∈ N, there exists an odd continuous mapping γ0k : Sk−1 → H1
O(RN ) independent of

λ ∈ [λ0, 1] such that

J(γ0k(l)) ≤ Jλ(γ0k(l)) ≤ Jλ0(γ0k(l)) < 0 for all l ∈ Sk−1.

When N ≥ 4, we have Lemma 4.2 stated below. This result can be seen as a “nonradial” version of

Item (ii) of Lemma 4.1 and is essential when we try to get nonradial solutions of Problem (1.1). Indeed

it will be used to, for example, define the family of mappings Γk in (5.3), one of the key ingredients

for the verification of the uniform symmetric mountain pass geometry.

Lemma 4.2 Assume further that N ≥ 4. Then, for every k ∈ N, there exists an odd continuous

mapping γ̃0k : Sk−1 → H1
O2

(RN ) ∩Xτ independent of λ ∈ [λ0, 1] such that

J(γ̃0k(l)) ≤ Jλ(γ̃0k(l)) ≤ Jλ0(γ̃0k(l)) < 0 for all l ∈ Sk−1.

The proof of Lemma 4.2 is inspired by [8]. For every k ∈ N and any R > 2k, we say that u ∈ Nk,R

if and only if u ∈ H1(R) is even, continuous, and satisfies the following properties:

(i) −1 ≤ u ≤ 1 on [0, R) and u = 0 on [R,∞).

(ii) u = ±1 on [0, R] except in p subintervals I1, I2, · · · , Ip of [0, R] with p ≤ k.

(iii) For every 1 ≤ j ≤ p, Ij has length at most one in which u is affine with |u′(r)| = 2.

Arguing as the Steps (b) and (c) in [8, Proof of Theorem 10], we obtain an odd continuous mapping

Uk[R; ·] : Sk−1 → Nk,R, l 7→ Uk[R; l](r).

Let χ be an even cut-off function of class C∞0 set on R such that χ(s) = 1 if |s| ≤ 1, χ(s) = 0 if |s| ≥ 2,

and 0 ≤ χ(s) ≤ 1 if 1 ≤ |s| ≤ 2. We then define

χ(R; r) :=


1, for r ∈ [0, R2 +R],

χ(r −R2 −R+ 1), for r ∈ [R2 +R,R2 +R+ 1],

0, for r ∈ [R2 +R+ 1,∞).

Now, an odd continuous mapping πk[R; ·] : Sk−1 → H1
O2

(RN ) ∩Xτ can be introduced as follows

πk[R; l](x) := ζ · ψk[R; l](|x1|, |x2|) · |Uk[R; l](|x3|)| . (4.3)

Here ζ > 0 is given by (f4), x = (x1, x2, x3) ∈ RM × RM × RN−2M ,

ψk[R; l](r1, r2) := {Uk[R; l](r1)− Uk[R; l](r2)}χ(R; r1)χ(R; r2),

and we still agree that the components corresponding to N − 2M do not exist when N = 2M .

Lemma 4.3 below provides an estimate on the mapping πk[R; ·] and plays an essential role in the

proof of Lemma 4.2.
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Lemma 4.3 For every k ∈ N, there exists R(k) > 2k independent of l ∈ Sk−1 such that∫
RN

F λ0(πk[R; l](x))dx ≥ 1 for all R ≥ R(k) and l ∈ Sk−1. (4.4)

Proof. First, we claim that there exist R0(k) > 2k and CM > 0 (independent of R and u, v) such

that, for all R ≥ R0(k) and all u, v ∈ Nk,R,∫ R

0

∫ R2+R+1

r1

F λ0 (ζ · [u(r1)− v(r2)]χ(R; r1)χ(R; r2)) rM−1
2 rM−1

1 dr2dr1 ≥ CMF λ0(ζ)R3M . (4.5)

Indeed, since u, v ∈ Nk,R, we have∫ R

0

∫ R2+R+1

r1

F λ0 (ζ · [u(r1)− v(r2)]χ(R; r1)χ(R; r2)) rM−1
2 rM−1

1 dr2dr1

=

∫ R

0

∫ R2+R

R
F λ0 (ζ · u(r1)) rM−1

2 rM−1
1 dr2dr1

+

∫ R

0

(∫ R

r1

+

∫ R2+R+1

R2+R

)
F λ0 (ζ · [u(r1)− v(r2)]χ(R; r2)) rM−1

2 rM−1
1 dr2dr1

≥
∫ R−k

0

∫ R2+R

R
F λ0 (ζ) rM−1

2 rM−1
1 dr2dr1 − k ·max

|t|≤ζ
|F λ0(t)|

∫ R

R−1

∫ R2+R

R
rM−1

2 rM−1
1 dr2dr1

− max
|t|≤2ζ

|F λ0(t)|
∫ R

0

(∫ R

r1

+

∫ R2+R+1

R2+R

)
rM−1

2 rM−1
1 dr2dr1

≥ 1

M2
F λ0(ζ)R3M

[
1

2M
− k

R

22M max|t|≤ζ |F λ0(t)|
F λ0(ζ)

−
(

1

RM
+

22M−1

R2

)
max|t|≤2ζ |F λ0(t)|

F λ0(ζ)

]
.

Obviously, (4.5) holds with CM := 2−M−1M−2 by choosing R0(k) > 2k large enough.

We now estimate the term
∫
RN F

λ0(πk[R; l](x))dx in the case when N − 2M ≥ 1. Let

ϕk[R; l](r1, r2, r3) := ψk[R; l](r1, r2) · |Uk[R; l](r3)|

and ω := ωN−2M−1ω
2
M−1, where ωm−1 denotes the surface area of the unit sphere in Rm. We know

from (4.5) that, for all R ≥ R0(k) and l ∈ Sk−1,∫ R

0

∫ R2+R+1

r1

F λ0 (ζ · ψk[R; l](r1, r2)) rM−1
2 rM−1

1 dr2dr1 ≥ CMF λ0(ζ)R3M > 0. (4.6)

Thus, for all R ≥ R0(k) and l ∈ Sk−1,∫
RN

F λ0 (πk[R; l](x)) dx

= ω

∫ R2+R+1

0

∫ R2+R+1

0

∫ R

0
F λ0 (ζ · ϕk[R; l](r1, r2, r3)) rN−2M−1

3 rM−1
2 rM−1

1 dr3dr2dr1

= 2ω

∫ R

0

∫ R2+R+1

r1

∫ R

0
F λ0 (ζ · ϕk[R; l](r1, r2, r3)) rN−2M−1

3 rM−1
2 rM−1

1 dr3dr2dr1

≥ 2ω

∫ R

0

∫ R2+R+1

r1

F λ0 (ζ · ψk[R; l](r1, r2)) rM−1
2 rM−1

1 dr2dr1

∫ R−k

0
rN−2M−1

3 dr3

− 2ω · k max
|t|≤2ζ

|F λ0(t)|
∫ R

0

∫ R2+R+1

r1

rM−1
2 rM−1

1 dr2dr1

∫ R

R−1
rN−2M−1

3 dr3
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≥ 2

N − 2M
ωF λ0(ζ)RN+M

[
CM

2N−2M
− 1

R

kmax|t|≤2ζ |F λ0(t)| · 2N−M

M2F λ0(ζ)

]
.

Obviously, we have (4.4) by choosing R(k) ≥ R0(k) large enough. When N − 2M = 0, with the aid of

(4.6), one can conclude easily that (4.4) holds for a large enough R(k). �

Using Lemma 4.3, we can now prove Lemma 4.2.

Proof of Lemma 4.2. For every k ∈ N, let R(k) be the positive constant given by Lemma 4.3. Thus∫
RN

F λ0(πk[R(k); l](x))dx ≥ 1 for all l ∈ Sk−1.

Since Sk−1 is compact, there exists βk > 0 such that∫
RN
|∇πk[R(k); l](x)|2 dx ≤ βk for all l ∈ Sk−1.

For any l ∈ Sk−1, setting γ̃0k(l)(x) := πk[R(k); l](t−1x) with t ≥ 1 undetermined, we have

Jλ0(γ̃0k(l)) =
1

2
tN−2

∫
RN
|∇πk[R(k); l](x)|2 dx− tN

∫
RN

F λ0(πk[R; l](x))dx

≤ tN−2

(
1

2
βk − t2

)
.

In view also of (4.2), we know that γ̃0k is the desired odd continuous mapping by choosing t = tk ≥ 1

large sufficiently. �

5 Proofs of the main results

In this section, we prove Theorems 1.1-1.4 by mountain pass and symmetry mountain pass approaches.

5.1 Proof of Theorem 1.1

We prove Theorem 1.1 by developing a mountain pass argument in H1(RN ). For any λ ∈ [λ0, 1], we

know from Lemma 4.1 that the set

Γλ :=
{
γ ∈ C([0, 1], H1(RN )) | γ(0) = 0, Jλ(γ(1)) < 0

}
is nonempty, the mountain pass level

cmp,λ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(γ(t))

is well-defined and cmp,λ ≥ ρ0 > 0. We also define

Pλ(u) :=
N − 2

2

∫
RN
|∇u|2dx−N

∫
RN

F λ(u)dx, u ∈ H1(RN ).

When λ = 1, for simplify, we denote Γ1 and P1 by Γ and P respectively. In view of [22, Proof of

Lemma 2.1], we have the following lemma.

Lemma 5.1 Assume that λ ∈ [λ0, 1] is fixed and w ∈ H1(RN ) \ {0} satisfies Pλ(w) = 0. Then there

exists L > 1 (sufficiently large but fixed) such that the path defined by

γ(t) :=

{
0, t = 0,

w(x/(Lt)), t ∈ (0, 1],

satisfies γ(0) = 0, γ(1/L) = w, γ ∈ C([0, 1], H1(RN )), Jλ(γ(1)) < 0 and

Jλ(γ(t)) < Jλ(w) for any t ∈ [0, 1] \ {1/L}.
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Using Lemma 5.1 and our decomposition result Theorem 3.1, we can establish the compactness

result stated below.

Lemma 5.2 Assume that λ ∈ [λ0, 1] is fixed and {un} ⊂ H1(RN ) is a bounded Palais-Smale sequence

for Jλ at the level cmp,λ. Then, up to a subsequence, there exists a sequence {yn} ⊂ RN such that the

translated sequence {un(·+ yn)} is a convergent Palais-Smale sequence of Jλ at the level cmp,λ.

Proof. Obviously, for any given sequence {yn} ⊂ RN , the translated sequence {un(·+ yn)} is still a

bounded Palais-Smale sequence of Jλ at the level cmp,λ. To prove Lemma 5.2, we only need to find a

suitable sequence {yn} ⊂ RN such that {un(·+ yn)} is strongly convergent in H1(RN ).

Let w ∈ H1(RN ) be any nontrivial critical point of Jλ. Pohoz̆aev identity implies, see for example

[7, Proposition 1], that Pλ(w) = 0. By Lemma 5.1, a continuous path γ ∈ C([0, 1], H1(RN )) exists

such that

γ ∈ Γλ and max
t∈[0,1]

Jλ(γ(t)) = Jλ(w).

Therefore, Jλ(w) ≥ cmp,λ. Note that the decomposition result Theorem 3.1 applies here with I = Jλ
and β = cmp,λ > 0. If l ≥ 3, or l = 2 but w1 6= 0, in view of Items (ii) and (iii) of Theorem 3.1, we

will get a contradiction as follows:

cmp,λ ≥
l∑

k=1

Jλ(wk) ≥ 2cmp,λ > cmp,λ.

Thus, l = 1, or l = 2 with w1 = 0. Now Lemma 5.2 follows directly from Theorem 3.1 (i) and (iv). �

To prove Theorem 1.1, we also need the following two results which will again be used in the proofs

of Theorems 1.2-1.4.

Lemma 5.3 Assume that {λn} ⊂ [λ0, 1] and {un} ⊂ H1(RN ). If

sup
n∈N

Jλn(un) ≤ C and inf
n∈N

Pλn(un) ≥ −C

for some C > 0, then {un} is bounded in H1(RN ).

Proof. Obviously,
1

N

∫
RN
|∇un|2dx = Jλn(un)− 1

N
Pλn(un) ≤ 2C.

Thus ‖∇un‖L2(RN ) is bounded. Since F2(t) ≥ µt2 for all t ∈ R and there exists Cµ > 0 such that

0 ≤ F1(t) ≤ 1

2
µ|t|2 + Cµ|t|2

∗
for all t ∈ R,

we have

1

2

∫
RN
|∇un|2 + µ|un|2dx ≤ Jλn(un) +

∫
RN

F1(un)− 1

2
µ|un|2dx ≤ C + Cµ

∫
RN
|un|2

∗
dx. (5.1)

In view of the boundedness of ‖∇un‖L2(RN ), we know from Sobolev imbedding theorem that {un} is

bounded in L2∗(RN ). Now the claim that {un} is bounded in H1(RN ) follows from (5.1). �

Lemma 5.4 Assume that {λn} ⊂ [λ0, 1), X is any subspace of H1(RN ), and un ∈ X is a critical

point of the restricted functional Jλn |X for every n ∈ N. If λn → 1 as n → ∞, {un} is bounded in

H1(RN ) and

lim
n→∞

Jλn(un) = c

for some c ∈ R, then {un} is a bounded Palais-Smale sequence of J |X at the level c.
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Proof. Since {un} is bounded inH1(RN ), we know that {
∫
RN F1(un)dx} is bounded in R and {f1(un)}

is bounded in X−1. Noting that

λn → 1 and Jλn(un)→ c,

we have that

J(un) = Jλn(un) + (λn − 1)F1(un) = Jλn(un) + on(1)→ c in R,
(J |X)′(un) = (Jλn |X)′(un) + (λn − 1)f1(un) = (λn − 1)f1(un)→ 0 in X−1.

Thus {un} is a bounded Palais-Smale sequence for J |X at the level c. �

Proof of Theorem 1.1. Let X = H1(RN ). By Theorem 2.1, a sequence {λn} ⊂ [λ0, 1) exists such

that

(i) λn → 1 as n→∞,

(ii) cmp,λn → cmp,1 = cmp as n→∞,

(iii) Jλn has a bounded Palais-Smale sequence at the level cmp,λn for every n ∈ N.

In view of Lemma 5.2, we get a critical point un of Jλn with Jλn(un) = cmp,λn . Pohoz̆aev identity

gives that Pλn(un) = 0 for every n ∈ N. Since

sup
n∈N

Jλn(un) = sup
n∈N

cmp,λn ≤ cmp,λ0 ,

by Lemma 5.3, {un} is bounded in H1(RN ). Note that Jλn(un) → cmp. We conclude from Lemma

5.4 that {un} is a bounded Palais-Smale sequence of J at the mountain pass level cmp. By Lemma

5.2 again, we get a solution u ∈ H1(RN ) of Problem (1.1) with J(u) = cmp.

We now show that u is indeed a ground state solution. Define

S := {w ∈ H1(RN ) | J ′(w) = 0, w 6= 0},
P := {w ∈ H1(RN ) | P (w) = 0, w 6= 0}.

Obviously, u ∈ S ⊂ P and then

cmp = J(u) ≥ inf
w∈S

J(w) ≥ inf
w∈P

J(w).

Lemma 5.1 tells us that, for any w ∈ P, there exists a path γ ∈ C([0, 1], H1(RN )) such that

γ ∈ Γ and max
t∈[0,1]

J(γ(t)) = J(w).

Therefore, we have

cmp = J(u) = inf
w∈S

J(w) = inf
w∈P

J(w), (5.2)

which implies that u is ground state solution of Problem (1.1).

It has been proved in [11] that any ground state solution to Problem (1.1) has a constant sign.

Since f is odd, we may assume that u ≥ 0. Then u > 0 by the strong maximum principle. �

Remark 5.1 Actually, the positive ground state solution u that we find is radially symmetric (up to

a translation) and is decreasing with respect to the radial variable, see [11].
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5.2 Proof of Theorem 1.3

The proof of Theorem 1.3 is similar to that of Theorem 1.1. Assume that 2 ≤ M < N/2 and let

X1 := H1
O1

(RN )∩Xτ . For fixed λ ∈ [λ0, 1], we know from Lemma 4.1 (i) and Lemma 4.2 that the set

Γ̃λ := {γ ∈ C([0, 1], X1) | γ(0) = 0, Jλ(γ(1)) < 0}

is nonempty, the mountain pass level

c̃mp,λ := inf
γ∈Γ̃λ

max
t∈[0,1]

Jλ(γ(t))

is well-defined and c̃mp,λ ≥ ρ0 > 0. Replacing Theorem 3.1 by Corollary 3.5 and modifying the proof

of Lemma 5.2 accordingly, we have the following compactness result.

Lemma 5.5 Assume that λ ∈ [λ0, 1] is fixed and {un} ⊂ X1 is any bounded Palais-Smale sequence for

Jλ|X1 at the level c̃mp,λ. Then, up to a subsequence, there exists a sequence {yn} ⊂ {0}×{0}×RN−2M

such that the translated sequence {un(· + yn)} is a convergent Palais-Smale sequence of Jλ|X1 at the

level c̃mp,λ.

In order to show that the energy of the nonradial solution is strictly larger than 2cmp, we shall

make use of Lemma 5.6 below.

Lemma 5.6 Assume that γ ∈ Γ and t∗ ∈ (0, 1). If

cmp = J(γ(t∗)) > J(γ(t)) for any t ∈ [0, 1] \ {t∗},

then J ′(γ(t∗)) = 0. Namely, γ(t∗) is a critical point of J (at the level cmp).

Proof. This result is reminiscent of [31, Lemma 5.1] and can be deduced from the quantitative

deformation lemma of Willem [36, Lemma 2.3]. Since its proof is essentially the same as of [31,

Lemma 5.1], we omit the details here. �

Proof of Theorem 1.3. Let X = X1. By Theorem 2.1, a sequence {λn} ⊂ [λ0, 1) exists such that

(i) λn → 1 as n→∞,

(ii) c̃mp,λn → c̃mp,1 as n→∞,

(iii) Jλn |X1 has a bounded Palais-Smale sequence at the level c̃mp,λn for every n ∈ N.

In view of Lemma 5.5, we get a critical point un of Jλn |X1 with Jλn(un) = c̃mp,λn . By the Palais

principle of symmetric criticality [33] and Pohoz̆aev identity, we have that Pλn(un) = 0 for every

n ∈ N. Since

sup
n∈N

Jλn(un) = sup
n∈N

c̃mp,λn ≤ c̃mp,λ0 ,

by Lemma 5.3, {un} is bounded in H1(RN ). Noting that Jλn(un) → c̃mp,1, we know from Lemma

5.4 that {un} is a bounded Palais-Smale sequence of J |X1 at the mountain pass level c̃mp,1. Then, by

Lemma 5.5 and the Palais principle of symmetric criticality [33], we get a solution v ∈ X1 of Problem

(1.1) with J(v) = c̃mp,1. Obviously, v is nonradial and changes signs.

We now show that v minimizes the functional J among all the nontrivial solutions belonging to

X1 := H1
O1

(RN ) ∩Xτ . For this purpose, we define

S1 := {w ∈ X1 | J ′(w) = 0, w 6= 0}.
22



Nonlinear scalar field equations with general nonlinearity

Obviously, v ∈ S1 and then

c̃mp,1 = J(v) ≥ inf
w∈S1

J(w).

For any w ∈ S1, we know from Pohoz̆aev identity that P (w) = 0. Then, by Lemma 5.1, there exists

a path γ ∈ C([0, 1], X1) such that

γ ∈ Γ̃1 and max
t∈[0,1]

J(γ(t)) = J(w).

Therefore, we have

c̃mp,1 = J(v) = inf
w∈S1

J(w).

The remaining task is to show that J(v) > 2cmp. Let

Ω1 := {x ∈ RN | |x1| > |x2|} and Ω2 := {x ∈ RN | |x1| < |x2|}.

Since v ∈ X1 := H1
O1

(RN ) ∩Xτ , we get χΩjv ∈ H1
0 (Ωj) ⊂ H1(RN ), j = 1, 2. Noting that χΩ1v 6= 0

and

0 = P (v) = P (χΩ1v) + P (χΩ2v) = 2P (χΩ1v),

we have χΩ1v ∈ P. Then, by (5.2),

J(v) = J(χΩ1v) + J(χΩ2v) = 2J(χΩ1v) ≥ 2 inf
w∈P

J(w) = 2cmp,

that is J(v) ≥ 2cmp. If J(v) = 2cmp, then J(χΩ1v) = cmp. By Lemma 5.1, Lemma 5.6 and (5.2) we

deduce that χΩ1v is a ground state solution of Problem (1.1). This is however impossible since any

ground state solution of Problem (1.1) is radially symmetric (up to a translation), see [11]. Thus,

J(v) > 2cmp and the proof of Theorem 1.3 is complete. �

5.3 Proof of Theorems 1.2 and 1.4

We first prove Theorem 1.4. Assume that N ≥ 4 and N − 2M 6= 1, and let X2 := H1
O2

(RN )∩Xτ . For

any λ ∈ [λ0, 1], by Corollary 3.6, the restricted functional Jλ|X2 satisfies the bounded Palais-Smale

condition.

For any λ ∈ [λ0, 1], we know from Lemma 4.1 (i) and Lemma 4.2 that the set

Γλ := {γ ∈ C([0, 1], X2) | γ(0) = 0, Jλ(γ(1)) < 0}

is nonempty, the mountain pass level

cmp,λ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(γ(t))

is well-defined and cmp,λ ≥ ρ0 > 0. Modifying the proof of Theorem 1.3 accordingly, we can find a

nonradial sign-changing solution v0 ∈ H1
O2
∩Xτ of Problem (1.1) such that v0 minimizes the functional

J among all the nontrivial solutions belonging to H1
O2
∩Xτ and J(v0) > 2cmp.

To complete the proof of Theorem 1.4, we only need to show the multiplicity result. This will be

done by developing a symmetric mountain pass argument in X2 := H1
O2

(RN ) ∩Xτ . For every k ∈ N,

we define a family of mappings Γk by

Γk :=
{
γ ∈ C(Dk, X2)) | γ is odd and γ = γ̃0k on σ ∈ Sk−1

}
, (5.3)
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where γ̃0k is introduced in Lemma 4.2. Clearly, Γk is nonempty since it contains the mapping

γk(σ) :=

|σ|γ̃0k

(
σ

|σ|

)
, for σ ∈ Dk \ {0},

0, for σ = 0.

We see from Lemma 4.1 (i) that

γ(Dk) ∩ {u ∈ X2 | ‖u‖X2 = r0} 6= ∅ for all γ ∈ Γk.

Thus the symmetric mountain pass value ck,λ of Jλ|X2 defined by

ck,λ := inf
γ∈Γk

max
σ∈Dk

Jλ(γ(σ))

is well defined and it satisfies ck,λ ≥ ck,1 ≥ ρ0 > 0.

In the proof of Theorem 1.4 we shall need the following lemma

Lemma 5.7 The sequence of symmetric mountain pass values {ck,1} converges to +∞.

Lemma 5.7 will be proved by a comparison argument due to [16]. We delay its proof until the

Appendix.

Since Jλ|X2 satisfies the bounded Palais-Smale condition, see Corollary 3.6, to prove the multiplicity

result claimed in Theorem 1.4, we only need to show that for every k ∈ N there is a bounded Palais-

Smale sequence of J |X2 at the symmetric mountain pass level ck,1. Theorem 2.2 is suitable for this

purpose.

End of the proof of Theorem 1.4. Let X = X2. By Theorem 2.2, a sequence {λn} ⊂ [λ0, 1) exists

such that

(i) λn → 1 as n→∞,

(ii) ck,λn → ck,1 as n→∞ for every k ∈ N,

(iii) Jλn |X2 has a bounded Palais-Smale sequence at the level ck,λn for any n, k ∈ N.

Thus, for every n ∈ N and k ∈ N, the restricted functional Jλn |X2 has a critical point uk,n such that

Jλn(uk,n) = ck,λn . Let k ∈ N fixed. The Palais principle of symmetric criticality [33] and Pohoz̆aev

identity give us that Pλn(uk,n) = 0 for every n ∈ N. Note that

sup
n∈N

Jλn(uk,n) = sup
n∈N

ck,λn ≤ ck,λ0 .

Then, the H1(RN )-boundedness of {uk,n} follows from Lemma 5.3. Since

Jλn(uk,n) = ck,λn → ck,1 as n→∞,

we conclude from Lemma 5.4 that {uk,n} is a bounded Palais-Smale sequence of J |X2 at the level ck,1.

This implies that the restricted functional J |X2 has a critical point vk ∈ X2 at each level ck,1 (k ∈ N).

In view of Lemma 5.7, we have

J(vk) = ck,1 → +∞ as k →∞.

By the Palais principle of symmetric criticality [33], we know that {vk} ⊂ X2 is actually a sequence

of nontrivial solutions to Problem (1.1). The proof of Theorem 1.4 is complete. �
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We end this section by sketching briefly the proof of Theorem 1.2.

Proof of Theorem 1.2. For any λ ∈ [λ0, 1], by Corollary 3.4, the restricted functional Jλ|H1
O(RN )

satisfies the bounded Palais-Smale condition. We see from Lemma 4.1 that, for every k ∈ N, the

family of mappings

Γ̂k :=
{
γ ∈ C(Dk, H1

O(RN )) | γ is odd and γ = γ0k on σ ∈ Sk−1
}

is nonempty, the symmetric mountain pass value

ĉk,λ := inf
γ∈Γ̂k

max
σ∈Dk

Jλ(γ(σ))

is well-defined and ĉk,λ ≥ ĉk,1 ≥ ρ0 > 0. In view of [16, Sections 2 and 3], we have that ĉk,1 → +∞ as

k →∞. With the aid of Theorem 2.2, repeating the argument above, one can obtain easily infinitely

many radial solutions the energies of which converge to +∞. �

6 Some remarks

Remark 6.1 As it is known since [7], see also [30], it is possible to replace (f3) by the condition

(f3)′ −∞ ≤ lim supt→+∞ f(t)/t
N+2
N−2 ≤ 0.

Indeed assume that f satisfies (f1), (f2), (f3)′ and (f4). If f(t) ≥ 0 for all t ≥ ζ, then f satisfies

(f1)− (f4) and our theorems in Section 1 can be applied directly. Otherwise, we set

ζ1 := inf{t ≥ ζ | f(t) = 0} and f̃(t) :=

{
f(t), for |t| ≤ ζ1,

0, for |t| > ζ1.

The strong maximum principle tells us that any solution u of the following problem

−∆u = f̃(u) in RN , u ∈ H1(RN ) (6.1)

satisfies |u(x)| ≤ ζ1 for all x ∈ RN . Noting that f̃ satisfies (f1) − (f4), by our theorems in Section

1, we obtain finite-energy radial and nonradial solutions of (6.1) which are actually also the ones of

(1.1).

Remark 6.2 Recall the solutions v ∈ H1
O1

(RN )∩Xτ and v0 ∈ H1
O2

(RN )∩Xτ given by Theorems 1.3

and 1.4 respectively. Obviously, when N ≥ 6, M ≥ 2 and N − 2M ≥ 2, we have

J(v0) ≥ J(v) > 2cmp.

It seems interesting to ask the following questions:

(i) Does the equality J(v0) = J(v) hold or not?

(ii) Does, up to a translation in {0}×{0}×RN−2M , the solution v belong to H1
O2

(RN )∩Xτ or not?

Remark 6.3 It is shown in [28], mainly by scaling arguments, how to construct starting from an

arbitrary solution to Problem (1.1), a solution to the following autonomous Kirchhoff-type equation

−
(
a+ b

∫
RN
|∇u|2dx

)
∆u = f(u) in RN , u ∈ H1(RN ), (6.2)
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where a ≥ 0, b > 0 are constants, N ≥ 3 and f satisfies (f1) − (f4). Since Theorems 1.3 and 1.4

provide new solutions, these results immediately translated, see [28, Remark 5.2], into new results for

(6.2). Indeed, denoting the corresponding energy functional by G, that is,

G(u) :=
1

2
a

∫
RN
|∇u|2dx+

1

4
b

(∫
RN
|∇u|2dx

)2

−
∫
RN

F (u)dx,

we can derive the following Theorems 6.1 and 6.2. These results extend those in [4, 28, 29] where only

radial solutions had been obtained.

Theorem 6.1 Assume that a > 0 is fixed, b > 0, N ≥ 4 and f satisfies (f1) − (f4). Then the

following statements hold.

(i) If N = 4, then for every k ∈ N there exists a constant bk > 0 such that (6.2) has at least

k distinct nonradial sign-changing solutions for any b ∈ (0, bk), the energies of which are all

positive. Moreover bk → 0 as k →∞.

(ii) If N = 5, then there exists a constant b∗ > 0 such that (6.2) has at least one nonradial sign-

changing solution with positive energy and one nonradial sign-changing solution with negative

energy for any b ∈ (0, b∗).

(iii) If N ≥ 6, then for every k ∈ N there exists a constant bk > 0 such that (6.2) has at least k distinct

nonradial sign-changing solutions with positive energies and k distinct nonradial sign-changing

solutions with negative energies for any b ∈ (0, bk). Moreover bk → 0 as k →∞.

Theorem 6.2 Assume that a = 0, b > 0, N ≥ 4 and f satisfies (f1) − (f4). Then the following

statements hold.

(i) If N = 4, then there exists a positive sequence {bk} such that, in the case where b = bk, (6.2)

has uncountably many nonradial sign-changing solutions {uλ}λ>0. Moreover, G(uλ) = 0 for all

λ > 0, uλ satisfies

‖uλ‖H1(RN ) →∞ as λ→ 0+ and ‖uλ‖H1(RN ) → 0 as λ→ +∞,

and bk → 0 as k →∞.

(ii) If N = 5, then (6.2) has at least one nonradial sign-changing solution for any b > 0 the energy

of which is negative.

(iii) If N ≥ 6, then (6.2) has infinitely many nonradial sign-changing solutions {uk} for any b > 0.

Moreover, G(uk) < 0 for every k ∈ N and G(uk)→ 0 as k →∞.
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Appendix

In this appendix, we prove Lemma 5.7 by a comparison argument. Recall that N ≥ 4, N − 2M 6= 1

and X2 := H1
O2

(RN ) ∩Xτ . As in [16, Subsection 2.1], we consider p0 ∈ (1, N+2
N−2) and set

h(t) :=

{
max{µt+ f(t), 0}, for t ≥ 0,

min{µt+ f(t), 0}, for t < 0,

h(t) :=


tp0 max

0<s≤t

h(s)

sp0
, for t > 0,

0, for t = 0,

− |t|p0 max
t≤s<0

h(|s|)
|s|p0

, for t < 0,

H(t) :=

∫ t

0
h(s)ds,

where f satisfies (f1)− (f4) and µ > 0 is given by (4.1). Lemma 2.1 and Corollary 2.2 in [16] tell us

that the functions h, h and H satisfy the following properties.

(i) There exists δ0 > 0 such that h(t) = h(t) = 0 for all t ∈ [−δ0, δ0].

(ii) For all t ∈ R, we have µt2/2 + F (t) ≤ H(t). (A.1)

(iii) For all t ∈ R, we have 0 ≤ (p0 + 1)H(t) ≤ h(t)t. (A.2)

(iv) The mapping t 7→ h(t)− µt satisfies (f1)− (f4). (A.3)

We introduce a comparison functional Φ : X2 → R of class C1 as follows

Φ(u) :=
1

2

∫
RN
|∇u|2dx+

1

2
µ

∫
RN
|u|2dx−

∫
RN

H(u)dx, u ∈ X2.

It is not difficult to check that Φ has a symmetric mountain pass geometry and satisfies the Palais-

Smale compactness condition.

Indeed, (A.3) implies that 0 ∈ X2 is a strict local minimum point of Φ, see, e.g., [22, Lemma 1.1].

The odd continuous mapping γ̃0k given by Lemma 4.2 is still valid here, since (A.1) implies that

J(u) ≥ Φ(u) for all u ∈ X2. (A.4)

The symmetric mountain pass values of Φ can be defined as follows:

dk := inf
γ∈Γk

max
σ∈Dk

Φ(γ(σ)),

where Γk is given by (5.3) and k ∈ N. Thanks to the global Ambrosetti-Rabinowitz condition (A.2),

we can show in a standard way that every Palais-Smale sequence of Φ is bounded in X2, then the

Palais-Smale compactness condition follows directly from (A.3) and Corollary 3.6.

Now, arguing as the proof of [16, Lemma 3.2], we know that dk is a critical value of Φ and

dk → +∞ as k →∞.

In view of (A.4), we see that ck,1 ≥ dk for every k ∈ N and then ck,1 → +∞ as k →∞. The proof of

Lemma 5.7 is now complete.
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