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Abstract
We consider quasilinear stationary Schrodinger equations of the form
—Au — A(u®)u = g(z,u), zeRV. (0.1)
Introducing a change of unknown, we transform the search of solutions u(z)

of (0.1) into the search of solutions v(z) of the semilinear equation

Av= —— @ f), xeRY, (0.2)

V142f%(v)

where f is suitably chosen. If v is a classical solution of (0.2) then u = f(v)
is a classical solution of (0.1). Variational methods are then used to obtain
various existence results.

*Primary: 35J60, Secondary: 58 E05.



1 Introduction
In this paper we deal with equations of the form
—Au — A(w?)u = g(z,u), u € HY(RY). (1.1)

These equations model several physical phenomena but until recently little had
been done to prove rigorously the existence of solutions.

A major difficulty associated with (1.1) is the following; one may seek to ob-
tain solutions by looking for critical points of the associated “natural” functional,
J: HY(RY) — R given by

1
J(u) = 3 /]RN |Vu|? do + /RN |Vu|*u? do — /]RN G(z,u) dx

where G(x,s) = [; g(x,t) dt. However except when N = 1 this functional is not
defined on all H*(RY).

The first existence results for equations of the form of (1.1) are, up to our
knowledge, due to [12, 8]; papers to which we refer for a presentation of the physical
motivations of studying (1.1). In [12, 8], however, the main existence results are
obtained, through a constrained minimization argument, only up to an unknown
Lagrange multiplier.

Subsequently a general existence result for (1.1) was derived in [7]. To over-
come the undefiniteness of J the idea in [7] is to introduce a change of variable
and to rewrite the functional J with this new variable. Then critical points are
search in an associated Orlicz space (see [7] for details).

The aim of the present paper is to give a simple and shorter proof of the
results of [7], which do not use Orlicz spaces, but rather is developed in the usual
H'(RY) space. The fact that we work in H*(R") also permit to cover a different
class of nonlinearities. In particular we give full treatment of the autonomous case
and for non autonomous problems we do not assume that,

gz, )

:]0, 00[— R is non decreasing in s.

Following the strategy developed in [4] on a related problem we also make use of
a change of unknown v = f~!(u) and define an associated equation that we shall
call dual. If v € HY(RY) is classical solution of

1
—Av = \/TW g(z, f(v)), (1.2)

u = f(v) is a classical solution of (1.1).
Equations of the form (1.2) are of semilinear elliptic type and one can try to
solve them by a variational approach. In particular we shall see that, under very



general conditions on g, the “natural” functional associated to (1.2), I : H*(RY) —
R given by

I(v) = %/RN Vol do — /RN Glz, f(v)) do

is well defined and of class C* on H(RY).
The dual approach is introduced in Section 2. In Section 3 we deal with
autonomous problems, when (1.1) is of the form,

—Au — A(u?)u = g(u), u € HY(RY). (1.3)

Autonomous problems seems to play an important role in physical phenomena
(see [3] for example) and we obtain here an existence result under assumptions we
believe to be nearly optimal. We assume that the nonlinear term g satisfies :

(g0) g(s) is locally Hélder continuous on [0, oof.

(gl) —0 < liminfﬁ < limsupﬁ =—-v<O0for N >3,

s—0 S s—0 S

lirr%)@ =—v € (—00,0) for N =1,2.
S5— S

(82) When N >3, lm 198 _ ¢

§—00 N3

When N = 2, for any a > 0 there exists C,, > 0 such that

lg(s)] < Coe®” forall s > 0.

(g3) When N > 2, there exists £, > 0 such that G(&) > 0,
When N=1, there exists £y > 0 such that

G(&) < 0 for all € €]0,&[, G(&) =0 and g(&) > 0.

Remark 1.1 An easy calculation shows that (g0)-(g3) are satisfied in the model
case g(s) = |s|*s — vs.

Theorem 1.2 Assume that (90)-(g3) hold. Then (1.3) admits a solution uy €
HY(RY) having the following properties :

(i) ug >0 on RV,

(ii) wo is spherically symmetric : ug(z) = ug(r) with r = |x| and uy decreases
with respect to r.

(i4i) up € C%(RYN).



(iv) wo together with its derivatives up to order 2 have exponential decay at in-
finity
|D%ug(z)| < Ce™®l*! 2 € RV,

for some C,6 > 0 and for |a| < 2.

We prove Theorem 1.2 searching for a critical point of the functional I, which
is here autonomous. As we shall see the existence of a critical point follows almost
directly, from classical results on scalar field equations due to Berestycki-Lions [1]
when N =1 or N > 3 and Berestycki-Gallouét-Kavian [2] when N = 2.

In Section 4 we assume that (1.1) is of the form,
—Au — A(u?)u + V(x)u = h(u). (1.4)

We require V € C(RY,R) and h € C(RT,R), to be Holder continuous and to
satisfy

(VO0) There exists Vg > 0 such that V(x) > Vp > 0 on RV,
(V1) lim|y—o0 V() = V(00) and V(z) < V(oo) on RY.

(h0) lim hls)

s—0 S

=0.

(h1) There exists p < oo if N = 1,2 and p < 35242 if N > 3 such that |h(s)| <
C(1+1s”), Vs € R, for a C' > 0.

(h2) There exists > 4 such that, Vs > 0,

0 < uH(s) < h(s)s with H(s) = / ") dt.

Our main result is the following :

Theorem 1.3 Assume that (V0)-(V1) and (h0)-(h1) hold. Then (1.4) has a pos-
itive non trivial solution if one of the following conditions hold :

1) (h2) hold with a p > 4.
2) (h2) hold with yu =4 withp <5 if N =3 and p < 35 if N > 4 in (h1).

The proof of Theorem 1.3 also relies on the study of the functional I. We first show
that I possess a mountain pass geometry and denote by ¢ > 0 the mountain pass
level (see Lemma 4.2). To find a critical point the main difficulties to overcome
are the possible unboundedness of the Palais-Smale (or Cerami) sequences and a
lack of compactness since (1.4) is set on all RY.

For the second difficulty we use some recent results presented in [9] and [10]
which imply that, under conditions (V0)-(V1), the mountain pass level ¢ > 0 is



below (if V' # V(00)) the first level of possible loss of compactness (see Theorem
3.4 and Lemma 4.3).

For the first difficulty we distinguish the cases p > 4 and p =4 in (h2). In
the case p > 4, it is direct to prove that all Cerami sequences of I are bounded.
To show it in the case u = 4 is more involved and for this we make use of an idea
introduced in [7].

Notation : Throughout the article the letter C' will denote various positive
constants whose exact value may change from line to line but are not essential to
the analysis of the problem. Also if we take a subsequence of a sequence {v,} we
shall denote it again {v,}.

2 The dual formulation

We start with some preliminary results. Let f be defined by
1
"(t) = ——=—— and f(0) =0
10 = s w10
on [0,4o0[ and by f(t) = —f(—t) on ] — 00, 0].
Lemma 2.1 1) f is uniquely defined, C*° and invertible.

2) | (1) <1, for allt € R.

3) @Hlast—ﬂ).
4) &HQi as t — +o0.

Vit

Proof. Points 1)-3) are immediate. To see 4) we integrate

/0 F(s)V/1+2f2%(s)ds =t.

Using the changes of variables z = f(s) and x = % Sh(y) we obtain that

1 .1 1 . 1 o
WG [sinh ™ (V2f(t))] + WG sinh2[Sh=1(V2f(1))] = t.

Thus, sinh2[Sh™1(v/2f(t))] ~ 42t in the sense that, as t — +o0,

sinh2[sinh =1 (v/2£(t))]
4V/2t

— 1.




We set a(t) = sinh~(v/2f(t)). Then a(t) satisfies sinh[2a(t)] ~ 4v/2t and we

deduce that i
a(t) ~ an(4\/§t + /3212 4+ 1).

Finally since 2sinh(t) ~ e it follows that

n(4v/2t + /32t2 + .
2V2f(t) ~ 62 ~ 2V227Vt
and the lemma is proved. )
Lemma 2.2 For allt € R,
1 t
—f(t) < ————= < f(1).
310 S s <O

Proof. To establish the first inequality we need to show that, for all t > 0,

VI+272(0) f(t) < 2t

In this aim we study the function g : R™ — R, defined by

t) =2t — /14 2f2(t) f(t)

We have g(0) = 0 and, since f'(¢t)\/1+2f2%(t) = 1, Vt € R, that ¢'(t) = 1 —
212 (t)f2(t). It follows that g’(t) > 0 since 1 — 2f%(t)f2(t) = f'?(t) and the first
inequality is proved. The second one is derived in a similar way. [

We now present our dual approach. For simplicity we set H = H'(RY) and
denote by || - || its standard norm. We assume that g(z, s) is such that I : H — R

given by
I(w) = %/ \Vo|? dx —/ G(z, f(v)) dz

with G(z, s) fo x,t) dt, is well defined and of class C! (f : R — R is the
function previously mtroduced).

Let v € H N C?RY) be a critical point of I. Since f/2(¢)(1 +2f%(t)) = 1, it
satisfies

1

—Av = NS0 9(z, f(v)). (2.1)

We set u = f(v) (ie. v = f~1(u)). Clearly u € C?(RY) and v € H. Indeed
Vu = f'(v)Vv and |f'(t)] <1, Vt €R.
We have Vv = (f~1)"(u)Vu and

Av = (£ (w) [Vl + (£ () A (22)



Since (f~1)(t) = , it follows that

1
0]
(Y1) = VI+2f2(f71(t) = V1+2t2 and (f71)"(t) =

2t
V142t
Thus, from (2.2), we deduce that

2u
Av=———— |Vul? + V14 2u? Au
\/1+2u2| |

and consequently, from (2.1), that

2 1
S |Vu|> = V14 2u2 Au — —— g(z,u) = 0.

VIt 202 Vit2a?!
This can be rewrite as
1

Since A(u?)u = 2u|Vu|? + 2u?Au it shows that u € H N C?(RY) satisfies (1.1).
At this point it is clear that to obtain a classical solution of (1.1) it suffices
to obtain a critical point of I of class C2.

3 Autonomous cases

In this section (1.1) is of the form
—Au — A(u*)u = g(u), u € H. (3.1)

with the nonlinearity ¢ satisfying (g0)-(g3). Because we look for positive solutions
we may assume without restriction that g(s) = 0, Vs < 0. Following our dual
approach we shall obtain the existence of solutions for (3.1) studying the associated
dual equation

1
Av=———g(f(v)), veEH. 3.2
e V) (3:2)
In this aim, we now recall some classical results due to Berestycki-Lions [1] and
Berestycki-Gallouét-Kavian [2] on equations of the form

—Av = k(v), v e H. (3.3)

These authors show that the natural functional corresponding to (3.3), J : H — R

given by
1
ﬂw=7/|WVM— K(v) do
2 RN RN

where K (s) = fos k(t) dt is of class C, if k satisfies the conditions :



(k0) k(s) € C(R*,R) (and k(s) =0, Vs <0).
)

k k
(k1) —oo < liminf—s < limsupﬂ =—-v<0for N >3,
s

s—0 S s—0

k
lim k(s) = —v € (—00,0) for N =1,2.

s—0 §
(k2) When N > 3, lim |k}\(,i)2| = 0.

§— 00 SN 2

When N = 2, for any a > 0 there exists C, > 0 such that

|k(s)] < Coe®’ for all s > 0.
We recall that a solution v € H of (3.3) is said to be a least energy solution if and
only if
J(v) =m where m =inf{J(v),v € H\{0} is a solution of (3.3)}.

The following result is given in [1] when N =1 or N > 3 and in [2] when
N=2.

Theorem 3.1 Assume that (k0)-(k2) and (k3) hold with

(k8) When N > 2, there exists & > 0 such that K (&) > 0.
When N=1, there exists &y > 0 such that

K (&) <0 for all £ €]0,&][, K(&) =0 and k(&) > 0.

Then m > 0 and there exists a least energy solution w(x) of (3.3) which satisfies :
(i) w >0 on RN,

(ii) w is spherically symmetric : w(x) = w(r) with r = |z| and w decreases with
respect to r.

(iii) w € C?(RN).
(iv) w together with its derivatives up to order 2 have exponential decay at infinity
|D%w(x)| < Ce™®l 1 e RY,
for some C,6 > 0 and for |a| < 2.
Now observe that equation (3.2) is of the form —Av = k(v) with

1

g V) (3.4)

k(s) =



We claim that if g(s) satisfies (g0)-(g3) then k(s) given by (3.4) satisfies (k0)-
(k3). Indeed the fact that (k0) holds is trivial. The conditions (k1),(k2) follow,
respectively, from Lemma 2.1 (ii) and (iii). To check (k3) when N > 2 it suffices
to notice that

G(&) > 0 for a & > 0 <= Tsg > 0 such that G(f(sg)) > 0.

Clearly (k3) also holds when N = 1. Having proved our claim we directly obtain
from Theorem 3.1 :

Theorem 3.2 Assume that (g0)-(g2) hold. Then the functional I : H — R given
by

I(v) = %/RN Vo2 do — /]RN G(f(v)) da

is well defined and of class C*t. If in addition g satisfies (g3) then (3.2) has a least
energy solution w(x) which possesses the properties (i)-(iv) of Theorem 3.1.

At this point turning back to equation (3.1), Theorem 1.2 follows directly from
Theorem 3.2 and the properties of f (see Lemma 2.1).

Remark 3.3 In [1] the authors justify the growth restriction (k2) considering the
special nonlinearities k(s) = A|s[P~1s — ms where \,m > 0. They show that in
this case (3.3) has no solution when p > % In contrast, Theorem 1.2 says that
solutions of (3.1) do exist for all1 < p < %

In the next section we shall use the fact that the least energy solution w(z) given
in Theorem 3.2 has a mountain pass characterization. Indeed, in [9] for N > 2 and
in [10] for N =1, Theorem 3.1 is complemented in the following way :

Theorem 3.4 Assume that (k0)-(k3) hold. Then setting
I'={y e C([0,1], H),7(0) = 0 and J(v(1)) < 0},
we have T' # () and b = m with

b= inf J(v(t)).
inf max (v(?))

Moreover for any least energy solution w(x) as given in Theorem 3.1, there exists
a path v € T such that y(t)(z) > 0 for all + € RY and t € (0,1] satisfying
w € ~([0,1]) and

J(v(t)) = b.
nax, (v(t))

Remark 3.5 In [9], [10] it is also proved that under (k0)-(k2) there exists ag > 0,
0o > 0 such that
J(v) > ag ||v]|* when |[v]| < .



4 Non autonomous cases

In this section we assume that (1.1) is of the form
—Au — A(u*)u+ V(2)u = h(u), u € H. (4.1)
(

with the potential V'(x) satisfying (V0)-(V1) and the nonlinearity h(s), (h0)-(h2).
Here again we use our dual approach and first look to critical points of I : H — R
given by

I(v) = % /RN |Vo|? + V(z) f2(v) dz — . H(f(v)) de.
Namely for solutions v € H of
~Av = e [-V(@)f(0) + h(())]. (4.2)

Vit 2720)
From Section 3 we readily deduce that I is well defined and of class C' under

conditions (V0)-(V1) and (h0)-(hl). Let us show that [ has a mountain pass
geometry, in the sense that,

I'= {7 € C([Oa 1]7H)7’7(0) =0 and 1(7(1)) < 0} # Q)a

and

= inf I(~(t 0.
¢ = Inf max (v()) >

For this we first mention a direct consequence of (h2).

Remark 4.1 The function t — H(st)t™* is increasing on RT, for all s > 0. In
particular there is C > 0 such that H(s) > Cs* for s > 1 and lim h(s)s™* = occ.

s——+o00
Lemma 4.2 Under (V0)-(V1) and (h0)-(h2) I has a mountain pass geometry.

Proof. From the assumptions (V0)-(V1) we have
1

ki(s) < Tﬁ(v) [=V(2)f(v) +h(f(v))] < ka(s)
where 1
ki(s) = \/TW [~V (00)f(v) + h(f(v))] and

1

ka(s) = ———
)= e
The nonlinearities ki (s) and k2(s) both satisfy assumptions (k0)-(k3). Thus, from

Remark 3.5, we deduce (considering ka(s)) that there exists ag > 0, dp > 0 such
that

[=Vof(v) +h(f(v))]-

I(v) > ag ||v]|* when |v]| < do. (4.3)

Namely the origin is a strict local minimum. Also since the functional correspond-
ing to k1(s) is negative at some point we deduce that T' # (). 'y

10



Lemma 4.3 Assume that (V0)-(V1) and (h0)-(h2) hold. Let {v,} C H be a
bounded Palais-Smale sequence for I at level ¢ > 0. Then, up to a subsequence,
Up = v # 0 with I'(v) = 0.

Proof. Since {v,} is bounded, we can assume that, up to a subsequence, v, — v.
Let us prove that I’(v) = 0. Noting that C5°(RY) is dense in H, it suffices to
check that I’(v)e = 0 for all ¢ € C°(RY). But we readily have, using Lebesgue’s
Theorem, that

o) —T'(v)e = - V(vy, —v)Vpde

f(vn) f()
/ <\/1 +2f%(vn) i \/1 + 2f2(11)> V(x)p dz
n)

(f(vn))  h(f(v)) -
* / <\/1+2f2(vn) \/1+2f2(v)><pd 0

since v, — v weakly in H and strongly in L{ (R") for g € |2, J\%NQ [fN>3,g>2
if N = 1,2. Thus recalling that I'(v,) — 0 we indeed have I'(v) = 0. At this point
if v # 0 the lemma is proved. Thus we assume that v = 0. We claim that in this

case {v,} is also a Palais-Smale sequence for the functional I : H — R defined by

+

I(v) = %/]RN |Vol? der%/RN V(00) f2(v) dx — - H(f(v))dx

at the level ¢ > 0. Indeed, as n — oo,

T(vn) — I(on) = / V(o0) = V()] (wn) dr — 0

since V(z) — V(00) as |z| — oo, |f(s)] < |s|,Vs € R and v,, — 0 in L? (RY).
Also, for the same reasons, we have

sup ‘(j:l(vn) - Il(’l}n) )‘ = sup f(vn)u

|
[lul|<1 lul|<1 JRY /14 2f2(vy,)
Next we claim that the situation : For all R > 0
lim sup / ’Ui dr =0,
T yeRN Jy+Br

which we will refer to as the vanishing case cannot occurs. From (h0)-(hl) and
Lemma 2.1, Ve > 0 there exists a C. > 0 such that

[V( ) — V(z)] dz| — 0.

h(f(3))f(s) < es?+C.ls|"> for all s € R. (4.4)

11



Thus, for any v € H,

/RN h(f(v))f(v) dx < s/RN v? dx + C. /RN w|"s dw (4.5)

and using Lemma 2.2 we see that Ve > 0,

Un

lim h(f(v,)) ———=dx < lim h(f(vy, Uy, ) dT
Jm [ B Jm [ (I 0)
< lim [5/ v2 dac—l—C’E/ |Un|pT+1 dm]
n—oo RN RN
< ¢ lim v? de,

n—oo [pN

because, if {v,} vanish, v, — 0 strongly in LY(RY) for any ¢ €]2, 25[ (a proof

of this result is given in Lemma 2.18 of [5] and is a special case of Lemma I.1 of
[11]). We then deduce that,

lim [ h(f(v,)) In

——————dz =
n—oo [pN /1_1_2](‘2(,[]”)

This implies, since I'(vy,)v, — 0, that
/ Vo |* +V(2) f*(vn) dz — 0
RN

in contradiction with the fact that I(v,) — ¢ > 0. Thus {v,} does not vanish and
there exists a > 0, R < oo and {y,} C RY such that

lim v2dr > a > 0.

= Jy.+Br

Let vy, (x) = vn(x + yy,). Since {v,} is a Palais-Smale sequence for I, {#,} also.
Arguing as in the case of {v,} we get that 0, — 0, up to a subsequence, with
I'(%) = 0. Since {,} is non-vanishing we also have that # # 0.

Now observe that, because of Lemma 2.2, for all z € RV, n € N,

fQ(,U;I) _ f(fUNn)fUh:’L >0,
1+2f2(v,)
also, because of condition (h2), for all z € RV, n € N,

1 h(f(Wn))Vn
2 /152720,
Indeed, for all z € RN, n € N,
1 h(f(v,))v,
R A ’
2 V122 (W) 2 4

— H(f(vn)) = 0.



Thus, from Fatou’s lemma, we get

¢ = limsup {f(f}n) - ;f’(f)n)ﬁn]
. A
= h,ILn_,Solip 3 /RN [fQ(Un) - 1+2f2(v~n)] V(o0) dx

+ limsup/RN [1W—H(f(v]l)) dx

O PG 1 R(f(@)0 :
5 /. [f (0) - mm} Viydo+ [ [ L (f(3))

Y

= I(0) - %f’(ﬁ)f} = I(d).

Namely @ # 0 is a critical point of I satisfying I(?) < ¢. We deduce that the
least energy level 7 for I satisfies m < ¢. We denote by @ a least energy solution
as provided by Theorem 3.1. Now applying Theorem 3.4 to the functional I we
can find a path v(t) € C([0,1], H) such that v(¢)(x) > 0, Vo € RV, V¢ € (0,1],
7(0) =0, I(~(1)) <0, © € ([0,1]) and
nax, I(y(t)) = 1(®).

Without restriction we can assume that V(z) < V(co) but V # V(oo) in (V1)
(otherwise there is nothing to prove). Thus

I(~(t)) < I(vy(t)) forallte (0,1]
and it follows that

< [ <e.
¢S max T (1)) < a1 (@) <ec

This is a contradiction and the lemma is proved. &

At this point to end the proof of Theorem 1.3 we just need to show that there
exists a Palais-Smale sequence for I as in Lemma 4.3. From Lemma 4.2 we know
(see [6]) that I possesses a Cerami sequence at the level ¢ > 0. Namely a sequence

{vn} C H such that

I(vp) — ¢ and ||I/(Un)”H—1(1+||'Un||)—>O as n — o0.

Lemma 4.4 Assume that (V0)-(V1) and (h0)-(h2) hold. Then all Cerami se-
quences for I at the level ¢ > 0 are bounded in H.

13



Proof. First we observe that if a sequence {v,} C H satisfies
/ |V, |? de + V(x)f?(v,) do is bounded (4.6)
RN RN

then it is bounded in H. To see this we just need to show that [, v2 dw is bounded.

We write
/ vfldx:/ vfldz+/ v2 da.
RN T |, (2)|<1} {z: |vn(z)|>1}

By Remark 4.1, there exists a C' > 0 such that H(s) > Cs* for all s > 1 and thus,
because of the behavior of f at infinity, for a C > 0, H(f(s)) > Cs?, for all s > 1.
It follows that

/ W2 dz < l/ H(fw) de <~ [ H(f(v,)) da.
{z: v, (x)|>1} C z: |vg(z)|>1} C RN

Also, for a C' > 0, since f(s) > Cs for all s € [0,1], (see Lemma 2.1) we also have

1 1
/ v2dr < —/ 2 (v,) de < = 2 (vy) de.
{2+ [on(2)|<1} C Sz jon@)<1} C Jrw

At this point the boundedness of {v,} C H is clear.
Now let {v,} C H be an arbitrary Cerami sequence for I at the level ¢ > 0.
We have for any ¢ € H

% /RN |an|2 dr + % /]RN V(z)f?(vy,) do — x H(f(vn))dxr =c+o(1), (4.7)
/ = v X €T M
He = [ Yovedes | VO e

_ h(f(a))d (4.8)

RV /1 + 2f2(vn)
Choosing ¢ = ¢, = /14 2f2(v,)f(vn) we have, from Lemma 2.1, ||¢,]l2 <
C|lvnl|2 and

2f*(vn)
14+ 2f2(vy,)

Thus ||¢n|] < C|lvs|| and, in particular, recording that {v,} C H is a Cerami
sequence

‘V¢n| =1+ Vo, | < 2|V'Un"

/ _ 2f?(vn) v 12 de 2) 2 (v da
Fe)en = [ 0+ S Veltde+ [ Vi)t d
— [ RS dr = (1), (19

RN

14



Now using (h2) it follows computing (4.7) — %(4.9) that

Qvn
/ G-Las W) 92 4 2 / V(@) f?(vn) da
RN RY

2 p 142f%(va) 4
< cto(l). (4.10)

Since 1 + M < 2, if p > 4 we immediately deduce that (4.6) hold and

1+2/%(v,) — 0 F Y '
thus {v,} C H is bounded. If ;1 = 4 we obtain from (4.10)

1 Vv, |? 1 9

- ——d - v n) dr < 1). 4.11

[ ) [ V@t seron. )

Denoting u,, = f(v,), we have |Vv,|? = (1+2f%(v,,))|Vu,|? and (4.7), (4.11) give

/ (14 2u?)|Vu,|? de + / V(z)u? dr — 2 H(uy)dz =2c+ o(1). (4.12)
RN RN RN

1

1
f/ |Vun|2dx+f/ V(z)u? dx < ¢+ o(1). (4.13)
4 RN 4 RN

From (4.13) we see that {u,} C H is bounded. Thus since, by (h0)-(hl),
H(s) < |s|* + C|s|P™ (4.14)

we see, from the Sobolev embedding, that if p < % then [pn H(uy,)dz is

bounded and from (4.12) we get (4.6). When N = 3 the condition corresponds
to p < 5. In the case where we assume p < ?’I\ZIV—""I let us show that

H(up)dzr =o0 (/ u2 | V,|? dm) if / u2 |V, |* de — oo. (4.15)
RN RN RN

: - ~ _ N-2)p-1)
Using Holder inequality, we have for = *=55~5—

1-6
/ Ju, [P de < C (/ |, |2 dac) (/ |Un|% dx)
RN RN RN

0 o
(/ |ui|f?f2dx) c(/ |v<ui>|2dx)
RN RN
o
= C(/ ui|Vun|2dx)
]RN
ON

where 225 < 1 since p < 23+, Recalling (4.14) and the boundedness of {u,} in
L?(R™) this proves (4.15). Thus from (4.12) we see that [y H (u,) dz is bounded

and thus (4.6) hold. At this point the lemma is proved. A

0
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