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Abstract. We consider singularly perturbed elliptic equations ε2∆u−V (x)u+

f(u) = 0, x ∈ RN , N ≥ 3. For small ε > 0, we glue together localized bound

state solutions concentrating at isolated components of positive local minimum
of V under conditions on f we believe to be almost optimal.

1. Introduction. This paper deals with the study of standing waves for the non-
linear Schrödinger equation

i~
∂ψ

∂t
+

~2

2
∆ψ − V (x)ψ + f(ψ) = 0, (t, x) ∈ R×RN . (1)

Here ~ denotes the Plank constant, i the imaginary unit. For the physical back-
ground of this equation, we refer to the introduction in [7]. We assume that
f(exp(iθ)v) = exp(iθ)f(v) for v ∈ R. A standing wave is a solution of the form
ψ(x, t) = exp(−iEt/~)v(x). Then, ψ(x, t) is a solution of (1) if and only if the
function v satisfies

~2

2
∆v − (V (x)− E)v + f(v) = 0 in RN . (2)

We are interested in positive solutions in H1(RN ) for small ~ > 0. For small ~ > 0,
these standing waves are referred as semi-classical states. For simplicity and without
loss of generality, we write V −E as V , i.e., we shift E to 0. Thus, we consider the
following equation

ε2∆v − V (x)v + f(v) = 0, v > 0, v ∈ H1(RN ) (3)

when ε > 0 is sufficiently small. Throughout the paper, the potential V will be
assumed to satisfy
(V1) V ∈ C(RN ,R), 0 ≤ V0 ≡ infRN V (x) and lim inf |x|→∞ V (x) > 0.
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An interesting class of solutions of (3) are families of solutions which concentrate
and develop spike layers, peaks, around certain points in RN while vanishing else-
where as ε→ 0. In the case V0 > 0, the existence of single peak solutions was first
studied by Floer and Weinstein [17]. For N = 1 and f(u) = u3, they construct a
single peak solution concentrating around any given non-degenerate critical point
of the potential V (x). Oh [25] extended this result in higher dimension and for
f(u) = |u|p−1u, 1 < p < N+2

N−2 . The arguments in [17, 25] are based on a Lyapunov-

Schmidt reduction and rely on the uniqueness and non-degeneracy of the ground
state solutions, namely of the positive least energy solutions, for the autonomous
problems : for fixed x0 ∈ RN ,

∆v − V (x0)v + f(v) = 0 in RN and v ∈ H1(RN ). (4)

These equations arise as limit equations corresponding to suitably rescaled solutions
of (3). Subsequently reduction methods were also found suitable to find solutions
of (3) concentrating around possibly degenerate, but structurally stable, critical
points of V (x), when the ground state solutions of the limit problems (4) are unique
and non-degenerate. See, in particular, [1, 2, 11, 12, 22, 23] for reduction method
approaches.

The uniqueness and non-degeneracy of the ground state solutions of (4) are,
in general, difficult to check. They are known only for a rather restricted class of
nonlinearities f . To attack the existence of positive solutions of (3) for more general
nonlinearity, the variational approach, initiated by Rabinowitz [28], proved to be
successful. In [28] he proves, by a mountain pass argument, the existence of positive
solutions of (3) for small ε > 0 whenever

lim inf
|x|→∞

V (x) > inf
x∈RN

V (x) > 0.

These solutions concentrate around the global minimum points of V when ε → 0,
as it was shown by X. Wang [30]. This variational approach have been developed
further by del Pino and Felmer, and some others. See, in particular, [7, 8, 13, 14,
15, 16, 19, 21].

However, on one hand, in the classical paper [3], Berestycki and Lions showed
the existence of least energy solutions for the limiting problem (4) with V (x0) > 0
when the nonlinearity f satisfies almost necessary and sufficient conditions. On
the other hand, in all previous mentioned works, even when they follow the vari-
ational approach, it is necessary to assume stronger conditions on f that the ones
of Berestycki and Lions. Very recently the authors in [5] manage to prove the exis-
tence of a solution of (3) concentrating around local minimum points of V for small
ε > 0 only assuming these conditions. The approach in [5] is variational but quite
different from the previous ones.

The main purpose of this paper is to develop the approach introduced in [5] as to
be able to treat the existence of multi-peak solution of (3), exhibiting concentration
at any prescribed set of local minima of the potential. After the initial work [26]
this kind of solutions have been constructed in [15, 16, 19] for some classes of non-
linearities. The conditions on f depend on the kind of approach which is retained.
In this paper we construct multi-peak solutions of (3) when the nonlinearity satis-
fies only the Berestycki-Lions’s conditions. We believe our approach is also simpler
than the previous ones. Finally in all the above mentioned works at the exception
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of [6, 7, 8], it is assumed that V0 > 0. Here we allow the possibility to have V0 = 0.
More precisely in addition to (V1) we assume on V .
(V2) There are bounded disjoint open sets O1, · · · , Ok such that for i = 1, · · · , k,

0 < mi ≡ inf
x∈Oi

V (x) < min
x∈∂Oi

V (x).

For each i ∈ {1, · · · , k}, we define

M i ≡ {x ∈ Oi | V (x) = mi}

and we set Z ≡ {x ∈ RN |V (x) = 0} and m ≡ min
i∈{1,··· ,k}

mi.

We also assume that f : R+ → R+ is continuous and satisfies the following
conditions.

(f1) limt→0+ f(t)/t = 0 if Z = ∅ and lim sup
t→0+

f(t)
t1+µ

<∞ for some µ > 0 if Z 6= ∅;

(f2) there exists some p ∈ (1, (N+2)/(N−2)), N ≥ 3 such that lim supt→∞ f(t)/tp

< ∞;
(f3) there exists T > 0 such that 1

2mT
2 < F (T ), where F (t) =

∫ t

0
f(s)ds.

Theorem 1. Let N ≥ 3. Suppose that (V1-2) and (f1-3) hold. Then for sufficiently
small ε > 0, there exists a positive solution vε of (3) satisfying

(i) there exist k local maximum points xi
ε ∈ Oi of vε such that

lim
ε→0

max
i=1,··· ,k

dist(xi
ε,M

i) = 0,

and that wε(x) ≡ vε(ε(x − xi
ε)) converges (up to a subsequence) locally uni-

formly to a positive, least energy solution of

∆u−miu+ f(u) = 0, u > 0, u ∈ H1(RN ); (5)

(ii) for some c, C > 0,

vε(x) ≤ C exp(− c
ε

min
i=1,··· ,k

|x− xi
ε|).

In [3] Berestycki and Lions proved that conditions (f2) and (f3) with m = mi are
necessary for the existence of a non-trivial solution of the associated problem (5).
In the case Z 6= ∅ we need an additional decay condition on f at 0, but when Z = ∅,
the conditions (f1),(f2) and (f3) are the same then the Berestycki-Lions’s conditions
given in [3]. Thus, basically, the concentration phenomena occurs as soon as the k
equations (5) have a non-trivial solution.

The proof of Theorem 1 uses ideas introduced in [5], but is more involved. Defin-
ing u(x) = v(εx) and Vε(x) = V (εx), equation (3) is equivalent to

∆u− Vεu+ f(u) = 0, u > 0, u ∈ H1(RN ). (6)

Roughly speaking we search directly a solution of (6) which consists essentially of k
disjoints parts, each part being close to a least energy solution of (5) associated to
the corresponding M i. Namely in our approach we take into account the shape and
location of the solutions we expect to find. Thus on one hand we benefit from the
advantage of the Lyapounov-Schmidt reduction approach, which is to discover the
solution around a small neighborhood of a well chosen first approximation. On the
other hand we do not need the uniqueness nor non-degeneracy of the least energy
solutions of (5). Our approach is indeed purely variational.



4 J. BYEON, L. JEANJEAN

Finally we would like to mention that in [16] (see also [15]) existence of single
and multi-peak solutions of (3) is obtained around any topologically non trivial
critical point of V . This is at the expense of rather strong assumptions on f and, as
pointed out to us by M. del Pino and P. Felmer, it would be interesting to study if
the approach of the present paper can be adapt to treat more general critical points
of V .

2. Proof of Theorem 1. We shall find a solution of (3) working with (6). The
variational framework is the following. Let m̃ > 0 be a number such that

m̃ < min{m, lim inf
|x|→∞

V (x)} (7)

and define Ṽε(x) ≡ max{m̃, Vε(x)}. Let Hε be the completion of C∞
0 (RN ) with

respect to the norm

‖u‖ε =
( ∫

RN

|∇u|2 + Ṽεu
2dx

)1/2

.

We clearly have Hε ⊂ H1(RN ). From now on we define M ≡ ∪k
i=1M

i, O ≡ ∪k
i=1O

i

and for any set B ⊂ RN and ε, α > 0, Bε ≡ {x ∈ RN | εx ∈ B} and Bδ ≡ {x ∈
RN |dist(x,B) ≤ δ}. For u ∈ Hε, let

Pε(u) =
1
2

∫
RN

|∇u|2 + Vεu
2dx−

∫
RN

F (u)dx (8)

(since we seek positive solutions, we assume without loss of generality that f(t) = 0
for all t ≤ 0). Now, we define

χε(x) =
{

0 if x ∈ Oε

ε−6/µ if x /∈ Oε,
χi

ε(x) =
{

0 if x ∈ (Oi)ε

ε−6/µ if x /∈ (Oi)ε,

and

Qε(u) =
( ∫

RN

χεu
2dx− 1

) p+1
2

+
, Qi

ε(u) =
( ∫

RN

χi
εu

2dx− 1
) p+1

2

+
. (9)

The functional Qε will act as a penalization to force the concentration phenomena
to occur inside O. This type of penalization was first introduced in [8]. Finally we
define the functionals Γε,Γ1

ε, · · · ,Γk
ε : Hε → R by

Γε(u) = Pε(u) +Qε(u), Γi
ε(u) = Pε(u) +Qi

ε(u), i = 1, · · · , k. (10)

It is standard to see that Γε,Γi
ε ∈ C1(Hε). Clearly a critical point of Pε cor-

responds to a solution of (6). To find solutions of (6) which concentrate in O as
ε → 0, we shall search critical points of Γε for which Qε is zero. First we study
some properties of the solutions of (5).

The following equations for a > 0 are limiting equations of (6)

∆u− au+ f(u) = 0, u > 0, u ∈ H1(RN ). (11)

We define an energy functional for the problems (11) by

La(u) =
1
2

∫
RN

|∇u|2 + au2dx−
∫
RN

F (u)dx, u ∈ H1(RN ). (12)
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In [3] Berestycki and Lions proved that, for any a > 0, there exists a least energy
solution of (11) if (f1),(f2) and (f3) with m = a are satisfied and that each solution
U of (11) satisfies the Pohozaev’s identity

N − 2
2

∫
RN

|∇U |2dx+N

∫
RN

a
u2

2
− F (u)dx = 0. (13)

From this we immediately deduce that, for any U solution of (11)
1
N

∫
RN

|∇U |2dx = La(U). (14)

Let Sa be the set of least energy solutions U of (11) satisfying U(0) = maxx∈RN U(x).
Then, the following result was obtained in [5].

Proposition 1. For each a > 0 and N ≥ 3, Sa is compact in H1(RN ). Moreover,
there exist C, c > 0, independent of U ∈ Sa such that

U(x) ≤ C exp(−c|x|).

Let
10δ ≡ min{dist(M ,RN \O),min

i 6=j
dist(Oi, Oj),dist(O,Z )}.

We fix a β ∈ (0, δ) and a cutoff ϕ ∈ C∞
0 (RN ) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for

|x| ≤ β and ϕ(x) = 0 for |x| ≥ 2β. Also, setting ϕε(y) = ϕ(εy), y ∈ RN , for each
xi ∈ (M i)β and Ui ∈ Smi , we define

Ux1,··· ,xk
ε (y) ≡

k∑
i=1

ϕε(y −
xi

ε
)Ui(y −

xi

ε
).

We will find a solution, for sufficiently small ε > 0, near the set

Xε = {Ux1··· ,xk
ε (y) | xi ∈ (M i)β and Ui ∈ Smi

for each i = 1, · · · , k}.
For each i ∈ {1, · · · , k} and xi ∈ M i, Ui ∈ Smi

arbitrary but fixed, we define

W i
ε(y) = ϕε(y −

xi

ε
)Ui(y −

xi

ε
).

Setting W i
ε,t(y) = ϕε(y − xi

ε )Ui(y
t −

xi

εt ), we see that limt→0 ‖W i
ε,t‖ε = 0 and that

Γε(W i
ε,t) = Pε(W i

ε,t) for t ≥ 0. Also, from (13) we see that for Ui,t(x) ≡ Ui(x
t ) we

have

Lmi(Ui,t) =
∫
RN

tN−2

2
|∇Ui|2 +mi

tN

2
U2

i − tNF (Ui)dx

=
( tN−2

2
− (N − 2)tN

2N

) ∫
RN

|∇Ui|2dx.

Thus, there exists Ti > 0 such that Lmi(Ui,t) < −2 for t ≥ Ti and we can easily
check that Γε(W i

ε,Ti
) < −2 for any ε > 0 sufficiently small.

Let γi
ε(s) = W i

ε,s(y) for s > 0 and γi
ε(0) = 0. For s = (s1, · · · , sk) ∈ T ≡

[0, T1]× · × [0, Tk] we define

γε(s) ≡
k∑

i=1

W i
ε,si

and Dε ≡ max
s∈T

Γε(γε(s)).

Finally for each i ∈ {1, · · · , k}, let Ei = Lmi
(U) for U ∈ Smi

. Then, for E ≡∑k
i=1Ei we have
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Proposition 2. The followings hold
(i) lim

ε→0
Dε = E,

(ii) lim sup
ε→0

max
s∈∂T

Γε(γε(s)) ≤ Ẽ ≡ max{E − Ei | i = 1, · · · , k} < E,

(iii) for each d > 0, there exist α > 0 such that for sufficiently small ε > 0,

Γε(γε(s)) ≥ Cε − α implies that γε(s) ∈ Xd/2
ε .

Proof. Since supp(γε(s)) ⊂ M 2β
ε for each s ∈ T, it follows that Γε(γε(s)) =

Pε(γε(s)) =
∑k

i=1 Pε(γi
ε(s)). Now, for each i ∈ {1, · · · , k}, we see from the decay

property of Ui and a change of variables that

Pε(γi
ε(s)) =

1
2

∫
RN

|∇γi
ε(s)|2 + Vε(x)(γi

ε(s))
2dx−

∫
RN

F (γi
ε(s))dx

=
1
2

∫
RN

|∇γi
ε(s)|2 +mi(γi

ε(s))
2dx−

∫
RN

F (γi
ε(s))dx

+
1
2

∫
RN

(Vε(x)−mi)(γi
ε(s))

2dx

=
sN−2

2

∫
RN

|∇Ui|2dx+ sN

∫
RN

1
2
miU

2
i − F (Ui)dx+O(ε).

Then, from the Pohozaev identity (13), we see that

Pε(γi
ε(s)) =

(sN−2

2
− N − 2

2N
sN

) ∫
RN

|∇Ui|2dx+O(ε).

Also

max
t∈(0,∞)

( tN−2

2
− N − 2

2N
tN

) ∫
RN

|∇Ui|2dx = Ei.

At this point we deduce that (i) and (ii) hold. To conclude we just observe that for
g(t) = tN−2

2 − N−2
2N tN ,

g′(t)

 > 0 for t ∈ (0, 1),
= 0 for t = 1,
< 0 for t > 1

and g′′(1) = 2−N < 0. �

Now let

Φi
ε = {ϕ ∈ C([0, Ti],Hε)|ϕ(si) = γi

ε(si) for si = 0 or Ti} (15)

and
Ci

ε = inf
ϕ∈Φi

ε

max
si∈[0,Ti]

Γi
ε(ϕ(si)).

For future reference we need the following estimate.

Proposition 3.
lim inf

ε→0
Ci

ε ≥ Ei, i = 1, · · · , k.

Proof. The proof is identical to the one of Proposition 3 in [5] where we observe
that working under the condition infx∈RN V (x) ≥ 0 rather than infx∈RN V (x) > 0
is sufficient. �

Now we define
Γα

ε = {u ∈ Hε | Γε(u) ≤ α}
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and for a set A ⊂ Hε and α > 0, let Aα ≡ {u ∈ Hε | ‖u−A‖ ≤ α}.

Proposition 4. Let {εj}∞j=1 be such that limj→∞ εj = 0 and {uεj
} ∈ Xd

εj
such that

lim
j→∞

Γεj (uεj ) ≤ E and lim
j→∞

Γ′εj
(uεj ) = 0.

Then, for sufficiently small d > 0, there exist, up to a subsequence, {yi
j}∞j=1 ⊂ RN ,

i = 1, · · · , k, xi ∈ M i, Ui ∈ Smi
such that

lim
j→∞

|εjy
i
j − xi| = 0 and lim

j→∞
‖uεj −

k∑
i=1

ϕεj (· − yi
j)Ui(· − yi

j)‖εj = 0.

Proof. For the sake of convenience, we write ε for εj . From Proposition 1, we
know that the Smi

are compact. Then there exist Zi ∈ Smi
and x ∈ (M i)β for

i = 1, · · · , k, such that, passing to a subsequence still denoted {uε},

‖uε −
k∑

i=1

ϕε(· − xi/ε)Zi(· − xi/ε)‖ε ≤ 2d (16)

for small ε > 0. We denote u1
ε =

∑k
i=1 ϕε(· − xi/ε)uε and u2

ε = uε − u1
ε. As a first

step in the proof of the Proposition we shall prove that

Γε(uε) ≥ Γε(u1
ε) + Γε(u2

ε) +O(ε). (17)

Suppose there exist xε ∈ ∪k
i=1B(xi/ε, 2β/ε)\B(xi/ε, β/ε) and R > 0 satisfying

lim infε→0

∫
B(xε,R)

(uε)2dy > 0. Taking a subsequence, we can assume that εxε → x0

with x0 in the closure of ∪k
i=1B(xi, 2β)\B(xi, β) and that uε(·+xε) → W̃ 6= 0 weakly

in H1(RN ) for some W̃ ∈ H1(RN ). Moreover W̃ satisfies

∆W̃ (y)− V (x0)W̃ (y) + f(W̃ (y)) = 0 for y ∈ RN .

By definition, LV (x0)(W̃ ) ≥ EV (x0). Also, for large R > 0

lim inf
ε→0

∫
B(xε,R)

|∇uε|2dy ≥
1
2

∫
RN

|∇W̃ |2dy. (18)

Now, recalling from [20] that Ea > Eb if a > b, we see that EV (x0) ≥ Em, since
V (x0) ≥ m. Thus, from (14) and (18) we get that

lim inf
ε→0

∫
B(xε,R)

|∇uε|2dy ≥
N

2
LV (x0)(W̃ ) ≥ N

2
Em > 0.

Then, taking d > 0 sufficiently small, we get a contradiction with (16). Since there
does not exist such a sequence {xε}ε we deduce from a result of P.L. Lions (see [24,
Lemma I.1]) that

lim inf
ε→0

∫
∪k

i=1B(xi/ε,2β/ε)\B(xi/ε,β/ε)

|uε|p+1dy = 0. (19)

Thus, we can derive using (f1),(f2) and the boundedness of {‖uε‖L2(∪k
i=1B(xi/ε,2β/ε))}ε

that

lim
ε→0

∫
RN

F (uε)− F (u1
ε)− F (u2

ε)dy = 0.
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At this point, writing

Γε(uε) = Γε(u1
ε) + Γε(u2

ε)

+
∫
RN

ϕε(1− ϕε)|∇uε|2 + Vεϕε(1− ϕε)u2
εdy

−
∫
RN

F (uε)− F (u1
ε)− F (u2

ε)dy +O(ε),

the inequality (17) follows.
We now estimate Γε(u2

ε). We have

Γε(u2
ε) ≥ Pε(u2

ε) =
1
2

∫
RN

|∇u2
ε|2 + Ṽε|u2

ε|2dx−
1
2

∫
RN

(Ṽε − Vε)|u2
ε|2dx

−
∫
RN

F (u2
ε)dx

≥ 1
2
‖u2

ε‖2ε −
m̃

2

∫
RN\Oε

|u2
ε|2dx−

∫
RN

F (u2
ε)dx. (20)

Here we have use the fact that Ṽε − Vε = 0 on Oε and |Ṽε − Vε| ≤ m̃ on RN \ Oε.
Because of (f1),(f2) for some C1, C2 > 0,∫

RN

F (u2
ε)dx ≤ m̃

4

∫
RN

(u2
ε)

2dx+ C1

∫
RN

(u2
ε)

2N
N−2 dx

≤ m̃

4

∫
RN

(u2
ε)

2dx+ C2||u2
ε||

2N
N−2
ε .

Since {uε}ε is bounded, we see from (16) that ‖u2
ε‖ε ≤ 4d for small ε > 0. Thus

taking d > 0 small enough we have
1
2
||u2

ε||2ε −
∫
RN

F (u2
ε)dx ≥ ||u2

ε||2ε
(1

4
− C2(4d)4/(N−2)

)
≥ 0. (21)

Now note that Pε is uniformly bounded in Xd
ε for small ε > 0. Thus, so is Qε. This

implies that for some C > 0, ∫
RN\Oε

(u2
ε)

2dx ≤ Cε6/µ (22)

and recording (20),(21) we deduce that Γε(u2
ε) ≥ O(ε). For future reference note

also that denoting p + 1 = 2s + (1 − s) 2N
N−2 , s ∈ (0, 1), we see from (f1), (f2), (22)

and using the interpolation and Sobolev inequalities, that for some C1, C2 > 0,∫
RN\Oε

F (u2
ε)dx ≤ C1

∫
RN\Oε

(u2
ε)

2 + (u2
ε)

p+1dx

≤ C1

∫
RN\Oε

(uε)2dx

+ C2

( ∫
RN\Oε

(uε)2dx
)s

‖uε‖
(1−s) 2N

N−2
ε . (23)

Thus

lim
ε→0

∫
RN\Oε

F (u2
ε)dx = 0 (24)

Now for i = 1, · · · , k, we define u1,i
ε (x) = u1

ε(x) for x ∈ Oi
ε, u

1,i
ε (x) = 0 for x /∈ Oi

ε.
Also we set W i

ε(y) = u1,i
ε (y+ xi/ε). Now we fix an arbitrary i ∈ {1, · · · , k}. Taking
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a subsequence we can assume that, W i
ε → Wi weakly in H1(RN ) for some Wi ∈

H1(RN ). Moreover Wi satisfies

∆Wi(y)− V (xi)Wi(y) + f(Wi(y)) = 0 for y ∈ RN .

From the maximum principle we see that Wi is positive. Let us prove that
W i

ε → Wi strongly in H1(RN ). Suppose there exist R > 0 and a sequence {zε}ε

with zε ∈ B(xi/ε, 2β/ε) satisfying

lim inf
ε→0

|zε − xi/ε| = ∞ and lim inf
ε→0

∫
B(zε,R)

(u1,i
ε )2dy > 0.

We may assume that εzε → ci ∈ Oi as ε→ 0. Then, W̃ i
ε(y) = u1,i

ε (y+ zε) converges
weakly to W̃i in H1(RN ) satisfying

∆W̃i − V (ci)W̃i + f(W̃i) = 0, for y ∈ RN .

At this point as before we get a contradiction and then using (f1),(f2) and [24,
Lemma I.1] it follows that

lim
ε→0

∫
RN

F (W i
ε)dx→

∫
RN

F (Wi)dx. (25)

Then from the weak convergence of W i
ε to Wi in H1(RN ) we get, for any i ∈

{1, · · · , k},

lim sup
ε→0

Γε(u1,i
ε )

≥ lim inf
ε→0

Pε(u1,i
ε )

= lim inf
ε→0

1
2

∫
RN

|∇W i
ε(y)|2 + V (εy + xi)(W i

ε)
2(y)dy −

∫
RN

F (W i
ε(y))dy

≥ 1
2

∫
RN

|∇Wi|2 + V (xi)(Wi)2dy −
∫
RN

F (Wi)dy ≥ Ei. (26)

Now by (17),

lim sup
ε→0

(
Γε(u2

ε) +
k∑

i=1

Γε(u1,i
ε )

)
= lim sup

ε→0

(
Γε(u2

ε) + Γε(u1
ε)

)
≤ lim sup

ε→0
Γε(uε) ≤ E =

k∑
i=1

Ei. (27)

Thus, since Γε(u2
ε) ≥ O(ε) we deduce from (26), (27) that, for any i ∈ {1, · · · k}

lim
ε→0

Γε(u1,i
ε ) = Ei. (28)

Now (26), (28) implies that LV (xi)(Wi) = Ei and from [20], we see that xi ∈ M i.
At this point it is clear that Wi(y) = Ui(y−zi) with Ui ∈ Smi

and zi ∈ RN . Finally,
using (25), (28) and the fact that V ≥ V (xi) on Oi, we get from (26) that∫

RN

|∇Wi|2 + V (xi)W 2
i dy ≥ lim sup

ε→0

∫
RN

|∇u1,i
ε (y)|2 + V (εy)(u1,i

ε )2(y)dy

≥ lim sup
ε→0

∫
RN

|∇u1,i
ε (y)|2 + V (xi)(u1,i

ε )2(y)dy

≥ lim sup
ε→0

∫
RN

|∇W i
ε(y)|2 + V (xi)(W i

ε(y))
2dy.
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This proves the strong convergence of W i
ε to Wi in H1(RN ). In particular setting

yi
ε = xi/ε+ zi we have u1,i

ε → ϕε(· − yi
ε)Ui(· − yi

ε) strongly in H1(RN ). This means
that u1,i

ε → ϕε(· − yi
ε)Ui(· − yi

ε) strongly in Hε and thus

u1
ε =

k∑
i=1

u1,i
ε →

k∑
i=1

ϕε(· − yi
ε)Ui(· − yi

ε)

strongly in Hε. To conclude the proof of the Proposition, it suffices to show that
u2

ε → 0 in Hε. Since E ≥ limε→0 Γε(uε) and limε→0 Γε(u1
ε) = E we deduce, using

(17) that limε→0 Γε(u2
ε) = 0. Now from (20), (21), (24) we get that u2

ε → 0 in Hε

and this completes the proof. �

Proposition 5. For sufficiently small d1 > d2 > 0, there exist constants ω > 0 and
ε0 > 0 such that |Γ′ε(u)| ≥ ω for u ∈ ΓDε

ε ∩ (Xd1
ε \Xd2

ε ) and ε ∈ (0, ε0).

Proof. To the contrary, suppose that for small d1 > d2 > 0, there exist {εj}∞j=1

with limj→∞ εj = 0 and uεj ∈ Xd1
εj
\ Xd2

εj
satisfying limj→∞ Γεj (uεj ) ≤ E and

limj→∞ Γ′εj
(uεj ) = 0. For the sake of convenience, we write ε for εj . By Proposition

4, there exists {yi
ε}ε ⊂ RN , i = 1, · · · , k, xi ∈ M i, Ui ∈ Smi

such that

lim
ε→0

|εyi
ε − xi| = 0 and lim

ε→0
‖uε −

k∑
i=1

ϕε(· − yi
ε)Ui(· − yi

ε)‖ε = 0.

By the definition of Xε, we see that limε→0 dist(uε, Xε) = 0. This contradicts that
uε /∈ Xd2

ε , and completes the proof. �

Following Proposition 5 we fix a d > 0 and corresponding ω > 0 and ε0 > 0 such
that |Γ′ε(u)| ≥ ω for u ∈ ΓDε

ε ∩ (Xd
ε \ X

d/2
ε ) and ε ∈ (0, ε0). Now, we obtain the

following proposition.

Proposition 6. For sufficiently small fixed ε > 0, there exists a sequence {un}∞n=1

⊂ Xd
ε ∩ ΓDε

ε such that Γ′ε(un) → 0 as n→∞.

Proof. By Proposition 2 (iii), there exists α ∈ (0, E − Ẽ) such that for sufficiently
small ε > 0,

Γε(γε(s)) ≥ Dε − α implies that γε(s) ∈ Xd/2
ε .

If Proposition 6 does not hold for sufficiently small ε > 0, there exists a(ε) > 0 such
that |Γ′ε(u)| ≥ a(ε) on Xd

ε ∩ ΓDε
ε . Note from Proposition 5 that there exists ω > 0,

independent of ε > 0, such that |Γ′ε(u)| ≥ ω for u ∈ ΓDε
ε ∩ (Xd

ε \X
d/2
ε ). Thus, by

a deformation argument, for sufficiently small ε > 0 there exists a µ ∈ (0, α) and a
path γ ∈ Φε satisfying

γ(s) = γε(s) for γε(s) ∈ ΓDε−α
ε ,

γ(s) ∈ Xd
ε for γε(s) /∈ ΓDε−α

ε

and
Γε(γ(s)) < Dε − µ, s ∈ T. (29)

Let ψ ∈ C∞
0 (RN ) be such that ψ(x) = 1 for x ∈ Oδ, ψ(x) = 0 for x /∈ O2δ,

ψ(x) ∈ [0, 1] and |∇ψ| ≤ 2/δ. For γ(s) ∈ Xd
ε , we define γ1(s) = ψεγ(s) and
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γ2(s) = (1− ψε)γ(s) where ψε(x) = ψ(εx). Note that

Γε(γ(s)) = Γε(γ1(s)) + Γε(γ2(s))

+
∫
RN

ψε(1− ψε)|∇γ(s)|2 + Vεψε(1− ψε)(γ(s))2dx

+Qε(γ(s))−Qε(γ1(s))−Qε(γ2(s))

−
∫
RN

F (γ(s))− F (γ1(s))− F (γ2(s))dx+O(ε).

Since for A,B ≥ 0, (A + B − 1)+ ≥ (A − 1)+ + (B − 1)+ and since p + 1 ≥ 2 it
follows that

Qε(γ(s)) =
( ∫

RN

χε(γ1(s) + γ2(s))2dx− 1
) p+1

2

+

≥
( ∫

RN

χε(γ1(s))2dx+
∫
RN

χε(γ2(s))2dx− 1
) p+1

2

+

≥
( ∫

RN

χε(γ1(s))2dx− 1
) p+1

2

+
+

( ∫
RN

χε(γ2(s))2dx− 1
) p+1

2

+

= Qε(γ1(s)) +Qε(γ2(s)).

Also, using (22), we see reasoning as in (23), that∫
RN

|F (γ(s))− F (γ1(s))− F (γ2(s))|dx

=
∫

O2δ
ε \Oδ

ε

|F (γ(s))− F (γ1(s))− F (γ2(s))|dx = O(ε).

Thus, we see that

Γε(γ(s)) ≥ Γε(γ1(s)) + Γε(γ2(s)) +O(ε).

Also

Γε(γ2(s)) ≥ −
∫
RN\Oε

F (γ2(s))dx

and again from (22), as in (23), we see that Γε(γ2(s)) ≥ O(ε). Therefore it follows
that

Γε(γ(s)) ≥ Γε(γ1(s)) +O(ε). (30)

For i = 1, · · · , k, we define γ1,i(s)(x) = γ1(s)(x) for x ∈ (Oi)2δ
ε , γ

1,i(s)(x) = 0
for x /∈ (Oi)2δ

ε . Note that (A1 + · · ·+An−1)+ ≥
∑n

i=1(Ai−1)+ for A1, · · · , An ≥ 0,
and that (p+ 1)/2 > 1. Then, we see that,

Γε(γ1(s)) ≥
k∑

i=1

Γε(γ1,i(s)) =
k∑

i=1

Γi
ε(γ

1,i(s)). (31)

From Proposition 2 (ii) and since α ∈ (0, E − Ẽ) we get that γ1,i ∈ Φi
ε, for all

i ∈ {1, · · · , k}. Thus by [9, Proposition 3.4], Proposition 3, (30) and (31) we deduce
that

max
s∈T

Γε(γ(s)) ≥ E +O(ε).

Since lim supε→0Dε ≤ E this contradicts (29) and completes the proof. �
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Proposition 7. For sufficiently small fixed ε > 0, Γε has a critical point uε ∈
Xd

ε ∩ ΓDε
ε .

Proof. Let {un}∞n=1 be a Palais-Smale sequence as given by Proposition 6 corre-
sponding to a fixed small ε > 0. Since {un}∞n=1 is bounded in Hε, un → u weakly in
Hε, for some u ∈ Hε. Then, it follows in a standard way that u is a critical point of
Γε. Now we write un = vn +wn with vn ∈ Xε and ‖wn‖ε ≤ d. Since Xε is compact,
there exists v ∈ Xε such vn → v in Xε, up to a subsequence, as n→∞. Moreover,
for some w ∈ Hε, wn → w weakly, up to a subsequence, in Hε, as n → ∞. Thus,
u = v + w and

‖u− v‖ε = ‖w‖ε ≤ lim infn→∞ ‖wn‖ε ≤ d.

This proves that u ∈ Xd
ε .

To show that Γε(u) ≤ Dε, it suffices to show that lim supn→∞ Γε(un) ≥ Γε(u).
In fact, writing un = u+ on, we deduce that

‖on‖ε = ‖un − v − w‖ε ≤ ‖vn − v‖ε + ‖wn − w‖ε

≤ ‖vn − v‖ε + ‖wn‖ε + ‖w‖ε

≤ 2d+ o(1)

and
‖un‖2ε = ‖u‖2ε + ‖on‖2ε.

It is standard (see the proof of Proposition 2.31 in [10] for example) to show that∫
RN

F (un)dx =
∫
RN

F (u)dx+
∫
RN

F (on)dx+ o(1).

Thus we see that
Pε(un) = Pε(u) + Pε(on) + o(1).

Now
Pε(on) =

1
2
||on||2ε −

1
2

∫
RN

(Ṽε − Vε)o2ndx−
∫
RN

F (on)dx.

By (7), Ṽε − Vε has a compact support. Thus from the weak convergence of on in
Hε it follows that

∫
RN (Ṽε − Vε)o2n dx→ 0. Also from (f1),(f2), for some C1, C2 > 0∫

RN

F (on)dx ≤ m̃

4

∫
RN

(on)2dx+ C1

∫
RN

(on)
2N

N−2 dx

≤ 1
4
||on||2ε + C2||on||

2N
N−2
ε .

Thus, for sufficiently large n > 0 and small d > 0, we have
1
2
||on||2ε −

∫
RN

F (on)dx ≥ ||on||2ε
(1

4
− C2(3d)

4
N−2

)
+ o(1) ≥ o(1).

It follows that lim supn→∞ Γε(un) ≥ Γε(u) and this completes the proof. �

We see from Proposition 7 that there exist d > 0 and ε0 > 0 such that, for
ε ∈ (0, ε0), Γε has a critical point uε ∈ Xd

ε ∩ ΓDε
ε . Since uε satisfies

∆uε − Vεuε + f(uε) = (p+ 1)
( ∫

χεu
2
εdx− 1

) p−1
2

+
χεuε in RN (32)

and f(t) = 0 for t ≤ 0, we have that uε > 0 in RN . Moreover, by elliptic estimates
through Moser iteration scheme, we deduce that {‖uε‖L∞}ε is bounded (see, for
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example, [4, Proposition 3.5] for such techniques). Now by Proposition 4, we see
that

lim
ε→0

∫
RN\M δ

ε

|∇uε|2 + Ṽε(uε)2dx = 0.

Thus, by elliptic estimates (see [18]), we obtain that

lim
ε→0

‖uε‖L∞(RN\M δ
ε∪Z δ

ε ) = 0, (33)

and this gives the following decay estimate for uε on RN \M δ
ε ∪ Z δ

ε .

Proposition 8. There exist some constants C, c > 0 such that

uε(x) ≤ C exp(−cdist(x,M δ
ε ∪ Z δ

ε )).

Proof. We note that inf{V (x)|x /∈ M δ
ε ∪ Z δ

ε } > 0. Then from (f1) and (33) we see
that

lim
ε→0

||f(uε)/uε||L∞(RN\M δ
ε∪Z δ

ε ) = 0.

Thus, we obtain the decay estimate by applying a standard comparison principle
(see [27]) to (32). �

If Z 6= ∅ we need, in addition, the following estimate for uε on Z 2δ
ε .

Proposition 9. There exist some constants C, c > 0 such that

||uε||L∞(Z2δ
ε ) ≤ C exp(−c/ε).

Proof. Let {Hi
ε}i∈I be the connected components of int(Z 3δ

ε ) for some index set
I. Note that Z ⊂ ∪i∈IH

i
ε and Z is compact. Thus the index set I is finite. For

each i ∈ I, let (φi, λi
1) be a pair of first positive eigenfunction and eigenvalue of −∆

on Hi
ε with Dirichlet boundary condition. From now we fix an arbitrary i ∈ I. By

(22), we see that for some constant C > 0

‖uε‖L∞(Hi
ε) ≤ Cε3/µ (34)

(for such result see, for example, [18, Theorem 9.20]). Thus, from (f1) we have that
for some C > 0

||f(uε)/uε||L∞(Hi
ε) ≤ Cε3.

Denote φi
ε(x) = φi(εx). Then, for sufficiently small ε > 0, we deduce that for

x ∈ int(Hi
ε),

∆φi
ε(x)− Vε(x)φi

ε(x) +
f(uε(x))
uε(x)

φi
ε(x) ≤

(
Cε3 − λ1ε

2
)
φi

ε ≤ 0. (35)

Now, since dist(∂Z 2δ
ε ,Z δ

ε ) = δ/ε, we see from Proposition 8 that for some constants
C, c > 0,

||uε||L∞(∂Z2δ
ε ) ≤ C exp(−c/ε). (36)

We normalize φi requiring that

inf{φi
ε(x) |x ∈ Hi

ε ∩ ∂Z 2δ
ε } = C exp(−c/ε) (37)

for the same C, c > 0 as in (36). Then, we see that for some D > 0,

φi
ε(x) ≤ DC exp(−c/ε), x ∈ Hi

ε ∩ Z 2δ
ε .

Now we deduce, using (32), (35), (36), (37) and [29, B.6 Theorem] that for each
i ∈ I, uε ≤ φi

ε on Hi
ε ∩ Z 2δ

ε . Therefore uε(x) ≤ C exp(−c/ε) on Z 2δ
ε for some

C, c > 0 and this completes the proof. �
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Now we can complete the proof of Theorem 1. From Propositions 8 and 9 we see
that Qε(uε) = 0 for sufficiently small ε > 0 and then (32) shows that uε satisfies
(6). Now the properties (i) and (ii) of vε(x) ≡ uε(x/ε) in Theorem 1 follow directly
from Propositions 1 and 4. �
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