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Abstract
For elliptic equations ε2∆u − V (x)u + f(u) = 0, x ∈ RN , N ≥ 3,

we develop a new variational approach to construct localized positive
solutions concentrating at an isolated component of positive local min-
imum points of V , as ε → 0, under conditions on f we believe to be
almost optimal.

1 Introduction

We are concerned in standing waves for the nonlinear Schrödinger equation

ih̄
∂ψ

∂t
+

h̄2

2
∆ψ − V (x)ψ + f(ψ) = 0, (t, x) ∈ R×RN , (1)
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where h̄ denotes the Plank constant, i the imaginary unit. For the physical
background for this equation, we refer to the introduction in [6]. We assume
that f(exp(iθ)v) = exp(iθ)f(v) for v ∈ R. A solution of the form ψ(x, t) =
exp(−iEt/h̄)v(x) is called a standing wave. Then, ψ(x, t) is a solution of (1)
if and only if the function v satisfies

h̄2

2
∆v − (V (x)− E)v + f(v) = 0 in RN . (2)

In this paper we are interested in positive solutions in H1(RN) for small
h̄ > 0. For small h̄ > 0, these standing waves are referred as semi-classical
states. For simplicity and without loss of generality, we write V − E as V ,
i.e., we shift E to 0. Thus, we consider the following equation

ε2∆v − V (x)v + f(v) = 0, v > 0, v ∈ H1(RN) (3)

when ε > 0 is sufficiently small. We assume that the potential function V
satisfies the following condition

(V1) V ∈ C(RN ,R) and infx∈RN V (x) = V0 > 0.

For future reference we observe that defining u(x) = v(εx) and Vε(x) =
V (εx), equation (3) is equivalent to

∆u− Vεu + f(u) = 0, u > 0, u ∈ H1(RN). (4)

An interesting class of solutions of (3) are families of solutions which
concentrate and develop spike layers, peaks, around certain points in RN

while vanishing elsewhere as ε → 0. The existence of single peak solutions
was first studied by Floer and Weinstein [16]. For N = 1 and f(u) = u3,
they construct a single peak solution concentrating around any given non-
degenerate critical point of the potential V (x). Oh [25] extended this result
in higher dimension and for f(u) = |u|p−1u, 1 < p < N+2

N−2
. Furthermore,

Oh [26] proved the existence of multi-peak solutions which are concentrating
around any finite subsets of the non-degenerate critical points of V.

The arguments in [16, 25, 26] are based on a Lyapunov-Schmidt reduction
and rely on the uniqueness and non-degeneracy of the ground state solutions,
namely of the positive least energy solutions, for the autonomous problems :
for fixed x0 ∈ RN ,

∆v − V (x0)v + f(v) = 0 in RN and v ∈ H1(RN). (5)

2



Subsequently reduction methods were also found suitable to find solutions of
(3) concentrating around possibly degenerate critical points of V (x), when
the ground state solutions of the limit problems (5) are unique and non-
degenerate. More precisely, Ambrosetti, Badiale and Cingolani [1] consider
concentration phenomena at isolated local minima and maxima with poly-
nomial degeneracy and in [23] Y.Y. Li deals with C1-stable critical points of
V . See also [2, 10, 11, 22], for further related results.

However, the uniqueness and non-degeneracy of the ground state solutions
of (5) are, in general, rather difficult to check. They are known so far only
for a rather restricted class of nonlinearities f . To attack the existence of
positive solutions of (3) without these assumptions, the variational approach,
initiated by Rabinowitz [27], proved to be successful. In [27] he proves, by a
mountain pass argument, the existence of positive solutions of (3) for small
ε > 0 whenever

lim inf
|x|→∞

V (x) > inf
x∈RN

V (x).

These solutions concentrate around the global minimum points of V when
ε → 0, as it was shown by X. Wang [28]. Later, del Pino and Felmer [12] by
introducing a penalization approach prove a localized version of the result of
Rabinowitz and Wang (see also [13, 14, 15, 19] for related results). In [12],
assuming (V1) and the following condition,

(V2) there is a bounded domain O such that

m ≡ inf
x∈O

V (x) < min
x∈∂O

V (x)

they show the existence of a single peak solution concentrating around the
minimum points of V in O. They assume that the nonlinearity f satisfies the
assumptions (f1), (f2) below and the so called global Ambrosetti-Rabinowitz
condition: for some µ > 2, 0 < µ

∫ t
0 f(s)ds < f(t)t, t > 0. Also the mono-

tonicity of the function ξ → f(ξ)/ξ is required (see [12]). Recently, it has
been shown in [7] and [21] that the monotonicity condition is not necessary.

The motivation of this paper is to explore what are the essential features
which guarantee the existence of localized bound state solutions. Specially,
we are concerned with single peak solutions concentrating around local min-
imum points, as ε → 0, since the corresponding standing waves of (1) are
possible candidates to be orbitally stable. To state our main result we need
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the followings. Let
M≡ {x ∈ O | V (x) = m}

and assume that f : R → R is continuous and satisfies

(f1) limt→0+ f(t)/t = 0;

(f2) there exists some p ∈ (1, (N + 2)/(N − 2)), N ≥ 3 such that
lim supt→∞ f(t)/tp < ∞;

(f3) there exists T > 0 such that 1
2
mT 2 < F (T ), where F (t) =

∫ t
0 f(s)ds.

Theorem 1 Let N ≥ 3 and suppose that (V1-2) and (f1-3) hold. Then for
sufficiently small ε > 0, there exists a positive solution vε of (3) satisfying

(i) there exists a maximum point xε of vε such that limε→0 dist(xε,M) = 0,
and wε(x) ≡ vε(ε(x − xε)) converges (up to a subsequence) uniformly
to a least energy solution of

∆u−mu + f(u) = 0, u > 0, u ∈ H1(RN). (6)

(ii) vε(x) ≤ C exp(− c
ε
|x− xε|) for some c, C > 0.

In [4] Berestycki and Lions proved that there exists a least energy solu-
tion of (6) if (f1),(f2) and (f3) are satisfied, and also, using the Pohozaev’s
identity, they showed that conditions (f2) and (f3) are necessary for existence
of a non-trivial solution of the associated problem (6). Thus, basically, the
concentration phenomena occurs as soon as (6) has a least energy solution
and our result answers positively a conjecture of N. Dancer [9]. We should
also mention [3], where it is proved that if (V1),(V2) and (f1),(f2) and (f3)
are satisfied there exists a sequence {εn}n with limn→∞ εn = 0 such that the
conclusion of Theorem 1 holds for ε = εn. Actually, it seems hopeless that the
techniques of [3] could be used to get the result for any small ε > 0. Finally
we point out that contrary to the works [3, 12, 21] we do not assume f in
C0,1(R) but just continuous. Without this additional regularity we do not
know if the positive solutions of (6) are radially symmetric (see [17]). Thus,
it is more involved to prove the compactness, modulo translations, of the set
of least energy solutions of (6) (see Proposition 1). In turn this compactness
is necessary to show the exponential decay of Theorem 1 (ii).
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The approaches of [3, 6, 7, 12, 21] have in common to look for solutions
of (4), for ε > 0 small, independently of their suspected shape (the location
itself is somehow prescribed by the penalization). Then, a posteriori, it is
shown that they converge, up to a subsequence, to a ground state of the
limiting problem (6). Here, we propose a completely different approach. We
search directly solutions of (4) in a neighborhood of the set of least energy
solution of (6) whose mass stays closed to M. Namely in our approach
we take into account the shape and location of the solutions we expect to
find. This is reminiscent of the perturbation type approaches developed in
[1, 16, 23, 25, 26] but we point out that no uniqueness nor non-degeneracy of
the least energy solutions of (6) are required. Our approach is indeed purely
variational.

2 Proof of Theorem 1.

The variational framework is the following. Let Hε be the completion of
C∞

0 (RN) with respect to the norm

‖u‖ε =
( ∫

RN
|∇u|2 + Vεu

2dx
)1/2

.

We define a norm ‖ · ‖ on H1(RN) by

‖u‖2 =
∫

RN
|∇u|2 + V0u

2dx.

Since infRN V (x) = V0 > 0, we clearly have Hε ⊂ H1(RN). From now on,
for any set B ⊂ RN and ε > 0, we define Bε ≡ {x ∈ RN | εx ∈ B}. For
u ∈ Hε, let

Pε(u) =
1

2

∫

RN
|∇u|2 + Vεu

2dx−
∫

RN
F (u)dx (7)

(since we seek positive solutions, we assume without loss of generality that
f(t) = 0 for all t ≤ 0).

Fixing an arbitrary µ > 0, we define

χε(x) =

{
0 if x ∈ Oε

ε−µ if x /∈ Oε,
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and

Qε(u) =
( ∫

RN
χεu

2dx− 1
) p+1

2

+
. (8)

The functional Qε will act as a penalization to force the concentration
phenomena to occur inside O. This type of penalization was first introduced
in [7]. Finally let Γε : Hε → R be given by

Γε(u) = Pε(u) + Qε(u). (9)

It is standard to see that Γε ∈ C1(Hε). Clearly a critical point of Pε corre-
sponds to a solution of (4). To find solutions of (4) which concentrate in O
as ε → 0, we shall search critical points of Γε for which Qε is zero. As we
shall see the functional Γε enjoys a mountain pass geometry for any ε > 0
small. First we study some properties of the solutions of (6).

Without loss of generality, we may assume that 0 ∈ M. For any set
B ⊂ RN and δ > 0, we define Bδ ≡ {x ∈ RN |dist(x, B) ≤ δ}. As we already
mention, the following equations for a > 0 are limiting equations of (4)

∆u− au + f(u) = 0, u > 0, u ∈ H1(RN). (10)

We define an energy functional for the limiting problems (10) by

La(u) =
1

2

∫

RN
|∇u|2 + au2dx−

∫

RN
F (u)dx, u ∈ H1(RN). (11)

In [4] Berestycki and Lions proved that, for any a > 0, there exists a least
energy solution of (10) if (f1),(f2) and (f3) with m = a are satisfied. Also
they showed that each solution U of (10) satisfies the Pohozaev’s identity

N − 2

2

∫

RN
|∇U |2dx + N

∫

RN
a
u2

2
− F (u)dx = 0. (12)

Let Sa be the set of least energy solutions U of (10) satisfying U(0) =
maxx∈RN U(x). Then, we obtain the following compactness of Sa.

Proposition 1 For each a > 0 and N ≥ 3, Sa is compact in H1(RN).
Moreover, there exist C, c > 0, independent of U ∈ Sa such that

U(x) ≤ C exp(−c|x|).
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Proof. From (12), we see that for any U ∈ Sa,

1

N

∫

RN
|∇U |2dx = La(U). (13)

Thus, {∫RN |∇U |2dx | U ∈ Sa} is bounded. Note that for any U ∈ Sa,
∫

RN
|∇U |2 + aU2dx =

∫

RN
f(U)Udx. (14)

By (f1) and (f2), we see that there exists C > 0 satisfying
∫

RN
f(U)Udx ≤ a

2

∫

RN
U2dx + C

∫

RN
U

2N
N−2 dx. (15)

Thus, it follows from (14) and (15) that

a

2

∫

RN
U2dx ≤ C

∫

RN
U

2N
N−2 dx. (16)

Then, by the Sobolev inequality, we see that {∫RN U2dx | U ∈ Sa} is bounded.
Thus, Sa is bounded in H1(RN). Then, we see from elliptic estimates (see
[18]) that Sa is bounded in L∞(RN). Moreover, from the maximum prin-
ciple, we see that Sa is bounded away from 0 in L∞(RN). We claim that
lim|x|→∞ U(x) = 0 uniformly for U ∈ Sa. To the contrary, we assume that
for some {Uk}∞k=1 ⊂ Sa and {xk}∞k=1 ⊂ RN with limk→∞ |xk| = ∞, it holds
lim infk→∞ Uk(xk) > 0. Define Vk(x) = Uk(x + xk). We see from elliptic esti-
mates that for some β > 0, {Uk, Vk}∞k=1 is bounded in C1,β(RN). Then, taking
a subsequence if it is necessary, we can assume that for some U, V ∈ H1(RN),
Uk and Vk converge to U and V in C1

loc(R
N) and weakly in H1(RN), respec-

tively. This implies that U and V are solutions of (10) and we have

La(U), La(V ) ≥ La(W ) for any W ∈ Sa.

Note that

La(U1) = La(U2) = · · · = 1

N

∫

RN
|∇U1|2dx =

1

N

∫

RN
|∇U2|2dx = · · · .

Thus, for each 2R ≤ |xk|,
La(Uk)
= 1

N

∫
RN |∇Uk|2dx ≥ 1

N

∫
B(0,R) |∇Uk|2dx + 1

N

∫
B(xk,R) |∇Uk|2dx

= 1
N

∫
B(0,R) |∇Uk|2 + |∇Vk|2dx.
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Taking R > 0 large enough we reach a contradiction. Thus, lim|x|→∞ U(x) =
0 uniformly for U ∈ Sa. Then, by the comparison principle and the elliptic
estimates, we see that there exists C, c > 0 satisfying

U(x) + |∇U(x)| ≤ C exp(−c|x|), x ∈ RN , U ∈ Sa.

Thus, for any δ > 0, there exists R > 0 such that

∫

|x|≥R
|∇U |2 + aU2dx ≤ δ for U ∈ Sa. (17)

Let {Uk}∞k=1 be a sequence in Sa. Taking a subsequence if it is necessary,
we can assume that Uk converges weakly to some U in H1(RN). Note, then,
that U is a solution of (10). From (f2), it is standard to see that as k →∞,

∫

|x|≤R
f(Uk)Ukdx →

∫

|x|≤R
f(U)Udx.

Since
∫

RN
|∇Uk|2 + a(Uk)

2 − f(Uk)Ukdx =
∫

RN
|∇U |2 + a(U)2 − f(U)Udx = 0,

it follows from (17) that

lim
k→∞

∫

RN
|∇Uk|2 + a(Uk)

2dx =
∫

RN
|∇U |2 + a(U)2dx.

This implies that Uk → U ∈ Sa in H1(RN). This completes the proof that
Sa is compact for N ≥ 3, a > 0. 2

Let Em = Lm(U) for U ∈ Sm and 10δ = dist(M,RN \ O). We fix a
β ∈ (0, δ) and a cutoff ϕ ∈ C∞

0 (RN) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for
|x| ≤ β and ϕ(x) = 0 for |x| ≥ 2β. Also, setting ϕε(y) = ϕ(εy), y ∈ RN , for
each x ∈Mβ and U ∈ Sm, we define

Ux
ε (y) ≡ ϕε(y − x

ε
)U(y − x

ε
).

We will find a solution near the set

Xε = {Ux
ε (y) | x ∈Mβ, U ∈ Sm}
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for sufficiently small ε > 0. We note that 0 ∈M, and define

Wε(y) = ϕε(y)U(y)

where U ∈ Sm is arbitrary but fixed. Setting Wε,t(y) = U(y
t
)ϕε(y), we

see that Γε(Wε,t) = Pε(Wε,t) for t ≥ 0. Also, from (12), we see that for
Ut(x) = U(x

t
) we have

Lm(Ut) =
∫
RN

tN−2

2
|∇U |2 + m tN

2
U2 − tNF (U)dx

=
(

tN−2

2
− (N−2)tN

2N

) ∫
RN |∇U |2dx.

Thus, there exists t0 > 0 such that Lm(Ut) < −2 for t ≥ t0.

Finally we define
Cε = inf

γ∈Φε

max
s∈[0,1]

Γε(γ(s))

where Φε = {γ ∈ C([0, 1], Hε) |γ(0) = 0, γ(1) = Wε,t0}. We easily check that
Γε(γ(1)) < −2 for any ε > 0 sufficiently small.

Proposition 2

lim sup
ε→0

Cε ≤ Em.

Proof. Defining Wε,0 = limt→0 Wε,t, we see that Wε,0 = 0. Thus setting
γ(s) = Wε,st0 we have γ ∈ Φε. Now,

Cε ≤ max
s∈[0,1]

Γε(γ(s)) = max
t∈[0,t0]

Γε(Wε,t) = max
t∈[0,t0]

Pε(Wε,t)

and it is standard to show that

lim
ε→0

max
t∈[0,t0]

Pε(Wε,t) ≤ Em

(see for example Proposition 6.1 of [21]). 2

Proposition 3

lim inf
ε→0

Cε ≥ Em.
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Proof. To the contrary, we assume that lim infε→0 Cε < Em. Then, there
exists α > 0, εn → 0 and γn ∈ Φεn satisfying Γεn(γn(s)) < Em − α for
s ∈ [0, 1]. We fix an εn such that

m

2
εµ

n(1 + (1 + Em)
2

p+1 ) < min{α, 1}

and Pεn(γn(1)) < −2 and denote εn by ε and γn by γ.

Since Pε(γ(0)) = 0 we can find s0 ∈ (0, 1) such that Pε(γ(s)) ≥ −1 for
s ∈ [0, s0] and Pε(γ(s0)) = −1. Then, for any s ∈ [0, s0],

Qε(γ(s)) ≤ Γε(γ(s)) + 1 ≤ Em − α + 1.

This implies that
∫

RN\Oε

(γ(s))2dx ≤ εµ(1 + (1 + Em)
2

p+1 ) for s ∈ [0, s0].

Then, for s ∈ [0, s0],

Pε(γ(s)) = 1
2

∫
RN |∇γ(s)|2 + m(γ(s))2dx− ∫

RN F (γ(s))dx
+1

2

∫
RN (Vε(x)−m)(γ(s))2dx

≥ 1
2

∫
RN |∇γ(s)|2 + m(γ(s))2dx− ∫

RN F (γ(s))dx
+1

2

∫
RN\Oε

(Vε(x)−m)(γ(s))2dx

≥ 1
2

∫
RN |∇γ(s)|2 + m(γ(s))2dx− ∫

RN F (γ(s))dx
−m

2

∫
RN\Oε

(γ(s))2dx

≥ Lm(γ(s))− m
2
εµ(1 + (1 + Em)

2
p+1 ).

Thus, Lm(γ(s0)) < 0 and recalling that for equation (6) the mountain pass
level corresponds to the least energy level (see [20]) we have that

max
s∈[0,1]

Lm(γ(s)) ≥ Em.

Then we deduce that

Em − α ≥ maxs∈[0,1] Γε(γ(s))
≥ maxs∈[0,1] Pε(γ(s))
≥ maxs∈[0,s0] Pε(γ(s))

≥ maxs∈[0,1] Lm(γ(s))− m
2
εµ(1 + (1 + Em)

2
p+1 )

≥ Em − m
2
εµ(1 + (1 + Em)

2
p+1 )
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and this contradiction completes the proof. 2

Propositions 2 and 3 imply that limε→0(maxs∈[0,1] Γε(γε(s)) − Cε) = 0,
where γε(s) = Wε,st0 for s ∈ (0, 1] and γε(0) = 0. For future reference we
denote

Dε ≡ max
s∈[0,1]

Γε(γε(s)).

Then, we see that

Cε ≤ Dε and lim
ε→0

Cε = lim
ε→0

Dε = Em.

Now define
Γα

ε = {u ∈ Hε | Γε(u) ≤ α}
and for a set A ⊂ Hε and α > 0, let Aα ≡ {u ∈ Hε | infv∈A ‖u− v‖ε ≤ α}.

Proposition 4 Let {εi}∞i=1 be such that limi→∞ εi = 0 and {uεi
} ∈ Xd

εi
such

that
lim
i→∞

Γεi
(uεi

) ≤ Em and lim
i→∞

Γ′εi
(uεi

) = 0.

Then, for sufficiently small d > 0, there exists, up to a subsequence, {yi}∞i=1 ⊂
RN , x ∈M, U ∈ Sm such that

lim
i→∞

|εiyi − x| = 0 and lim
i→∞

‖uεi
− ϕεi

(· − yi)U(· − yi)‖εi
= 0.

Proof. For convenience’ sake, we write ε for εi. By compactness of Sm and
Mβ, there exist Z ∈ Sm and x ∈Mβ such that

‖uε − ϕε(· − x/ε)Z(· − x/ε)‖ε ≤ 2d (18)

for small ε > 0. We denote u1
ε = ϕε(· − x/ε)uε and u2

ε = uε − u1
ε. As a first

step in the proof of the Proposition we shall prove that

Γε(uε) ≥ Γε(u
1
ε) + Γε(u

2
ε) + O(ε). (19)

Suppose there exist xε ∈ B(x/ε, 2β/ε)\B(x/ε, β/ε) and R > 0 satisfying
lim infε→0

∫
B(xε,R)(uε)

2dy > 0. Taking a subsequence, we can assume that

εxε → x0 with x0 in the closure of B(x, 2β)\B(x, β) and that uε(·+xε) → W̃
weakly in H1(RN) for some W̃ ∈ H1(RN). Moreover W̃ satisfies

∆W̃ (y)− V (x0)W̃ (y) + f(W̃ (y)) = 0 for y ∈ RN .

11



By definition, LV (x0)(W̃ ) ≥ EV (x0). Also, for large R > 0

lim inf
ε→0

∫

B(xε,R)
|∇uε|2dy ≥ 1

2

∫

RN
|∇W̃ |2dy. (20)

Now, recalling from [20] that Ea > Eb if a > b, we see that EV (x0) ≥ Em,
since V (x0) ≥ m. Thus, from (13) and (20) we get that

lim inf
ε→0

∫

B(xε,R)
|∇uε|2dy ≥ N

2
LV (x0)(W̃ ) ≥ N

2
Em > 0.

Then, taking d > 0 sufficiently small, we get a contradiction with (18). Since
there does not exist such a sequence {xε}ε we deduce from a result of P.L.
Lions (see [24, Lemma I.1]) that

lim inf
ε→0

∫

B(x/ε,2β/ε)\B(x/ε,β/ε)
|uε|p+1dy = 0. (21)

As a consequence, we can derive using (f1),(f2) and boundedness of {‖uε‖L2}ε

that
lim
ε→0

∫

RN
F (uε)− F (u1

ε)− F (u2
ε)dy = 0.

At this point, writing

Γε(uε) = Γε(u
1
ε) + Γε(u

2
ε)

+
∫
RN ϕε(1− ϕε)|∇uε|2 + Vεϕε(1− ϕε)u

2
εdy

− ∫
RN F (uε)− F (u1

ε)− F (u2
ε)dy + O(ε),

the inequality (19) follows.
We now estimate Γε(u

2
ε). Since {uε}ε is bounded, we see from (18) that

‖u2
ε‖ε ≤ 4d for small ε > 0. Then, it follows from Sobolev’s inequality, that

for some C, c > 0,

Γε(u
2
ε) ≥ Pε(u

2
ε) ≥ 1

2
‖u2

ε‖2
ε −

V0

4

∫

RN
(u2

ε)
2dy − C

∫

RN
(u2

ε)
2N/(N−2)dy

≥ 1

4
‖u2

ε‖2
ε − Cc‖u2

ε‖2N/(N−2)
ε

≥ ‖u2
ε‖2

ε

(1

4
− Cc(4d)4/(N−2)

)
. (22)

In particular, taking d > 0 small enough, we can assume that Γε(u
2
ε) ≥ 0.
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Now let Wε(y) = u1
ε(y + x/ε). Taking a subsequence we can assume that,

Wε → W weakly in H1(RN) for some W ∈ H1(RN). Moreover W satisfies

∆W (y)− V (x)W (y) + f(W (y)) = 0 for y ∈ RN .

From the maximum principle we see that W is positive. Let us prove that
Wε → W strongly in H1(RN). Suppose there exist R > 0 and a sequence
{zε}ε with zε ∈ B(x/ε, 2β/ε) satisfying

lim inf
ε→0

|zε − x/ε| = ∞ and lim inf
ε→0

∫

B(zε,R)
(u1

ε)
2dy > 0.

We may assume that εzε → z0 ∈ O as ε → 0. Then, W̃ε(y) = u1
ε(y + zε)

converges weakly to W̃ in H1(RN) satisfying

∆W̃ − V (z0)W̃ + f(W̃ ) = 0, for y ∈ RN .

At this point as before we get a contradiction and then using (f1),(f2) and
[24, Lemma I.1] that

lim
ε→0

∫

RN
F (Wε)dx →

∫

RN
F (W )dx. (23)

Then it follows from the weak convergence of Wε to W in H1(RN) that

lim
ε→0

Γε(u
1
ε)

≥ lim inf
ε→0

Pε(u
1
ε)

= lim inf
ε→0

1

2

∫

RN
|∇Wε(y)|2 + V (εy + x)W 2

ε (y)dy −
∫

RN
F (Wε(y))dy

≥ 1

2

∫

RN
|∇W |2 + V (x)W 2dy −

∫

RN
F (W )dy

≥ Em. (24)

Since limε→0 Γε(uε) ≤ Em, Γε(u
2
ε) ≥ 0 and because of (19), we see that

lim sup
ε→0

Γε(u
1
ε) ≤ Em. (25)

Then (24) implies that LV (x)(W ) = Em. Also, from [20], we see that x ∈M.
At this point it is clear that W (y) = U(y − z) with U ∈ Sm and z ∈ RN .
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Finally, using (23), (25) and the fact that V ≥ V (x) on O, we get from (24)
that

∫
RN |∇W |2 + V (x)W 2dy ≥ lim supε→0

∫
RN |∇u1

ε(y)|2 + V (εy)(u1
ε)

2(y)dy
≥ lim supε→0

∫
RN |∇u1

ε(y)|2 + V (x)(u1
ε)

2(y)dy
≥ lim supε→0

∫
RN |∇Wε(y)|2 + V (x)W 2

ε (y)dy.

This proves the strong convergence of u1
ε to W in H1(RN). In particular

setting yε = x/ε + z we have u1
ε → ϕε(· − yε)U(· − yε) strongly in H1(RN).

This means that u1
ε → ϕε(· − yε)U(· − yε) strongly in Hε. To conclude the

proof of the Proposition, it suffices to show that u2
ε → 0 in Hε. Now, using

(19), (22) and limε→0 Γε(u
1
ε) = Em, we deduce that for some C > 0,

Em ≥ lim
ε→0

Γε(uε) ≥ Em + C‖u2
ε‖2

ε(1− d4/N−2) + O(ε).

This proves that u2
ε → 0 in Hε, and completes the proof. 2

Proposition 5 For sufficiently small d1 > d2 > 0, there exist constants
ω > 0 and ε0 > 0 such that |Γ′ε(u)| ≥ ω for u ∈ ΓDε

ε ∩ (Xd1
ε \ Xd2

ε ) and
ε ∈ (0, ε0).

Proof. To the contrary, we suppose that for small d1 > d2 > 0, there exist
{εi}∞i=1 with limi→∞ εi = 0 and uεi

∈ Xd1
εi
\Xd2

εi
satisfying limi→∞ Γεi

(uεi
) ≤

Em and limi→∞ |Γ′εi
(uεi

)| = 0. For convenience’ sake, we write ε for εi. By
Proposition 4, there exists {yε}ε ⊂ RN such that for some U ∈ Sm and
x ∈M,

lim
ε→0

|εyε − x| = 0 and lim
ε→0

‖uε − ϕε(· − yε)U(· − yε)‖ε = 0.

By the definition of Xε, we see that limε→0 dist(uε, Xε) = 0. This contradicts
that uε /∈ Xd2

ε , and completes the proof. 2

Following Proposition 5, we fix a d > 0 and corresponding ω > 0 and
ε0 > 0 such that |Γ′ε(u)| ≥ ω for u ∈ ΓDε

ε ∩ (Xd
ε \Xd/2

ε ) and ε ∈ (0, ε0). Then,
we obtain the following proposition.

Proposition 6 There exist α > 0 such that for sufficiently small ε > 0,

Γε(γε(s)) ≥ Cε − α implies that γε(s) ∈ Xd/2
ε

where γε(s) = Wε,st0(s).
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Proof. Since supp(γε(s)) ⊂M2β
ε for each s ∈ [0, 1], it follows that Γε(γε(s))

= Pε(γε(s)). Moreover, we see from the decay property of U and a change of
variables that

Pε(γε(s)) = 1
2

∫
RN |∇γε(s)|2 + Vε(x)(γε(s))

2dx− ∫
RN F (γε(s))dx

= 1
2

∫
RN |∇γε(s)|2 + m(γε(s))

2dx− ∫
RN F (γε(s))dx

+1
2

∫
RN (Vε(x)−m)(γε(s))

2dx

= (st0)N−2

2

∫
RN |∇U |2dx + (st0)N

2

∫
RN mU2dx

−(st0)
N

∫
RN F (U)dx + O(ε).

Then, from the Pohozaev identity (12), we see that

Γε(γε(s)) = Pε(γε(s)) =
((st0)

N−2

2
− N − 2

2N
(st0)

N
) ∫

RN
|∇U |2dx + O(ε).

Note that

max
t∈(0,∞)

(tN−2

2
− N − 2

2N
tN

) ∫

RN
|∇U |2dx = Em

and limε→0 Cε = Em. Then, since, denoting g(t) = tN−2

2
− N−2

2N
tN ,

g′(t)





> 0 for t ∈ (0, 1),
= 0 for t = 1,
< 0 for t > 1

and g′′(1) = 2−N < 0, the conclusion follows. 2

Proposition 7 For sufficiently fixed small ε > 0, there exists a sequence
{un}∞n=1 ⊂ Xd

ε ∩ ΓDε
ε such that Γ′ε(un) → 0 as n →∞.

Proof. By Proposition 6, there exists α > 0 such that for sufficiently small
ε > 0,

Γε(γε(s)) ≥ Cε − α implies that γε(s) ∈ Xd/2
ε .

If Proposition 7 does not hold for sufficiently small ε > 0, there exists a(ε) > 0
such that |Γ′ε(u)| ≥ a(ε) on Xd

ε ∩ ΓDε
ε . Also we know from Proposition 5

that there exists ω > 0, independent of ε > 0, such that |Γ′ε(u)| ≥ ω for
u ∈ ΓDε

ε ∩ (Xd
ε \ Xd/2

ε ). Thus, recalling that limε→0(Cε − Dε) = 0, by a
deformation argument, for sufficiently small ε > 0, it is possible to construct
a path γ ∈ Φε satisfying Γε(γ(s)) < Cε, s ∈ [0, 1]. This contradiction proves
the Proposition. 2
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Proposition 8 For sufficiently small fixed ε > 0, Γε has a critical point
u ∈ Xd

ε ∩ ΓDε
ε .

Proof. Let {un}∞n=1 be a Palais-Smale sequence as given by Proposition
7 corresponding to a fixed small ε > 0. Since {un}∞n=1 is bounded in Hε,
un → u weakly in Hε, for some u ∈ Hε. Then, it follows in a standard way
that u is a critical point of Γε. Now we write un = vn + wn with vn ∈ Xε and
‖wn‖ε ≤ d. Since Xε is compact, there exists v ∈ Xε such vn → v in Xε, up
to a subsequence, as n → ∞. Moreover, for some w ∈ Hε, wn → w weakly,
up to a subsequence, in Hε, as n →∞. Thus, u = v + w and

‖u− v‖ε = ‖w‖ε ≤ lim infn→∞ ‖wn‖ε ≤ d.

This proves that u ∈ Xd
ε .

To show that Γε(u) ≤ Dε, it suffices to show that lim supn→∞ Γε(un) ≥
Γε(u). In fact, writing un = u + on, we deduce that

‖on‖ε = ‖un − v − w‖ε ≤ ‖vn − v‖ε + ‖wn − w‖ε

≤ ‖vn − v‖ε + ‖wn‖ε + ‖w‖ε

≤ 2d + o(1)

and
‖un‖2

ε = ‖u‖2
ε + ‖on‖2

ε.

It is standard( see the proof of Proposition 2.31 in [8] for example) to show
that ∫

RN
F (un)dx =

∫

RN
F (u)dx +

∫

RN
F (on)dx + o(1).

Thus we see that

Pε(un) =
1

2
‖u‖2

ε −
∫

RN
F (u)dx +

1

2
‖on‖2

ε −
∫

RN
F (on)dx + o(1).

For sufficiently large n > 0 and small d > 0, we deduce, as in the proof of
Proposition 4, that

1

2
‖on‖2

ε −
∫

RN
F (on)dx ≥ 0.

It follows that lim supn→∞ Γε(un) ≥ Γε(u). This completes the proof. 2
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Completion of the Proof for Theorem 1. We see from Proposition 8
that there exist d > 0 and ε0 > 0 such that, for ε ∈ (0, ε0), Γε has a critical
point uε ∈ Xd

ε ∩ ΓDε
ε . Since uε satisfies

∆uε − Vεuε + f(uε) = (p + 1)
( ∫

χεu
2
εdx− 1

) p−1
2

+
χεuε in RN (26)

and f(t) = 0 for t ≤ 0, we deduce that uε > 0 in RN . Moreover, by ellip-
tic estimates through Moser iteration scheme, we deduce that {‖uε‖L∞}ε is
bounded (see, for example, [5, Proposition 3.5] for such techniques). Now by
Proposition 4, we see that

lim
ε→0

∫

RN\M2δ
ε

|∇uε|2 + Vε(uε)
2dx = 0,

and thus, by elliptic estimates (see [18]), we see that

lim
ε→0

‖uε‖L∞(RN\M2δ
ε ) = 0.

Using a comparison principle, it follows that, for some C, c > 0,

uε(x) ≤ C exp(−cdist(x,M2δ
ε )).

This implies that Qε(uε) = 0 and thus uε satisfies (4). Finally let xε be
a maximum point of uε. By Propositions 1 and 4, we readily deduce that
εxε → x for some x ∈M as ε → 0, and that for some C, c > 0,

uε(x) ≤ C exp(−c|x− xε|).

This completes the proof. 2
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