STABILITY AND INSTABILITY RESULTS FOR STANDING
WAVES OF QUASI-LINEAR SCHRODINGER EQUATIONS
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ABSTRACT. We study a class of quasi-linear Schrédinger equations arising in the
theory of superfluid film in plasma physics. Using gauge transforms and a derivation
process we solve, under some regularity assumptions, the Cauchy problem. Then,
by means of variational methods, we study the existence, the orbital stability and
instability of standing waves which minimize some associated energy.

CONTENTS
1. Introduction and main results 1
2. The Cauchy problem
3. Existence of ground states and orbital instability 19
4. Stationary solutions with prescribed L? norm 29
5. Orbital stability 36
References 39

1. INTRODUCTION AND MAIN RESULTS

Several physical situations are described by generic quasi-linear equations of the
form

iAol (PIALIGR) + f(9P)e =0 in (0,50) x RY,
. ¢(0,z) = ao(z) in RV,

where ¢ and f are given functions. Here i is the imaginary unit, N > 1, ¢ : RN — C
is a complex valued function. For example, the particular case £(s) = v/1 + s models
the self-channeling of a high-power ultra short laser in matter (see [6, 13, 35]) whereas
if £(s) = /s, equation (1.1) appears in dissipative quantum mechanics ([16]). Tt is
also used in plasma physics and fluid mechanics ([14, 28]), in the theory of Heisen-
berg ferromagnets and magnons ([2]) and in condensed matter theory ([31]). The
dynamical features are closely related to the two functions ¢ and f. Only few intents
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have been done to develop general theories for the Cauchy problem (see neverthe-
less [10, 20, 33]). In this article we focus on the particular case £(s) = s, that is

) i6,+ A6+ GAIGP + F(6)6 =0 in (0,00) x BY,
. #(0,x) = ap(x) in RY.

Our first result concerns the Cauchy problem. Due to the quasi-linear term, it seems
difficult to exhibit a well-posedness result in the natural energy space

Xe={ue H'®R",C): / 0V uldz < o0}
RN

The local and global well-posedness of the Cauchy problem (1.1) have been studied
by Poppenberg in [33] in any dimension N > 1 and for smooth initial data, precisely
belonging to the space H*°. In [10], equation (1.1) is solved locally in the function
space L>=(0,T; H*T2(RY)) N C([0,T); H*(RY)), where s = 2E(X) + 2 (here E(a)
denotes the integer part of a) for any initial data and smooth nonlinearities ¢ and f
such that there exists a positive constant C, with

(1.3) 1 —400%(0) > Cl?(0), foralloeR,.

Note that the function ¢(o) = ¢ does not satisfied (1.3) and, then, it is not possible
to apply [10, Theorem 1.1] to problem (1.2). Before stating our result, we introduce
the energy functional & associated with (1.2), by setting

1 1
e@) =5 [ VoPds+ g [ WloPrac— [ F(oP
2 RN 4 RN RN
for all ¢ € X¢, where F(o) = [ f(u)du. Note that £(¢) can also be written

1
&0 =5 [ IVoPds+ [ JoPIVlolde~ [ PlloP)is

We prove the following.

Theorem 1.1. Let N > 1, s = 2E(¥) + 2 and assume that ag € H*™(RY) and
f € CT2(RT). Then there exists a T > 0 and a unique solution to the Cauchy
problem (1.2) satisfying

#(0,2) = ap(x),
¢ € L=((0,T[; H**(RY)) n C([0, T[; H*(R™)),
and the conservation laws
(1.4) [@(E)]l2 = [laoll2,
(1.5) E((t)) = E(ao),
for allt € [0,T7.
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The proof of Theorem 1.1 follows the approach developed in [10]. It is based on
energy methods and to overcome the loss of derivatives induced by the quasi-linear
term, gauge transforms are used. We rewrite equation (1.1) as a system in (¢, @)
where Z denotes the complex conjugate of z. Then, we differentiate the resulting
equation with respect to space and time in order to linearize the quasi-linear part
and we introduce a set of new unknowns (see (2.2)). A fixed-point procedure is then
applied on the linearized version. Since (1.3) does not hold we need, with respect
to [10], to modify the linearized version and to perform different energy estimates on
the Schrodinger part of the equation.

JFrom now on and in the rest of the paper we assume that f is a power nonlinearity
—1
f(0) = 0"z for some p > 1. In this case (1.2) becomes

(1.6) i+ Ad+ GAIG + [¢ ¢ =0 in (0,00) x RY,
. #(0,x) = ap(x) in RV,

For these power nonlinearities, motivated by the classical results of the Schrédinger
equation

(1 7) ig, + Ao + ‘¢’p_1¢:0 in (O,oo) XRN,
. #(0, ) = ap(x) in RV,

we address the question of existence of standing waves. We also study for the stand-
ing waves associated to ground states, see Theorem 1.3, their orbital stability or
instability.

p—1

Remark 1.2. Note that if p > 1 is an odd integer or p > 4E(Z)+9 then f(0) =0 =
belongs to C*T2(RT). Clearly it would be very interesting to derive a local Cauchy
theory without the restrictions on the smoothness of the nonlinearity f(o) and the
data ag. It seems out of reach with the approach used the prove Theorem 1.1. We
also point out that, even under smoothness assumptions, we do not say anything
about possible global existence. However our Theorem 1.5 regarding instability or
Theorem 1.9 dealing with stability provides some indications in that direction.

By standing waves, we mean solutions of the form ¢, (t,r) = u,(z)e ™'. Here
w > 0 is a fixed parameter and ¢, (t, z) satisfies problem (1.6) if and only if u, is a

solution of the equation
(1.8) — Au — uA(|ul?) + wu = [ulPu, in RY.

For reasons explained in Remark 1.7, we assume throughout the paper that 1 < p <

3]1VV:F22 if N>3and p>1if N =1,2. A function u € X¢ is called a (complex) weak

solution of equation (1.8) if

(1.9) R (vu Ve + V() - V(u) + wug — |u|p—1ua> dzr =0
RN
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for all ¢ € CP(RY,C) (here R(z) is the real part of 2 € C). We say that a weak
solution of (1.8) is a ground state if it satisfies

(1.10) Eu(u) =my,
where
my, = inf{&,(u) : u is a nontrivial weak solution of (1.8)}.
Here, &, is the action associated with (1.8) and reads
1 1 w 1
Eou) =< [ |VuPdz+— [ |V]ul*]*d —/ do — —— g,
(=g [ VuPdr+g [ 1VuPFar S [ P [t
We denote by G, the set of weak solutions to (1.8) satisfying (1.10). It is easy to
check that u is a weak solution of equation (1.8) if, and only if,
w 3 - Cw
E (u)¢p = lim Eolut10) = Eu(u)
t—0+ t

for every direction ¢ € Cg°(RY,C).

=0,

Our second result establishes the existence of ground states to (1.8) and derive
some qualitative properties of the elements of G,,. Our existence result complements
the ones of [1, 12, 29, 30, 34].

Theorem 1.3. For all w > 0, G, is non void and any u € G, is of the form
u(@) = lu(@)], = eRY,

for some 0 € S*. In particular, the elements of G, are, up to a constant complex
phase, real-valued and non-negative. Furthermore any real non-negative ground state
u € G, satisfies the following properties

i) u>0inRY,
ii) u is a radially symmetric decreasing function with respect to some point,
iii) u € C*(RY),
iv) for all o € NV with |a] < 2, there exists (ca,0a) € (RY)? such that

|Du(z)| < Cue % for all 2 € RV,

Moreover in the case N = 1 there exists a unique non-negative solution to (1.8), up
to translations. In particular there is a unique non-negative ground state to (1.8), up
to translation.

Remark 1.4.

(1) Observe that if u € G, is real and positive any v(z) = e?u(z — y) for § € St
and y € RY belongs to G,,.
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(2) Except when N = 1 we do not know if there exists a unique real positive
ground state, up to translation. Regarding the existence of excited states we
conjecture that, when N > 2, there exist, at least, infinitely many radial real
solutions to (1.8), as it is the case of the semi-linear equation

(1.11) — Au+ wu = |uf’ " u, in RY

corresponding to (1.7).

(3) The proof of Theorem 1.3 uses the so-called dual approach introduced in [12]
which transforms equation (1.8) into a semi-linear one which belongs to the
framework handled in [4, 5]. We also mention that, as it is apparent from
its proof, the conclusions of Theorem 1.3 hold for more general nonlinearities
then power-type. Precisely when (1.8) is replaced by

(1.12) — Au — uA(Juf’) + wu = g(u), in RY

and ¢g(u) — wu satisfies the assumptions (g0)-(g3) of [12, Theorem 1.2].

(4) As pointed out to us by A. Selvitella [36] a boots-strap argument permits to
show that any ground state actually belongs to NysoH*(RY) and, in particular,
is of class C'°.

Next we establish, for p > 1 sufficiently large, a result of instability by blow-up.

Theorem 1.5. Assume that w > 0,

34 4 < 3N + 2
NS TN
p—1
and that f(o) =0 2z € CT*(RY). Let u € X¢ be a ground state solution of
(1.13) — Au+ulA|u* +wu = [uffuin RY.

Then, for all e > 0, there exists ag € H*"*(RY) such that ||ag — ul|gs+2@yy < € and
the solution ¢(t) of (1.6) with ¢(0) = ao blows up in finite time in the H*T2(RY)
norm.

Remark 1.6. Concerning the nonlinearity f, the assumptions of Theorem 1.5 hold
for

p>9when N=1, p=7,911or p>13if N =2,
(1.14) p=>5"T79if N=3and p=5if N =4.
Clearly any weakening of the smoothness assumptions in Theorem 1.1 would extend

the conclusion of Theorem 1.5.

To prove Theorem 1.5 we assume by contradiction that the solution ¢(t) exists
globally in H*™2(RY) and we show that, actually, a blow-up behavior must occur.
For this we first establish a virial type identity. Then, we introduce some sets which
are invariant under the flow, in the spirit of [3]. At this point we take advantage of
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ideas of [25]. Namely, by introducing a constrained approach and playing between
various characterization of the ground states, we are able to derive the blow up result
without having to solve directly a minimization problem, in contrast to [3].

When 1 < p < 3+ %, we conjecture that the ground state solutions of (1.8) are
orbitally stable. However, we did not manage to prove this result. Instead, we

consider the stability issue for the minimizers of the problem
(1.15) m(c) = inf{E(u) : ue X, |ul2=¢},

where the energy & reads as

1 1
1.1 == *d 2 %d ——/ P,
16) e =g [ 1VuPde+ [ liidPde - —= [ Pt

This problem is interesting for itself but also, hopefully, could be a first step to
consider the orbital stability of ground states of (1.8) for fixed w > 0. Indeed take
any solution u to problem (1.15), namely ||ul|3 = ¢ and £(u) = m(c). Then it is a
classical fact that there exists a parameter w*, depending on ¢ and u, such that u
solves equation (1.8) with w = w* (see Lemma 4.6). However to study the orbital
stability of the ground states of (1.8) via the constrained approach (as it is the case in
the classical paper of Cazenave-Lions [9] on (1.11)) we need to have more informations
on the ground states of (1.8). In particular we need to know that they share the same
L? norm. Except when N = 1 where we have the uniqueness of the ground states,
this information is not available to us. Now, when N = 1 we still need to know if,
when u; and uy are two distinct solutions to the minimization problem (1.15), then
we have w] = w3. We did not manage to show this.

Concerning problem (1.15) we show that if p < 3 + + then m(c) > —oo for any
¢ > 0. On the contrary, when p > 3 + %, we have m(c) = —oo for any ¢ > 0.

Remark 1.7. The key point to show that m(c) > —co if 1 < p < 3+ & is the use
of the following Gagliardo-Nirenberg inequality : For some K > 0 depending only on
N, and for any u € X¢

ON

1-0 oN_
/ lu|Pdr < K(/ |u|2dx> </ |u|2|V|u||2dm> e
RN RN RN

with
) (- 1(N-2)
2(N +2)
When p < 3 + % we have % < 1 and thus the negative term in (1.16) can be

control by the second one. Recall that the corresponding functional setting associated
to (1.11) is given, on H*(RY), by

1 1
I(u) = 5/ |Vul*dz — ?/ ulPtdx
RN p RN
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and
d(c) = inf{I(u) : v € H'(R™), ||ulj3 = c}.
In this case to control the negative term, and thus to insure that d(c) > —oo, requiring
that p < 1+ % is necessary. These considerations show that the exponent 3+ % plays
for (1.8) the role of 14 & in (1.11). The same Gagliardo-Nirenberg inequality, and
the definition of X¢, also permit to extend the range of the power to 1 < p < %
3N+2

The value %= corresponds to the classical limiting Sobolev exponent %

Remark 1.8. We recall that for (1.11) the ground states are stable for 1 < p < 1+ +
and unstable for p > 1+ < (see [3, 9]). Thus, in light of Remark 1.7, not surprisingly
the condition p > 3 + % appears in our Theorem 1.5.

Denote by G(c) the set of solutions to (1.15) and observe that if u € G(c¢), then any
v(z) = ePu(z —y) for § € St and y € RN belongs to G(c). Our result of orbital
stability is the following.

Theorem 1.9. Assume that

4
l<p<3+4+ —
p +N’

and let ¢ > 0 be such that m(c) < 0. Then G(c) is non void and, if f(o) =02z €
C*T2(R™), it is orbitally stable.

Remark 1.10. In Theorem 1.9 when we say that G(c) is orbitally stable we mean
the following: For every € > 0, there exists § > 0 such that, for any initial data
ap € Xc N H*P?(RYN) such that inf,cg( [|ao — ullm < d the solution ¢(¢,-) of (1.2)
with initial condition ay satisfies
sup inf [|o(t, ) —ullm <e,
0<t<Tp wEG(c)

where T > 0 is the existence time for ¢ given by Theorem 1.1. We observe that our
assumptions permit to treat the case p = 3 in any dimension N > 1.

The proof of Theorem 1.9 relies, in an essential way, on the convergence of any
real minimizing sequences for (1.15). This convergence result being established, the
proof of orbital stability follows in a standard fashion.

Theorem 1.11. Assume that 1 < p < 3+ % and that ¢ > 0 is such that m(c) < 0.
Then for any real minimizing sequence of (4.2), there exists a subsequence that is
strongly converging in X, up to a translation in RYV.

The proof of Theorem 1.11 itself relies on the use of concentration compactness
arguments. The key difficulty is to rule out a possible dichotomy. For this when one
considers (1.11) it suffices to use the fact that the nonlinearity is superlinear. Here it
is essential to make use of the autonomous feature of (1.8) as we need to use scaling
properties.
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We end this paper discussing the condition m(c) < 0.

Theorem 1.12. The following results holds :

1) If that 1 < p <1+ +, then m(c) <0 for all ¢ > 0.

2)If 1+ % <p<3+ %, then there ezists c(p, N) > 0 such that

i) If 0 < ¢ < ¢(p, N) then m(c) =0 and m(c) does not admit a minimizer.
ii) If ¢ > ¢(p, N) then m(c) < 0 and m(c) admits a minimizer. In addition, the
map ¢ — m(c) is strictly decreasing.

Remark 1.13. We recall that dealing with (1.11) we have that m(c) < 0 for any
¢ > 0 (see [37]) if and only if 1 < p < 14 4. Theorem 1.12 reveals that the minimizing
problem (1.15) has a much richer structure.

Notations.

(1) For a function f: RY — RY and 1 < j < N, we denote by 9;f the partial
derivative with respect to the j* coordinate.

(2) M(RY) is the set of measurable functions in RY. For any p > 1 we denote by
LP(R™N) the space of f in M(R") such that [y |f[Pdz < oco.

(3) The norm ([fun |f|Pdz)'/? in LP(RY) is denoted by || - ||,

(4) For s € N, we denote by H*(R") the Sobolev space of functions f in L?(R")
having generalized partial derivatives dFf in L2(RY), for i = 1,..., N and
0<k<s.

(5) The norm ([pn |f?dz + [on [V f[?dz)*/? in H'(RY) is denoted by || - || and
more generally, the norm in H*® is denoted by || - || gs.

(6) LN(F) denotes the Lebesgue measure of a measurable set £ C RV,

(7) For R > 0, B(0, R) is the ball in RY centered at zero with radius R.

(8) R(2) (resp. I(2)) denotes the real part (resp. the imaginary part) of a complex
number z.

(9) For a real number r, we denote by E(r) the integer part of .

(10) X denotes the restriction of X¢ to real functions.
(11) K, K(p, N) denote various constants which are not essential in the problem
and may vary from line to line.

Organization of the paper.

In Section 2, we prove Theorem 1.1 concerning the well-posedness result for equa-
tion (1.2). In Section 3, we establish the existence and properties of the ground states
solutions of (1.8), Theorem 1.3 and we prove the instability result, Theorem 1.5. In
Section 4, we study the minimization problem (1.15). Assuming that m(c) < 0 we
prove the existence of a minimizer and we study under which conditions m(c) < 0



STABILITY AND INSTABILITY FOR QUASI-LINEAR SCHRODINGER EQUATIONS 9

holds. Finally, in Section 5, we prove the convergence of all minimizing sequences
of (1.15) and thus derive the stability result, Theorem 1.9.

Acknowledgments. The first author thanks M. Ohta for helpful observations con-
cerning the Cauchy problem. The second author thanks Patrick Hild for stimulating
discussions around the non-existence result of Theorem 1.12. The authors also wish
to thank the two anonymous referee for carefully reading the manuscript and for
useful remarks that helped to improve the paper.

2. THE CAUCHY PROBLEM
This section is fully devoted to the proof of Theorem 1.1.

We first rewrite equation (1.2) into a system involving ¢ and ¢ in the following

way
(o A\ [ 26IV6L + 6f(6]) ) _
e () a0 (55) - (25 rlon ) =0
where
M G
A(o) = — :
@) ( 7 —(+1eP) >
A direct calculation shows that A(¢) is invertible and that
1
—1 _
A7) = g A)

In order to overcome the loss of derivatives and to linearize the quadratic term in-
volving V¢, we differentiate the equation with respect to space and time variables to
obtain a new system in ¢y, ..., dnio Where ¢g = ¢ and

(2.2) VI<j<N, ¢ =000, dnp1 =1, dniy=ell9P A,

The functions g and ¢ are used as gauge transforms and their role will be explain
later. We also set ®* = (¢;); and ® = (Qﬁj)jy;gz. Equation (2.1) can be rewritten as

(2.3) 2 < (d0): ) + A(¢o) < Ao ) + Fo(9*) =0,

(¢0)¢ Ado
where Fj is a smooth function depending only on ®*. Differentiating equation (2.3)
with respect to x; for j =1,..., N, we obtain
N
() ) < Ag; ) ( Thjon+2 >
2 (%)) 4+ 4 %) +3" B(ey, i
( @ ) TA ag, ) T2 BOu g

)¢ y ¥J
+C(¢o, ¢;) ( e—q(|¢o|2>51i ) + ( —F(*,¢;) ) o
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where B, C' and F' are smooth functions of their arguments and especially

God; + dod; 2000, >
_2¢0¢j _¢0¢j - ¢O¢J '

For¢,5 =1,...,N, Tj; is the following operator of order 0

Clo.65) = B, A(d) = (

Ty = 00,07 (e 11" D).

We can rewrite these equations as follows

ey o )+ ) ( o7 )+ FO yn, Tonea) =0,

where F; is a smooth function of its arguments. Differentiating equation (2.3) with
respect to t, we derive

2@,( (e:f(lqﬁolz)?zvﬂ)t ) (b, e 0Py ) ( e q(|¢0\2)¢N+2 >

(6 T(l¢ol )¢N+1)t —q(|#0]?) ¢N+2
INCRLLIRPNN N O(e= 1190 pr 1)
(2:5) +A(¢0) ( A(i—f(l%l"’)agi) ) k; (¢0’¢k)( k( f(\¢o|2)<_bzi) )
F<(I)*7€_f(|¢0‘2)¢N+l> =0
PSR e ttaiigy) ) =0
which can be rewritten as
[ (dni1): ) ( Adn i > o ( Ord 1 )
2o #{ o ) A (35 + 2 Do) | g
+g(q)7T¢N+2) = 07

where D and G are smooth functions of their arguments. By applying the operator
A on equation (2.3), we obtain

N
 (Pn42)e ) ( A2 ) OkPN+2
2| = + A(¢ = + > E(¢o, ¢ =
ory 2o ) v (557 )+ s (5
+I(q)a T¢N-‘r2) = 07
where £ and Z are also smooth functions of their arguments. At this point, we need

to make more precise the matrices B, D and &£ since they represent the quasi-linear
part of the equations. A direct computation gives

[ 2000, 2600
O o ]

D(go, @) = B(eo, ox) — 2 (60l*) A(0) ( P ¢Oak0+ Goo ) |
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E(po, 1) =B (¢, dx) + 2C (9o, ¢
' 2y [ Pobr + PP 0
2 (euf) (20500 0o,

Usual energy estimates for Schrodinger equations requires that the diagonal coeffi-
cients of D and &€ in equations (2.6) and (2.7) are purely imaginary. Roughly speaking,
this allows to integrate by parts the bad terms including first order derivatives of the
unknown. This is why we make use of gauge transforms g and ¢. Finally, in order
to avoid any smallness assumption on the initial data, we need to transform slightly
equation (2.3) in the following way. We multiply the equation by A~!(¢) and we
split the matrix in front of the time derivatives of ¢q into

AN (o) = Id+ (A (6) - Id),

where Id is the 2 x 2 identity matrix. Then recalling that 8,09 = e 90 pp. 1, we
rewrite equation (2.3) in

" i(ii )+ (58) roim=o

where

Go(®) = A (60) Fol@°) + e~ (A= gn) — 1) ( On+1 ) |

N1
We then have transformed equation (1.2) into the following system

o () (22) e
for j=1,...,N
210) 20 ((2) )+ A0l (42 )+ O v Tove) =0,

. @NH») (A@m) S (akgsNH)
(2.11) 2Z<<¢N+I>t FAGI Agy +;D(¢°’¢’“) K41
+g(q)7T¢N+2) = Oa

. @Nmt) (Agsm) - (a@m)
o 2 (G0 ) w250 2 Em e g,
+I(®, Ty o) = 0.

We now apply a fixed point theorem to system (2.9)-(2.12). Let s be as in Theorem 1.1
and introduce the function space

- { O = (6))42 : ¢ € C([0,T; LA(RY)) 1 L=(0, T; H*(RY)), }
TV @l = S supgeer 165 (1) |

HS(]RN) < 0
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For M = (m;)}* € (R7)"® and r € RY, we denote

Xp(M.r) = = ()7 € Xp:Vi=0,...N+2 [|§)ll 0.7, my) < My
T ) - — )
||(¢0)t||LOO(O’T;HE(g)+1(RN)) <r and ¢o(0,z) = ap(x)

and let U = (@/)J)J\“L2 € Xp(M,r). Denote * = (¢;)}. and consider the linearized
version of system (2.9)-(2.12) as follows

(2.13) 2 < EZE; ) + ( ﬁ% ) + Go(¥) =0,

forj=1,...,N

(2.14) 2 ( %;z ) + A(tho) ( ﬁ%j ) + Fi (U s, Tihn42) = 0,

A (Pn+1)e > ( Adn1 ) - ( OkPN+1 )
(2.15) 22( Guie ) TA gy, ) T2 PO g5 T
+G(V, Tn42) =0,

(6 Ao ~ O
a0 2 (o )+ (3507 )+ e (9 )
+I(‘I’ T¢N+2)

N+3

Let Z L>=(0,T; H¥(RY)) n C([0, T]; L*(RN))] Then the Cauchy problem

(2.13)-(2.16) Wlth initial condition
¢0(0,2) = ap(x), for j =1,..., N, ¢;(0,z) = 0;a¢(x),

dn41(0,7) = %eg(aO(z)Q) (—A(90(0))Aag(z) — Fo(¥*(0))),

¢N+2(0 $) = ¢! (lao(= Aao( )

defines a mapping S

S Z2—Z
U r— O,

For more details on the existence result for system (2.13)-(2.16), we refer to [10]
and [33]. In order to prove Theorem 1.1, we have to find a time 7" > 0 and constants
M e (R%)N*3 and r € R% such that S maps the closed ball Xy (M, ) into itself and
is a contraction mapping under the constraint that it acts on Xr(M,r) in the norm
Zj.v:’:f suPepo,r)l|®jll2. We begin with equation (2.16) and perform an H*-estimate.
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Following [10], we apply the operator (1 — A)2 on equation (2.16) and multiply the
resulting equation by A~!(¢g) to obtain, denoting X =(1—=A)2pn4o

ke ()t Ay DX
(2.17) AT (o) ( )+ ) " ( ) " ZE Yor ¥, Oito) ( DX N2 )
+‘7js=0<Dj\Ij7 Dj¢N+2, Tnio) = 0

where D’ denotes any space derivation of order less or equal to s with respect to the
4t space coordinate. The matrix £ reads

L (o, Y, Oxtho) = A~ (o) (5(%7 i) + Sﬁku“(%))-

We notice here that the dependence of 7 in ¢y, o and its derivatives is affine. We
are now able to choose the gauge transform ¢. Recall that

E(Wo, Yr) =B (Yo, r) + 2C (o, Vi)

~ 24w () (PRS0 S )

a direct calculation shows that for j = 1,2 (denoting by b'* and b*? the diagonal
coefficients of a 2x2 matrix b),

§R<~A71(¢0)(3(¢07¢k) + 20(%7%))) ’

Then choosing

g (0 + o)
q(o) = zln(l + 20)
gives -
R(A (Wo)E (w0, 1)~ =0,
Furthermore, by differentiating equation (2.17) s times in space, we add in matrix £

the term sA™1(10)OkA(1)o) which is not eliminated by ¢g. As a consequence we have
to use a second gauge transform by putting r = %)y solution to

- (k) Ak O
215 247 W0) ( o ) ; ( ) ZM (o, e Do) ( o )
+IC_ (D7, DY G o, T2, (1h0): )
where

-~ Hwb(|thol?) 0
Mo, ¥r, Oxtbo) = L(Yo, ¥k, Oxtbo) — 2 < 0 Beb([vo|2) ) :

Note that the matrix I depends also on (7)g);. Once again, an easy calculation shows
that if we choose b such that

b(o) = Zln(l +20),
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then for j = 1,2

R ana() —2 (2100 )) <

We are now able to perform the suitable energy estimate on equation (2.18). Multi-
plying equation (2.18) by %, integrate over RY and taking the first line of the resulting
system leads to

1 2
1 / iobmtﬁdx +1 / Y g ReRdT + AkRdx
gy 1+ 2[thol ry 1+ 2[tho] RN

+ Z/ MH ¢07¢kaak¢0)(akﬁ)ﬁd$
(2.19) + [ M (o, Yk, Do) (O ) Rda
RN

+ /N K_o(D?W, DY iy o, TN 12, ()R
R

We take the imaginary part of equation (2.19). We have

o f 1 + |¢0|2 — ¢2 —

J(Z/RN T 2|¢0‘2/<;t/<;d:c+z/RN1 2|¢0|2/€t/@d1‘)

. L+ Yol o U3 9 %3 2

- /RN 25 Ao e+ /RN (4(1 oD T 2 ”)df"
_d L+ Yol | o U3 —9 Eﬁ 2

- E(/RN 2 g /RN (4(1 2l T a2 )d””)

2 2 —2
Y i [ () () )

The other terms in equation (2.19) are classical and can be treated exactly as in [10].
The important point to notice is that since the diagonal coefficients of M are pure
imaginary, one has for k=1,..., N

|5,

%</ Mll(iﬂo,wk,awo)(akﬁ)ﬁdx) :/ Im<M11(¢o,¢k,3k¢o))ak
RN RN

[

:_/RN 3k<1m(M11(¢0>¢k78’“¢0))> 2
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by integration by parts. This allows to overcome the loss of derivatives of this quasi-
linear Schrédinger equation and brings the following estimate

d L+ ol | v, do
alLoataaerta [ Garsmm™ * amsswp)®)

(2200 <4 / (Io[2)u|l2dz + €y (M, P)||A12,
RN

where C1 (M, r) is a constant depending only on M and r. To derive inequality (2.20),
we have used the fact that

1+ |¢0|2 _ (|7/)0|2)t _ 1+ |¢0|2 )
(2+4|¢0|2)t 2+ 4|2 4((2+4|¢0|2)2>(|1/’0| )t

L R Y3 )

A (o "
(4(1 -+ 20|1/10‘2))t N 4(1 —+ ;‘wOP) B <2(1 + 2(|)¢0|2)2> (‘w0‘2>t
and then

2 9 —2
/RN (%)J“'Qd% - / ((mﬁ + (W)ﬁ)dfﬁ’
<4 [ (wuPynid,

Using the fact that

<
ti{%?ﬂ ’|(¢0)t’|HE<%>+1(RN) =7

and the continuous embedding HZ(2)TH(RN) — L*(RY), we can find a constant
Cy(M, r) such that

d 1+ %ol | v, do
alLoataaeta [ Garsmm™ * amsswp™)®)
221) < (M. r)s2.

Integrating inequality (2.21) from 0 to t gives

1+ [¢o(t)[? 2 V2 (t) L Ei(t) ,
/RN 2+ 4fho(t)|? s de + /RN (4(1 +2d0R) " #)+ AT+ 2o (D))" (t>)d$

1+ [tho(0)[? 2 ¥2(0) Ly e (0) ,
< [ v [ (rsamm™ O mesaom )

+Cy(M, 7“)/0 () [2ds.
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For all ¢ € [0, 7], we have

1+ [2ho(t)[”
2+ 4ldho(t)[?

Denoting by

B Polt)
Tt 2B a0 20O

RA(t) = |5 (t)[".

1
2
O RERZION

L+ [ (O o o) U0
Clva® = [ s aiar Ot [ (s samm Ot e sammr 0)e

we derive

22) [ G n(OPde < Cla(0) + G4 [ k(0B

Recalling that ¢y € L>(0,T; H*(RY)) and the continuous embedding H*(RY) —
L>®(RY) and denote by Cj the best constant of this embedding, we have

190 () || oo mvy < Cymg.

This provides

1 1
— _|k()Pdr > ——— t)d
Lo TP 2 i [ P

which gives

(2.23) /R IR()Pde < 2+ 4C7m}) (01N+2(0) +Oy(M, 1) /0 ||/i(s)||§ds>.

Since the gauge transform b does not depend of ¥ and for all t € [0, T, ||¢bo(t)]] Lo mry <
my, there is a constant C'(mg) depending only on myq such that

Sup ||e—b(\¢0(t)|2)||ioo(RN) < C(my).
te[0,7)

Recalling that r(0) = eP(%0) (1 — A)3(e4(90*) Agg) and choosing my4o such that
(2.24) Mo > 20(mg) (2 4+ 4C;mg)Cly42(0) + 1,
one can find a positive 7" such that for this choice of myo

(2.25) sup ||on2|
t€[0,T]

Hs(RN) < M2

Note that my.o depends only on the initial data ay and my. Performing the same
kind of estimates on equations (2.16), one can find a positive 7" and constant my1
depending only on ay and my satisfying

(2.26) mis1 > 20(mo) (2 + 4Cimg) Cly41(0) + 1,
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where

_ 1+ [1ho(0)]? >

O[N+1(0) = /RN W'V{O” dx
WO, )

+ o G e O 1 gm0

with
v(0) = e?10l) (1 — A)z (9001 g,q0),

such that
(2.27) sup (|1l msryy < My

te[0,7
Dealing with equation (2.14), we introduce for j =1,..., N
5(0) = (1= A)i0ya,

and

cn0) = [ gl OPd

wo) 0
+ o G a0 T s aam @)

Choosing m; depending only on ag and mg such that

(2.28) m? > 2(2+4C;md)CL;(0) + 1,

we derive

(2.29) for j =1,...,N, sup ||l pgs@n) < m;.
te[0,7)

Treating now equation (2.13), we introduce
£(0) = (1 - A)zag
and

CIy(0) = / (o).

17

It is crucial to remark here that equation (2.13) is not quasi-linear. As a consequence,
we can perform a classical energy estimate on it and choose the constant mg such

that
(2.30) mg > 2C1y(0) + 1.

The choice of my depends only on the initial data ag.
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Remark 2.1. If we work with equation (2.3) instead of equation (2.9) and perform
the energy estimates of equation (2.16) for example, we have to choose mq such that

mg > 2(2 + 4Cim3)CIo(0) + 1

where

Cn0)= [ 3o

w0) U0
+ [ Gasaaomt O+ e saomt 0

Such a choice requires of course a smallness assumption on the initial data ay.

Let us take mg as in (2.30). Then one can find also a positive T" such that

(2.31) sup ||¢o
te[0,7

We refer to [10] for the technical details. Due to the structure of the space Xp, it
remains to estimate (), in HZ(2)+*1(RY). This is done directly on equation (2.13)
and provides that there exists a constant Co(M) depending only on M such that
(232) D [[(G0)ly )11y < CoM).

t€[0,T]

Hs(RN) S mo.

As a conclusion, we choose constants M, r and T as follows. We first fix mg depending
only on ag such that (2.30) holds. Then we take (m;), mnyy1 and myo depending
only on ag and mg satisfying respectively (2.28), (2.26) and (2.24). Finally take r
such that

r > Co(M),

and T sufficiently small such that

1
C4<M, T)T S 5,

and similar conditions to take into account the equations on ¢g, ¢; and ¢n4,. For
such a choice of parameter, we have showed

S(XT(M, r)) C Xp(M, 7).

The fact that the mapping S is a contraction for the suitable norm is very standard
and we refer once again to [10] since the proof reads exactly the same. By the
contraction mapping principle, there exists a unique solution

@ = (90, (8))os 61, B
to system (2.13)-(2.16). Furthermore, for each 0 < j < N+2, the function ¢, satisfies
¢; € L=(0,T; H*(RY)) n C([0, T); L*(RY)).
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To conclude the proof, we have to show that the solution ® solves system (2.9)-(2.12)
and has the following regularity

@ e (10,7 B (@) n O (0, 7); HS(RN)))N+3.

This can be done exactly as in [10]. The proof of the conservation laws (1.4)-(1.5) is
very standard once we have proved that ¢ is regular and so we omit it. At this point
the proof of Theorem 1.1 is completed.

3. EXISTENCE OF GROUND STATES AND ORBITAL INSTABILITY

In this section we derive the existence, as well as some qualitative properties, of
the ground states solutions of (1.8). When p > 3 + % we shall also prove that the
ground states are instable by blow-up.

We begin with the following Pohozaev-type identity.

Lemma 3.1. Any u € X¢ solution of (1.8) satisfies P(u) =0 where P : X¢c — R is
the function defined by

N—-2/1 w 1
p :_<_ 2 2 2 > _/ 2 __/ Pl g,
(u) I 2/RN\Vu\ dx—l—/RN \ul*|V]u||*dzx +3 - |ul“dx DT o |ulP™ dx

Proof. Since the proof only uses classical arguments, we shall just sketch it and refer
o [11] for further details. Let u € X¢ be a solution to equation (1.8). From [29,
Section 6. Appendix] we learn that u € L{° (RY) (the proof given there extend easily
to complex valued functions). We are then able to pursue as in [11, Proposition 2.1].

Let ¢ € C°(RY) be such that ¢ > 0, supp(¢p) C B(0,2) and ¢ = 1 on B(0,1). For
all j € N*, we set ¢;(z) = 9(3). Now let (pp)nen be a sequence of even positive
functions in L'(RY) with [,x pndx = 1 such that, for all K € LY(RY), p, * & tends to
k in LY(RY), as n — oo, for all 1 < ¢ < co. First, we take the convolution of (1.8)
with p,. Then, we multiply the resulting equation by v, x - V(u * p,), integrate
over RY and consider the real part of the equality. From that point, the calculus are
standard consisting in various integrations by parts. Hence, we omit the details and
we refer the reader to [11]. In order to conclude the proof, it is sufficient to apply
the Lebesgue dominated convergence theorem. O

Proof of Theorem 1.3. We shall distinguish between the cases N = 1 and N > 2,
which require a separate treatment.

e Case N > 2. We divide the proof into four steps.

Step I (existence of a solution to (1.8)). We prove the existence of a ground
state solution u, € X¢ to (1.8) satisfying conditions i)-iv) of Theorem 1.3. Following
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the arguments of [12], we perform a change of unknown by setting v = r~!(u), where
the function r : R — R is the unique solution to the Cauchy problem

1
3.1 P(s) = ——— r(0)=0.
1) 9= g O
Here u € X¢ is assumed to be real valued. Then, in [12] it is proved that, if v €
HY(RN) N C*(RY) is a real solution to

1
3.2 —Av:—<rvp_1rv—wrv>,
32 s (PO
then u = r(v) € Xc NC?*RY) and it is a real solution of (1.8). Let us set
1
k(v :z—(rv P=Lp(y —wrv):r'v (rv P=Lp(y —wrv),
(v) 1+27,2<v)|()! (v) —wr(v) () [r(@)P~r(v) —wr(v)
and denote by 7, : H'(RY) — R the action associated with equation (3.2), namely
1
T.(v) = -/ Voltde — [ K(v)de,
2 RN RN
:1/ Voltde — —— [ (v)yp+1da:+f/ Ir(v) Pda
2 P —+ 1 2 RN ’
where we have set K(t fo s)ds. Now, it is straightforward to check that k

satisfies assumptions (gO) (g3) of [12] Thus, from [12] (see also [4, 5]) we deduce the
existence of a ground state v,, of (3.2) satisfying conditions i)-iv) of Theorem 1.3, that
is v, solves (3.2) and minimizes the action 7, among all nontrivial solutions to (3.2).
Therefore, setting u, = r(v,), we get that u, solves (1.8) and satisfies conditions
i)-iv) of Theorem 1.3 (see [12, Theorem 1.2]).

Step II (existence of a ground state to (1.8)). In this step we prove that u,,
minimizes the action &,, over the set of nontrivial solutions to the original equa-
tion (1.8). To achieve this goal, we make the following observations. Notice first
that, if u = r(v) with u € X¢ real, then &,(u) = 7,(v). Indeed, we have
1

IV /
Eu(r(v)) = _/ TQ(U)WU‘deJF/ 7 (v)|*r 2 (v)|V || Pdz — —— | ()P da

2 RN RN p+1
+ E/ r(v)|*dz

2 Jan
-3 1 ? L 20y — p+1
B Q/RN 1+27’2(U)‘VU| dl‘—i—/RN 1_|_27~2( ) ( ) |VU’ dzx +1 ‘ (U>| dx
+ E/ lr(v) [Pz

2 Jan

3 [ vbde = —= [ pptacs s [ pe)pa

p+1 2 Jgn

T2
=T, (v),
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thanks to the Cauchy problem (3.1). Also, if u € X¢ is a solution to (1.8) we have,
in light of Lemma 3.1, that

1 2 2 2
(3.3) Eulu) = — |Vu| + 2|ul?|V]u||*dz.
N RN

Once these facts have been observed, take any solution u € X¢ to (1.8) (notice that
u can be a complex valued function) and set v = r~'(Ju|). Due to the well-known
point-wise inequality |V|u(z)|| < |Vu(z)| for a.e. z € RY it holds

(3.4) /RN IV |u(z)||?dx < /RN |Vu(x)|*dr,

so that &,(|u]) < &,(u) (notice that all the other terms in the functional &, are
invariant to the modulus). Thus, in turn, we have

(3.5) Eu(u) = Eu([u]) = Eu(r(v)) = Tu(v).
Now, let us set
A={ve H(R"): P(v) = 0},
where P : H'(RY) — R is the functional defined as
P(v) = (N — 2)/ |Vul*dx — 2N K(v)dx.
RN RN

Clearly, for any v € A, we have

(3.6) T,(v) = ]Vv| dx.

N

7. (v), it is readily checked that, if v = r~1(u)

Also, as for the proof that &,(u) =
= P(u). Finally, it is well known (see e.g. [4, 5]) that

with u € X¢ real, then P(v)
v, satisfies

(3.7) U, € A, 7,(vy) = irelg’];(v).

Now, if N = 2, it follows from the definition of P in Lemma 3.1 that P(|u|) =
Thus, in turn, P(v) = 0 and, using (3.5) and (3.7), it follows that

(3-8) Ew(u) > L(”) > L(Uw) = 5w(uw)a

proving the desired claim. If N > 3, one of the following possibilities occurs.

i) P(|u|) = 0. In this case inequality (3.8) holds exactly as in the case N = 2.
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ii) P(Jul) = P(v) < 0. In this case there exists a number ¢ € (0,1) such
that, setting vg(x) = v(x/6), we have P(vg) = 0. Now, since vy € A, us-
ing (3.3), (3.4), (3.6), (3.7), it follows that

Lo =+ [ Vulde =2 [ vopa
w Vg N . V| ax N n vlraxr
0N72
= V]l |? + 2[uf*|V]ul|*dz
N Jon
9N—2
< |Vul? + 2|ul?|V|u||*dx
N Jen
9N—2
= TN&U(U) = 0N2E,(u) < E,(u).

Thus, we get
80.)(”) > ,Z:J(’UH) > Iu(vw) = gw(”w)-

Then, in conclusion, we proved that for both the cases N =2 and N > 3, u, € X¢
indeed minimizes the action &, over the set of nontrivial solutions to (1.8).

Step III (real character of solutions). First we prove that, if u € X¢ is a ground

state solution to (1.8), then |u| € X is also a ground state. We set v = r7!(|ul).
Observe that it holds

(3.9) my = £,(u) > E,(Jul) > ().
In the case N = 2, we have P(v) = P(|u|) = 0 and, thus, we conclude &,(|u|) = m,,
by using (3.7), (3.9) and recalling that 7,(v,) = &,(u,) = my,. If N > 3, and
P(v) = P(Ju|) < 0 we introduce, as before, the rescaling vy such that P(vs) = 0.
Then, we get

T, (vg) < Eu(u) = my,,
and we immediately reach a contradiction by arguing as before. Now, let u € X¢ be

a ground state solution of (1.8) and assume that

LY{z e RY : |V]u|(z)| < |Vu(x)|}) > 0.

Then we get
1 1
mw:—/ \V!uHde—l—/ yumwuwdﬂf/ yu\%zx——/ ufda
2 RN RN 2 RN P+ 1 RN
1 1
< —/ |Vu|?dx +/ u|?|V|u||*dz + f/ lu|?de — —— lu|PTdz = m,,.
2 RN RN 2 RN p+1 RN
This is obviously not possible and, hence, we have |V|u(z)|| = |[Vu(z)|, for a.e.

r € RY. But this is true if, and only if, RuV(Su) = SuV(Ru). Whence, if this
last condition holds, we get

aVu = RuV(Ru) +SuV(Su), ae in RY,
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which implies that R (iu(z)Vu(z)) = 0 a.e. in RY. This last identity immediately
gives the existence of § € S' such that u(x) = e®|u(z)]|.

Step IV (properties i)-iv) for any real non negative ground state). In light
of some recent achievements [32, 7|, we can prove that any real ground state solution
to (1.8) is radially symmetric and radially decreasing about some point. In fact we
observe first that for any given solution u of (1.8), by [29, Section 6. Appendix],
u € L (RY) and in turn u € C*RY) (cf. [22]). Considering now the strictly

loc
increasing function x4 : R — R such that

(3.10) p(s) =vV1+2s2 ©(0) =0,

it is easy to see that v = u(u) is a solution of (3.2). Notice that p is precisely the
inverse function of the function r introduced in Step II, roy = por = Id. Furthermore,
we claim that if u is any given ground state of (1.8), then v = p(u) = r~1(u) is a
ground state of (3.2). In fact, taking into account the computations in Step II of the
proof, for any nontrivial solution w of (3.2), r(w) is a (nontrivial) solution of (1.8),
and we have

Lo(w) = Ey(r(w)) = my = E,(u) = E,(r(v)) = To(v),

which yields the desired conclusion. At this point the fact that any ground state solu-
tion is radially symmetric and radially decreasing about some point is a consequence
of the results of [7] (see also [19]) applied to equation (3.2). Here let us point out that
the radial symmetry (plus radial decrease) could have also been proved by arguing
directly on equation (1.8) which, in fact, satisfies a scaling property being the essence
of the results of [7]. Now let u € G, be such that v > 0 in RY. Since u € C?(RY)
we have by the maximum principle (applies to v = pu(u) ) that u > 0 on RY. Finally
using [5, Lemma 2] on equation (3.2) we immediately derive the exponential decays
indicated in the statement of Theorem 1.3.

e Case N = 1.

By taking advantage of the transformation of problem (1.8), via the dual approach,
into the semi-linear equation (3.2), we know that equation (1.8) admits a unique
positive and even solution (see [5, Theorem 5]). Thus it just remains to prove that
any solution u of (1.8) is of the form u = ¢“¢, where § € R and ¢0 is a solution
to (1.8). In fact |u| > 0, otherwise we would get a contradiction with the identity

Loy 1 nn2 W2 1 p+1

z Z - = _ =0.

Sl JIRYP = Sl + —

This identity is obtained multiplying (1.8) by the conjugate of «’ and by performing
standard manipulations. Then, we can write down the solution in polar form, u =
pe?, where p, 0 € C*(R). By direct computation, it holds u” = [p8" +2p'¢'] e*i+ [p" —
p(0')?] €. Then, by dropping this formula into equation (1.8), exactly as in [8, proof
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of Theorem 8.1.7(iii)], one immediately reaches (by comparison of real and imaginary
parts) the following identity

(3.11) pd" + 200" =0,

namely 0’ = p%, for some K > 0. At this point it is sufficient to follow the argument
of [8, proof of Theorem 8.1.7(iii)] to prove that K = 0 and get the desired property.
Thus, when N = 1, Theorem 1.3 holds true and the set of solutions of (1.8) is
essentially unique. 0

In the rest of this section we prove the instability result, Theorem 1.5. We start with
two preliminary results. We define the variance V(t), by

(3.12) V(t) = / |6t 2) P dz, ¢ € [0,00)
RN
and derive a so-called virial identity in the following lemma.
Lemma 3.2. Let ¢ be a solution of (1.6) on an interval I = (—t1,t1). Then,

(3.13) VI(t) =8Q(e(1), tel,

where we have set

N(p—1
(3.14) Qo) = /RN IVo|?dz + (N + 2) /RN 82|V |¢|[2dz — _2(<]f—l— 1)> /RN 6P,

for all ¢ € Xc.

Proof. We introduce the following notations:

N

z=(2'...,2") e CV; z-w:Zziwi, z,we CN;
i=1
=2 4R -C
81‘,‘
Let us first prove that
(3.15) V'(t) :4%/ (z-Vo)dpdr, tel.
RN

By multiplying equation (1.6) by 2¢ and taking the imaginary parts, yields
0 _ _
(3.16) §!¢|2 = —23(¢A¢) = =2V - (S¢V9),

Now, multiplying (3.16) by |z|?, and integrating by parts in space, we get (3.15). In
order to prove (3.13), let us multiply equation (1.6) by 2x - V¢, integrate in space on
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RY and, finally, take the real parts, yielding

0=2%R i(x- Vo), dr + 2R (z-Vo)Addr
RN

RN
+ 2R . (z - Vo)pA|d|* do + 2R /RN(I Vo) |pP ¢ du.

We rewrite the last identity in the form

(3.17) I =1I+III,

where

[ =2R i(x - Vo)o; dr,

RN

H=—-2R [ (z-V@)Apdr —2R [ (x-Ve)oA|o|* dx,
RN

RN
I = — 2R /RN(a: Vo) o|P o du.

For the first term, recalling formula (3.15) for V', we have

=0 [ S (093,60 a0 dr=m [ 30 (500 — (63 da

Jj=1 j=1

d — _
318) =R [ (e Vé)ode + NR [ ige,d
18) =% [ i Vodo+NR [ 65, ds

_ d - o 2
_dtJ/RN(x.vqs)qsdx N[ Volda

o [ 1oPaR N [ joptids
R

1d
— V0= N [ [Vopdo—an [ (oPVielPde+ N [ (optids
4.dt RN RN RN
A multiple integration by parts in formula II gives
(3.19) II=(2- N)/ \Vo|*dx +2(2 — N)/ 1912V ]| *dx.
RN RN
As for the term III, we write it by components
N
3.20 I = — TP (2R, ¢) d
(3.20) Z/Rwa (20,0) d
ool 2N
= -2 = P dg.
Z/ p 1 T S O

Finally, recollecting (3.17), (3.18), (3.19), (3.20) and (3.15), and taking into account
the definition of ), the proof of (3.13) is complete. O
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In our next preliminary result we establish some qualitative properties of a class
of L%-invariant rescaling.

Lemma 3.3. Let ¢ € X¢ and Q) < 0 and assume that

(3.21) S 34
Let 0 > 0 and define the rescaling 1° (x) = o™N/?¢(cx). Then there exists oo € (0, 1]
such that following facts hold

(1) Q) =0;

(2) 00 =1 if and only if Q(¢) =

(3) E,(W7) >0 for o € (0,00), cmd a%é’w(w") < 0 for o € (g9, 0);
(4) 0 — E,(Y7) is concave on (0g,00);

() LE07) = 22,

Proof. By direct computation, we have

N(p—1)

2
L) =5 / VipPdato™? / W21V || 2dw+2 / fufde— T / P+ de,
N 2 RN p+1 RN

so that, using the functional @) defined by (3.14), for all o > 0, we get

G,
%au(w) :a/RN\w\?da:Jr(NH)aN“ /RN 12|V |2||*dx

_Np-1) Nl g pHgy — Lowe
e T e = Jew),

Then, taking into account (3.21), it is readily seen that there exists og € (0, 1] such
that

0
Q™) = G0 -EV)) sy = 0,

as well as 2, (") > 0 for o € (0,00) and 2Z&,(¢7) < 0 for o € (09, 00). Further-
more, writing o = toy we have
o2
58 = [ IVePdet (Va4 e [ Pl
R R

do
N(p — 1) N(p — 1) Np=1) _, N(p=1) o /
— — 1) 2 p+1

2(p+1) ( 2 L2 %0 o [P d,

—fN(;V/ |V¢!2dx+(N+2)(N+1)aéV/RN W]V || |*dx

Np—-1)/N(p-1) Np—sN—s wn_z/
_ — 1)t 2 p+1d ]
2(p+ 1) ( 2 ) % - x)
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Since, of course, we have
/ Vo Pde + (N + 2)(N + ol / WV ]
RN RN

S V(D)o [ e <o
2(p+1) 2 0 RN =

and t > 1, it follows that the quantity inside the parenthesis is negative. Hence the
map o — &,(17) is concave on (0g, 00), concluding the proof. O

In order to establish the instability of ground states we now show, in the spirit
of [25] that they enjoy two additional variational characterizations. First, we have
the following

Lemma 3.4. Assume that w > 0 and 3 < p < ?’jifv—f; if N>3and3<pif N=1,2.
Then the set of minimizers of

(3.22) d, = inf{&,(u) : Z,(u) = 0},

where
T (u) = / VoPde +w / 6Pdz + 4 / 6|V |2z — / 6P+ de
RN RN RN RN

1s exactly the set of ground state G,,. In addition the value of the infimum are equal.

Proof. First we show that if v € X¢ is a minimizer of d, then |u| € X is also a
minimizer of d,. Let u € X¢ with Z,(u) = 0. Then &,(|u]) < &,(u) as well as
Z.(Ju]) < Z,(u) = 0. In particular and since p > 3, there exists ¢ € (0, 1] such that
Z.,(tlu|) = 0. Observe now that, for all v € X¢ such that Z,(v) = 0, it holds

p—1 / 2 p—3 2 2 p—1 / 2
E(v) = —— Voul“de + —— v[?|\Vull*de + w—=——— vl“dzx.
Thus, since p > 3, it is readily seen that

0 < &E,(tlu]) < t2E,(u).
In particular, if u € X¢ is a complex minimizer of d,, then we have

Eo(u) =d, = Iin:foé’w(gb) < &, (tu]) < 2E,(u).

Now, recalling that £,(u) > 0 and ¢t < 1, we immediately get t = 1. Thus Z,(|u|) =
Z,(u) and in turn &, (|u|) = &, (u) proving that |u| € X is also a minimizer. Obviously
it is only possible if the set {x € RN : |V|u|(z)| # |Vu(x)|} has zero Lebesgue
measure, which in turn implies that u = |u|e??, for some 6 € S* (see e.g. Step I11 of the
proof of Theorem 1.3). Now, when &, is considered over X, in [29, Theorem 1.1] it is
established that there exists a nontrivial solution to the minimization problem (3.22)
and that this minimizer is a solution to equation (1.8) (cf. [29, Lemma 2.5]). Clearly,
since any minimizer is of the form u = |u|e' it is also solution to equation (1.8). Now,
any element u € X of G, must satisfy Z,(u) = 0 and thus we deduce that the set of
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ground states G, and the set of minimizer of (3.22) coincide and that the values of
the two infimum values are equal. U

We also have the following
Lemma 3.5. Let us set

— inf{€.(6) : ¢ € M} where M = {6 € X\ {0} : Q(¢) =0, Z.() < 0}.
Then c, = d., (= my).

Proof. Let u € X¢ be a solution to (3.22). By Lemma 3.4 it is a ground state
solution of (1.8) and applying the virial identity (3.13) to a standing wave solution
we immediately deduce that Q(u) = 0. By definition Z,(u) = 0 and thus we have
u € M. Hence ¢, < d,, since E,(u) = d,. On the other hand, given ¢ € M, either

Z.(¢) = 0 (so that &,(¢) > d,) or Z,(¢) < 0. In this second case, if 0 > 0 and we
consider the rescaling ¢7(x) = oV/2¢(oz), we have Z,(¢') < 0 and

lim Z,(¢°) = lim (02/ |V¢|2dx—i—w/ |p|*da
o—0 o—0t RN RN
raort [ oRlolfde — o5 [ jopiar) >0
RN RN

In turn, one can find 6 € (0,1) such that Z,(¢?) = 0. Then, we get £,(¢%) > d,.
Since Q(¢) = 0 and ||¢[|2 = ||¢°||2, from Lemma 3.3 we obtain &,(¢) > E,(¢°) > d,,.
Whence &,(¢) > d, holds true for any ¢ € M, which yields ¢, > d,, proving the
claim. 0

Proof of Theorem 1.5. Let € > 0 be fixed and consider u?(x) = o¥/?u(ox) for the
ground state solution u. We have ||ul|s = ||u?||2 and by the continuity of the mapping
o — oV?u(ox), it is clear that, for o sufficiently close to 1, [Ju— u”|| getomry < € (we
recall that the ground state u belongs to H*T2(RY) for all s). Furthermore,

(3.23) Eo(u?) < &E(u), Q) <0, Z,(u’)<0,

provided that o > 1 is sufficiently close to 1. The first two inequalities just follow by
Lemma (3.3). Concerning the last one, it holds

o\ __ o 2 4 o o o o2
T(u7) = 26,(u%) + Q) = 5 [ |u?’|Vu?Pda / IV’ |d
<25()+2Q()—I()—40N+2 [uf*|Vul?dz — /yv 2
< 2&,(u N U wlu N . U u|“dx N . u|“dx

4 4o N+2 2
- —/ uf?|Vu|2de — — / Vuldz — —2 uf?| V| 2y 20 Vu|2da
N RN RN N RN

4 2
_d, 0N+2)/ 2| Vul2dz + (1 - 0—2)/ Vuldz < 0.
N RN N ]RN
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Now fixing a ¢ > 1 such that (3.23) hold, let us set v := u® € H*"2(RY). Hence,
(3.24) Eo(v) <& (u), Q) <0, Z,(v)<O.
Assume now that ¢(t) is the solution of (1.6) with initial data ¢(0) = v. Then, we

claim that

(3.25)  E,((1) < E(u), Q(b(t) <0, Tu(p(t)) <0, forall t € [0, Thna),

Tax € (0,00] being the maximal existence time. First, due to the conservation of
the energy and (3.24), we get

Eu(B(t)) = EL(v) < E,(u), for all t € [0, Tinax)-

In turn, it follows immediately that Z,(¢(t)) # 0 for all ¢ € [0,Tax). Hence
Z,(o(t)) < 0 for all ¢ € [0, Trhax) since it is negative for t = 0. Similarly, Q(¢(t)) # 0
for all ¢ € [0, Thax), otherwise if Q(¢(ty)) = 0 for some ty € [0, Tinax), Wwe would have
o(to) € M, yielding E,(é(to)) > E,(u) which contradicts the first inequality of (3.25).
Hence Q(¢(t)) < 0 for all t € [0, Tiax) as it is negative for ¢ = 0, concluding the proof
of (3.25).

Let now 9 = ¢(t) be the solution to (1.6) at a fixed time ¢t € (0, Thax) and let ¢
be the usual L*invariant rescaling. We know that Q(v)) < 0. Hence there exists
o € (0,1) such that Q(¢°) = 0. If Z,(¢°) < 0 we do not change the value of
5, otherwise we pick 6 € (d,1) such that Z,(¢°) = 0. In any case, one obtains
E,(Y) > d, and Q(¢?) < 0. Therefore, by Lemma 3.3

- 0
gw(”) = gw(¢) Z gw(wa) + (1 - 5)%&4}(1/)0”0:1
= E(7) + (1= 0)Q(Y) > du + Q).
Putting go := d,, — &,(v) > 0, concluding we have

Qo)) < —go, for all t € [0, Thnax)-

Finally, assuming that Ti,.x = +o00 and using the virial identity of Lemma 3.2, we
obtain
0 < V(t) <V(0) + V'(0)t — 4got?

which yields a contradiction taking ¢ sufficiently large. Then 0 < Ti.x < +00 and
the solution blows-up in finite time. This concludes the proof. 0J

4. STATIONARY SOLUTIONS WITH PRESCRIBED L? NORM

In this section we study the minimization problem (1.15). We prove the existence
of a minimizer when 1 < p < 3 + % and m(c) < 0. We also discuss the condition
m(c) < 0 and we prove Theorem 1.12. Consider the (complex) minimization problem

(4.1) minimize £ on |julj} =c,
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where ¢ is a positive number. We have the following result.

Proposition 4.1. Let v be a solution to the minimization problem (4.1). Then
v(z) = e’o(lz])], =eRY,
for some 0 € S*. In particular, the solutions of problem (4.1) are, up to a constant

complex phase, real-valued positive and radially symmetric.

Proof. The proof has some similarities with the final part of the proof of Theorem 1.3
so we will be brief here. Let X denote again the restriction of X¢ to real-valued
functions. We set

oc =inf {E(v) v € Xg, |[v]|5 =¢}, or=inf{E(v):veX,|v[j=c}.

Let us prove that o¢c = ogr. Trivially one has o¢ < og, since X C X¢. Moreover,
if v € X¢, we see using (3.4) that £(Jv|) < E(v). In particular, we conclude that
or < oc, yielding the desired equality oc = og. Now let v € X¢ be a solution to
oc and assume by contradiction that the Lebesgue measure £V of the set {x € RV :
|V|v|[(z)| < |Vo(z)|} is positive. Then, of course, |||v]]|3 = ||v]|3 = ¢, and

1 1
<= 2d 2 2y — —— / Pty
op < Q/RN Vvl x—l—/RN [v|*|V|v||“dx DT o ] x

1 1
< —/ |Vv|*dx —I—/ vV |v]||*dx — —/ lv[PHdz = oc,
2 RN RN p+ ]. RN

contradicting equality oc = og. Hence, we have |V|v(z)|| = |Vov(x)| for a.e. x € RY
and as in the proof of Theorem 1.3 this gives the existence of § € S' such that
v = €“v|. Finally the result of radial symmetry is a direct consequence of [32,
Theorem 2. O

(From Proposition 4.1 we deduce that it is sufficient to study the (real) minimiza-
tion problem

(4.2) minimize € on |jull3=c¢ withu € X.
for a positive number c. We set
(4.3) m(c) = inf{E(u): ue X, ||ul3 =c}.

Lemma 4.2. We have

1) Assume that 1 < p < 3+ &. Then m(c) > —oo for any ¢ > 0. In addition i
N
(un) C X is any minimizing sequence for problem (4.2) then (uy,) is bounded
m X and the sequence

1
(4.4) / |un|2|Vun|2dx: —/ |V(ui)|2dx
RN 4 RN

18 bounded in R.
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(2) In the case p = 3 + % the same conclusions hold provided that ¢ > 0 is
sufficiently small.

(3) Assume that 3+ + < p < 2. Then m(c) = —oo for any ¢ > 0.

Proof. Notice that, using Holder and Sobolev inequalities we have for

(P—1DN -2
2(N +2)
and some K > 0 depending only on N, that for any u € X

/RN P de < </RN |U|2dx> 19</RN |u|13N2d;p>9
(15) < i [ urar) ([ i)

Here we have used the fact that

/ |u|13]—vzda;:/ u?| V2 dx, / |V(u2)|2dx:4/ |u|?|Vu|dz.
RN RN RN RN

From (4.5) we get that

9:

1 Nz
> 2 25 1-0 2 2 '
E(u) > /RN [ VuPds — — K (/RN uP|VuPdz)

If we assume that p < 3 + %, we see that % < 1 and thus the sequence (4.4) is

bounded in R. From (4.5) we then got that (||u,|/p+1) is bounded and thus also that
(IIVuyl|2) is bounded. This proves Point (1). In the limit case p = 3+« we still reach
the boundedness result for any positive ¢ such that Kc!=% < p + 1, where K,0 > 0
are the numbers introduced in the proof. Now for point (3) we fix ¢ > 0 and take
u € X such that ||u||? = ¢. Then, considering the scaling,

o u’(zr) = O'%U(UI),

we get, for all o > 0,

/ |u”|2dx:/ lu?dz = c, / |Vu”\2dx:<72/ |Vul*dz,
RN RN RN RN

N(p—1)

/ lu? |PHde =0 2 / |ulPHd, / |u"|2|Vu"|2d$:0(N+2)/ u|?| Vul*dz.
RN RN RN RN

Thus ||u?||2 = ¢ for all ¢ > 0 and

9 N(p—1)
g o 2
E(u”) = —/ |Vul*dz + U(N+2)/ |ul?|Vul*dz — lu|Ptda.
2 RN RN P+ 1 RN
Now just notice that, in the range 3 + % <p< % the dominant term is
N(p—1)
o 2

lu|Pttda.

p+1 Jry
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Thus £(u”) — —o0 as ¢ — +o00. This concludes the proof of (3). O
Concerning the existence of a minimizer we first show

Lemma 4.3. Assume that 1 <p < 3+ ;—JXQ. The following facts hold.
(1) If u, — u in X then setting
1
T(u) = —/ |Vu|?dx —|—/ lul?|Vu|*dz,
2 RN RN

we have
T(u) < liminf T'(u,,).

(2) For any u € X there ezists a Schwarz symmetric function u* € X satisfying

Tw) < T(u), / [ [*de = / Jul*dz, / [+ das = / [l de.
RN RN RN RN

(3) Let (u,) C X be a minimizing sequence for (4.2) of Schwartz symmetric
functions satisfying u, — u in X. Then we have

(4.6) E(u) < liminf E(u,) = m(c).

Proof. Point (1) is standard. Defining j : [0, 00) x [0, 00) — R by j(s,§) = 362+ s%¢2,
then {£ — j(s,£)} is convex and thus the result follows from classical results of A.
loffe (see e.g. [17, 18]). Concerning assertion (2) all we need to prove is T'(u*) < T'(u),
which follows from [15, Corollary 3.3|. For Point (3), we claim that

(4.7) / |un|p+1d:):—>/ |ul|P*tda
RN RN

as n — oo. In fact, since (u,) C X is minimizing we have, by Lemma 4.2, Point
(1) that V(u2) is uniformly bounded in L*(RY) and thus by the Sobolev embedding
SUDpen ||ui||% < 00, which gives sup,,cy ||un||% < 00. Now, using the fact that
(un) C X consists of radial decreasing functions, from the radial Lemma A.IV of [5],
we deduce that (u,) has a uniform decay at infinity (with respect to both n € N
and |z|) and this shows, by standard argument, that (4.7) hold. Now we conclude
observing that, from point (1), T'(u) < liminf, ., T'(uy). O

We now prove the existence of a minimizer for problem (4.2).

Lemma 4.4. Assume that 1 < p <3+ + and let ¢ > 0 be such that m(c) < 0. Then
the problem (4.2) admits a minimizer which is Schwartz symmetric.

Proof. Let (u,) be a minimizing sequence for (4.2). By Lemma 4.3 we know that
(u,) C X can be replaced by a minimizing sequence (u) C X of Schwarz symmetric
functions such that u; — u* and

(4.8) E(u") < liminf E(uw)) = m(c).

n—oo
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We still denote u* by u. To conclude we just need to prove that ||ul|3 = ¢. Since
E(u) < m(c) < 0 necessarily u # 0. Assume thus that 0 < ||ul|2 = X < ¢ and consider
the scaling v(z) = u(oc~~z) for 0 > 1. Then [|v]|? = oA and for o = < we have

By
|[v]|2 = c. Now we also get that

1
Ew) =o' [/}RN §|Vu|2 + |Vu|2|u|2dx} - i : /RN |u|Pda.

Thus, since ¢ > 1 and £(u) < 0 we conclude that £(v) < &(u), which is a con-
tradiction. This proves that ||ul|3 = ¢ and thus (4.2) admits a minimizer. Finally,
observe that, since ||u}||,+1 — [|u*||4+1 as n — oo, necessarily ||[Vul |2 — [[Vu*||2 as
n — oo and we deduce that the Schwarz symmetric sequence strongly converges to
u* e X. 0

We now start to discuss the condition m(c) < 0.

Lemma 4.5. We have
(1) Assume that 1 <p <1+ «. Then m(c) <0 for any ¢ > 0.

(2) Assume that 1 + % <p<3+ %. Then m(c) < 0 for any ¢ > 0. This
inequality also hold if p = 3 + % and ¢ > 0 is small.

(3) Assume that 1+ % <p<3+ %. Then there exists a ¢ > 0, sufficiently large,
such that m(c) < 0.

Proof. For Points (1) and (2) we use the scaling introduced in the proof of Lemma 4.2,
Point (3). When p < 1+ % we see that the dominant term, as o — 0%, is

N(p—1)

Jp ‘: 1 /RN |U|p+1dl',

and this proves Point (1). For Point (2), since £(u?) — 0 as 0 — 07, we have directly
have that m(c) < 0 for any ¢ > 0. Now for Point (3) we consider, for a fixed R0, the
radial function wg € H'(R") defined by

1 if r <R,
wr(r) =< 1+R—-r fR<r<R+1,
0 ifr >R+ 1.

Integrating in radial coordinates, we have
/ wr(ja])Pde = OxRY + & (RN1),
RN
where g, (RY"1) /RN — 0, as R — oo. Also

/ wa(|z])[" de = CyRY 4 £(RY ™), / Vawg(|2])[2dz = e5(RYY),
RN RN
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and
[ onlaDPIVwn(aPde = (),
RN

where &;(RN"1)/RN — 0, as R — oo, for any i = 2,3,4. Thus letting R — oo we
have ||wg||? — +o0c and £(wg) — —oo. This proves Point (3). O

In preparation to the proof of Theorem 1.12 we also show the following.

Lemma 4.6. Assume that 1 < p < 3+ + and that u. € X is a minimizer of (4.2)
for some ¢ > 0. Then u. € X weakly satisfies

(4.9) — At — At — A |ue* = |uePtu,
with the Lagrange multiplier \. € R being strictly negative.

Proof. 1t is standard to show that u. € X satisfies (4.9) for A\. € R being the associ-
ated Lagrange multiplier, namely

(4.10) E'(ue) = Aette.
Now applying Pohozaev identity to (4.10) yields
1 N-211 A
L e = X2 -/ Vo [2dz +/ e 2| Vg2 | — —/ o 2da.
P + ]_ RN N 2 RN RN 2 RN

Thus, we obtain
1 A
E(u) = _/ Vo2 + 2Jug 2|Vt |2z + —/ o 2de.
N RN 2 RN

Since &€ (u.) < 0, see Lemma 4.5, we deduce that A\, < 0. O

We can now give the

Proof of Theorem 1.12. The proof of (1) is Lemma 4.5, Point (1). To show (2)-i)
we assume by contradiction that there exist a sequence (¢,) C RT with ¢, — 0 as
n — oo and (u,) C X such that m(c,) is reached by u, € X. Then we know, from
Lemma 4.5, Point (2), that £(u,) <0, for all n € N and using (4.5), we get

ON

@) [ PV < K ( [V Pde) )
RN RN
If p=3+4 wehave 225 =1 and 2 — 20 = 4 > 0. Thus, since |Ju,|]» — 0, we
immediately get a contradiction from (4.11). Now if p < 34 %, we have 225 < 1
and thus,
(4.12) / |un |* |V, Pdz — 0, as n — oo.
RN

Still using (4.5), we see from (4.12) that ||u,||,+1 — 0 as n — oco. In turn, also

(4.13) IVu,|la — 0, asn— oo,



STABILITY AND INSTABILITY FOR QUASI-LINEAR SCHRODINGER EQUATIONS 35

since &€ (u,,) < 0 implies that

p+1

[Vu, |3 < un||piy, forallneN.

p+1

At thls point we distinguish two cases. First assume that 1+ <p< N +2 if N >3,
1+ N <pif N =1,2. By Holder and Sobolev inequalities we have

1 +1- 5 (p—1
lunlEEE < K (p, N) [Vt |12 @l 5772070,

Since £(u,) < 0 it follows that

1 +1— 1
(4.14) HV%M_———/IuWWw<K@,HW%W@ Nl 2720

If p=1+ + we have §(p—1) =2 and p—|— 1—Z(p—1)>0. Thus we get directly
a contradiction since ||uy|ls — 0. f 14+ + < p < {42 for N >3 and 1+ + < p for
N =1,2 we have 5(p—1) > 2 and p + 1 - Sp- 1) Z 0. Thus there ex1sts ad>0
such that ||Vu,||s > d for all n € N, yielding a contradiction with (4.13).

Now we treat the remaining case N *2 <p<3+y% L with NV > 3. First, let us show
that for any ¢ > -~ the sequence (un) CcX belongs to LY(RY) and it is uniformly
bounded in L4(RY). For this we follow a Moser’s iteration argument presented in
the proof of [29, Lemma 5.10]. Since u,, € X is a minimizer for (4.2) with ¢ = ¢, we
know, by Lemma 4.6, that u,, € X weakly satisfies (4.9). Namely that

/ (14 2|un|*) Vi, - Vo 4 2up | V¢ — Mind — |[un [P upd de = 0,
RN

where )\, < 0 is the Lagrange parameter and ¢ € C;°(RY R). By an approximation
argument, it is easily seen that we can take as test functions any function in X which
satisfies

/ u?|Vol*dr < oo and / |Vul?¢* dr < oo.
RN RN

In particular, setting ¢y = ;NQ, we can choose as test function, for any M > 0
and any fixed n € N, oM = |[uM|2P=1yM where v} = u, when |u,(z)] < M and
= +M when u, > +M. We then have, since [uM| < |u,| and |[Vu}| < |Vu,| for

any n € N, M > 0, and using the fact that A\, < 0, that

(90 —p)/ (1 2y )y |77 [V [P S/ |un|* .
RN RN

Since ¢y — p > 1 we have, in particular,

2/|ﬁwwwwﬁwmg/y%wm.
RN RN

Finally, for n € N fixed, letting M — +o00 we obtain that

(4.15) 2/‘mwﬁ“w%mmg/|%wm.
RN RN
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Now, notice that, by Sobolev inequality,
2 [ PV Pde = L N) [ |Vl e 2 Do N o P,
RN RN N=2

for some constants L, L > 0, and where
e
5 :
Thus (u,) C L5 (RY) and since, by (4.12), (u,) C L®(RY) is bounded, by (4.15),
(un) C L5 (RY) is also bounded. Since p < 32 it follows that
2Nr
N —2
and the Moser iteration can be continued further on. Thus, we obtain that (u,) C
LY(RY) for any q > qo with (u,) C LY(RY) bounded. At this point, by Hélder and
Sobolev inequalities we can write

(4.16) lunllpis < Co N)IVual5 luall,- ) n

> qo

with
_2N(p-1)-2(p+1) (N—=2)(p+1)—2N
-1V -2) -2 (» —)N(N —2) —2N"

Now as in (4.14), using the fact that £(u,) < 0, we get that
IVuall3 < Ko, N[Vl g,y

and B=N(p-1)

As p > 1 we have a > 2 and since (u,) C LP~DN(RY) is bounded we obtain again
a contradiction with (4.13). Notice that, in (4.16), the coefficient (p — 1)N as no
particular meaning, we just choose it sufficiently large in order to insure that, in
turn, o > 2. This proves Point i) since if m(c¢) < 0 a minimizer always exists by
Lemma 4.4.

For the proof of Point (2)-ii) we know from, Lemma 4.5, Point (3), that there exists
a ¢ > 0 such that m(c) < 0. Now let d > 0 be such that m(d) < 0 and u € X be an
associated minimizer. We consider the scaling v(z) = u(o~~z) used in the proof of
Lemma 4.4. For o1 we have |[v||3 > d and £(v) < E(u). This proves the claim. We
also point out that very likely the function {¢ — m(c)} is continuous for ¢ > 0 so
that also m(c(p, N)) = 0. However we did not pursue in that direction. O

5. ORBITAL STABILITY

In this section we prove the orbital stability result, Theorem 1.9. Its proof cru-
cially relies on the relative compactness of any minimizing sequence as expressed by
Theorem 1.11.
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Proof of Theorem 1.11. Let (u,) C X be any minimizing sequence for problem (1.15).
To prove its relative convergence, up to translation, we use Lions’s Compactness-
Concentration Principle (cf. [26, 27]), applied to the sequence

pn() = u2(2), n e N.

First we proves that the vanishing, namely

sup / lu,|*dz — 0 for all R > 0,
y+Br

yeRN

cannot occur. By Lemma 4.2, we know that

(5.1) (un) C X is bounded and / |V (u?)|dz is bounded in R.

RN
We apply [27, Lemma I.1] to the sequence p,. Indeed, p, is bounded in L!(R") and
Vp, is bounded in L*(RY). Then for every 1 < a < 2% p, — 0in L*(RY), as n
goes to co. Taking a = 1%1 (this choice is valid since 1 < p < 3 + %) provides

||anPT+1 = ||un||72;+1 —0 asn— o0,

and then liminf, . €(u,) > 0, which contradicts the fact that m(c) < 0. Now, we
claim that there exists a subsequence u,, (that we still denote by (u,)) such that
either compactness occurs or dichotomy occurs in the following sense: there exists
a € (0,c) such that, for all € > 0, there exists ky > 1 and two sequences (u}), (u?)

bounded in X such that, for all k > kg,

4
(5.2)  lun — (up +u2)||ponr < 0(e), 1<p<3+ N’ with §(¢) — 0 for ¢ — 0,

[ e —al <e | [ whiar—e-a)| <=

dist(supp ul, suppu?) — co, asn — oo,

<e

)

(5.3)  liminf | (|Vu,|* — |[Vul|* — |Vu2|?)dz > 0,

k—oo RN

(5.4) liminf /RN(\V(un)?y? — [V )?)? = [V(@2)?P)da > 0.

k—o00

We point out that, only inequalities (5.2) and (5.4) have to be proved, the other
inequalities are already contained in [26, Lemma III.1]. Because of (5.1) and taking
into account inequality (4.5) there exists a positive constant K such that, for all
n €N,

63 [oerrarsn( [ mra)” 0= loEns

Thus, inequality (5.2) follows from the corresponding inequality for the L? norm
given in [26, Lemma III.1]. Now inequality (5.4) can be obtained by arguing as for
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the proof of (5.3) in [26]. Indeed, notice that, if ¢ is a given smooth cut-off function,
0<¢r<1 ¢r=1o0nB(0,R), pr = 0 outside B(0,2R) and [Vyg| < %, and v, is
a sequence in X satisfying the boundedness condition (5.5), then we have
IV (orva)*l = @RI Vonl* = dpRurVr - Vop + 403 Vorl*,
< 205|Vorlv, + 205 Ver||Von* + 495 Ver| oy,
for all n > 1, yielding

[ 9tenunPis = [ ohivizpas
RN RN

for some positive constant C' independent of n. This last inequality is therefore
sufficient to obtain inequality (5.4).

Now, it is standard to see that if the dichotomy property holds (with the inequalities
indicated above), then sending € to zero, the following inequality holds true

m(c) > m(a) + m(c— a).

C
SE for alln > 1,

Y

To conclude we now prove that instead we have, for any ¢, co > 0 such that ¢;+c¢y = ¢,
(5.6) m(c) < m(cy) +m(cz).

In light of [26, Lemma II.1], to show that (5.6) holds, it is sufficient to prove that,
for any d > 0 such that m(d) <0,

(5.7) m(Ad) < Am(d), for any A > 1.

To prove inequality (5.7) we observe that, if ug € X is a minimizer of m(d), then

setting v(7) = ua(A %x) we have |[v||3 = Ad and
8 1-% |:/ !Vudp + ’ud‘2yvud‘2dx:| _ )\/ ’ud’P‘Hdw
RN
1
B )\[)\_]%/ (= 1Vual® + |ua?|Vug*dz) —/ |ud|p+1dxi|
ey \2 .
< Am(d).

Thus £(v) < Am(d) which lead to m(Ad) < Am(d), proving the claim.

Since we ruled out both vanishing and dichotomy, we have compactness for p,,
namely we know that there exists a sequence (y,) C RY such that, for any ¢ > 0,
there is R > 0 with

(5.8) / U |*dx > ¢ — ¢.
Yn+BRr

We then denote 4, = u,(- + y,) and clearly from inequality (5.8) we have @, — @
strongly in L?(R"), as n — oo. By (5.5) we then see that @, — @ strongly in LP(RY).
At this point, taking into account Point 1) of Lemma 4.3, and since @,, — @ in X,
we get that £(u) < liminf £(u,,) = m(c). This proves that @ € X minimize (4.2) and
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then, necessarily, Vi, — Vu in L?(RY), as n — oo, proving the strong convergence
of u, to @ in X. This concludes the proof. 0J

Now we can give the

Proof of Theorem 1.9. First note that if (u,) is a minimizing sequence for (4.2), then
(|un|) is also a minimizing sequence and is real. Then by Theorem 1.11, there exists
a subsequence (|uy,|) of (Ju,|) and a sequence (y,,) C RY such that (|u,, (- — yn,)|)
converges strongly in H'(R"Y) toward u where v is real and solves (4.2). Then the
result follows by standard considerations (see, for example, [9]). O
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