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Université de Marne-La-Vallée

Equipe d’Analyse et de Mathématiques Appliquées
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Abstract

Using the “monotonicity trick” introduced by M. Struwe we derive a generic
theorem. It says that for a wide class of functionals, having a Mountain-Pass ge-
ometry, almost every functionals in this class has a bounded Palais-Smale sequence
at the Mountain-Pass level. Then we show how the generic theorem can be used
to obtain, for a given functional, a special Palais-Smale sequence possessing extra
properties which help to insure its convergence. Subsequently these abstract results
are applied to prove the existence of a positive solution for a problem of the form

−∆u + Ku = f(x, u)
u ∈ H1(IRN ),K > 0.

}
(P )

We assume that the functional associated to (P) has a Mountain-Pass geometry. Our
results cover the case where the nonlinearity f satisfies (i) f(x, s)s−1 → a ∈]0,∞] as
s → +∞ and (ii) f(x, s)s−1 is non decreasing as a function of s ≥ 0, a.e. x ∈ IRN .

1 Introduction

A first aim of this paper is to study, for a large class of functionals having a Mountain Pass
geometry, the existence of a bounded Palais-Smale sequence at the Mountain-Pass level.
Proving the existence of such sequences is a preliminary step when one wants to show
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that the functionals have a critical point. More precisely let X be a Banach space and
denote by X−1 its dual. By saying that a functional I ∈ C1(X, IR) possesses a Mountain
Pass geometry, a MP geometry for short, we mean that there are two points (v1, v2) in X
such that setting

Γ = {γ ∈ C([0, 1], X), γ(0) = v1, γ(1) = v2}
there holds

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > max{I(v1), I(v2)}.

Also a Palais-Smale sequence of I at the level c ∈ IR is by definition a sequence {un} ⊂ X
satisfying I(un) → c and I ′(un) → 0 in X−1.

It is well known that if I possesses a MP geometry, the value c ∈ IR, called the Mountain-
Pass level, is a good candidate for being a critical value of I. Indeed assume in addition
that the (PS)c condition holds, namely that all Palais-Smale sequences for I at the level
c ∈ IR possess a convergent subsequence. Then there exists u ∈ X satisfying I(u) = c
and I ′(u) = 0. This is a celebrated result, known as the Mountain-Pass theorem, due to
Ambrosetti and Rabinowitz [3]. Observing the proof given in [3], or alternatively using
the Ekeland’s variational principle [13], one sees that the MP geometry directly implies
the existence of a Palais-Smale sequence {un} ⊂ X for I at the level c ∈ IR. Thus to find
a critical point it is sufficient to establish that this particular sequence has a convergent
subsequence. Traditionally this is done in two steps. First one proves that {un} is bounded
and this implies (assuming that X is reflexive) the existence of a u ∈ X such that, up to
a subsequence, un ⇀ u weakly in X. Next one shows that un → u strongly in X and by
continuity of I and I ′, u then satisfies I(u) = c and I ′(u) = 0. Note that in many cases
one is interested in finding a (non-trivial) critical point of I but not necessarily at the
MP level. Then instead of proving that un → u strongly in X it is sufficient to show that
I ′(u) = 0 (with I(u) 6= I(0)). See [10, 17, 21, 30] for some examples.

Concerning the first step, namely the problem of finding conditions on I insuring the
existence of a bounded Palais-Smale sequence, a BPS sequence for short, at the MP
level most of the work we know deals with specific situations. We mean by this that the
functional I is introduced in order that its critical points correspond to (weak) solutions of
a given PDE or Hamiltonian type problem. Then particular properties of the underlying
problem can directly and crucially be used to prove the existence of a BPS sequence
(see [18, 32] for example). A more systematic approach is due to Ghoussoub [14] where
his ideas of using dual sets to localize the critical points of the functionals are often a
strong help to conlude the existence of a BPS sequence. Let us also mention the work of
Cerami [11] which leads to prove that there always exists a sequence {un} ⊂ X satisfying
I(un) → c and ||I ′(un)||(1+ ||un||) → 0. For this Palais-Smale sequence, called a Cerami’s
sequence, the additional information that ||I ′(un)||(1+||un||) → 0 has in several situations
been successfully used to establish that {un} is bounded. However probably the most
significant contribution is due to Struwe (see also [22]). He introduce a general technique
often referred to as the “monotonicity trick”(see [24, 25]) which not only in a Mountain-
Pass setting [2, 4] but also in minimization problems [27] or in linking type situation [26]
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has been used by Struwe and others to solve difficult variational problems. Most of these
problems had in common the difficulty to establish the existence of a BPS sequence.

Unfortunately Struwe’s approach has only been used so far on specific examples. Thus it
is not always clear to distinguish what is the core of the approach and what belongs to
the specific problem under study. A first achievement of our paper is the derivation of a
general abstract result based on Struwe’s “monotonicity trick”. Clearly, with respect to
the existing works, one advantage is the simplicity of the presentation and the “ready to
use” aspect of the result. But we also point out that the possibility to obtain a result as
general as ours, starting from Struwe’s work, was not so obvious [23] (see also 9.5, Chapter
II of [24]). Roughly speaking we establish, for a wide class of functionals, a generic result
saying that for almost every functionals in this class there exists a BPS sequence at the
MP level.

Theorem 1.1 Let X be a Banach space equipped with the norm ‖.‖ and let J ⊂ IR+ be
an interval. We consider a family (Iλ)λ∈J of C1-functionals on X of the form

Iλ(u) = A(u)− λB(u), ∀λ ∈ J

where B(u) ≥ 0,∀u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞.
We assume there are two points (v1, v2) in X such that setting

Γ = {γ ∈ C([0, 1], X), γ(0) = v1, γ(1) = v2}

there hold, ∀λ ∈ J

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)}.

Then, for almost every λ ∈ J , there is a sequence {vn} ⊂ X such that

(i) {vn} is bounded , (ii) Iλ(vn) → cλ, (iii) I ′λ(vn) → 0 in the dual X−1 of X.

To derive Theorem 1.1 we have been inspired by [2] and [28]. In particular in [28] the
authors obtain a conclusion similar as ours for a special family (Iλ)λ∈J . Their result
however is derived using the precise form of the functional and in may not be so apparent
that it is in fact very general. In view of Theorem 1.1 a natural question to ask is whether
or not the limitation that a BPS sequence exists only for almost every λ ∈ J is essential.
The answer is yes and was pointed out to the author by Brezis [9]. Indeed at the end
of Section 2 we give an example of a family (Iλ)λ∈J , satisfying all the assumptions of
Theorem 1.1, such that for a λ0 ∈ J all Palais-Smale sequences at the MP level cλ0 are
unbounded. Note that for a linking type problem arising in the study of periodic solutions
of Hamiltonians systems (see 9.1 Theorem in [24]) the fact that a BPS sequence may not
exists for every value of λ ∈ J was proved by Ginzburg [15] and Herman [16].
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In many situations one is interested to find a critical point for a given functional, namely
for a given value of λ ∈ J. Then a first step is to prove the existence of a BPS sequence
at the Mountain-Pass level or alternatively at a level different from Iλ(0) to avoid finding
u = 0 as a critical point. We claim that the generic result, Theorem 1.1, is a powerful
tool to establish the existence of such sequence. This is particularly true if the problem
enjoys some compactness properties.

Corollary 1.2 Let X be a Banach space equipped with the norm ‖.‖ and let I ∈ C1(X, IR)
be of the form

I(u) = A(u)−B(u)

where B and B′ take bounded sets to bounded sets. Suppose there exists ε > 0 such that,
for J = [1− ε, 1], the family (Iλ)λ∈J defined by

Iλ(u) = A(u)− λB(u)

satisfies the assumptions of Theorem 1.1. Finally assume that for all λ ∈ J any BPS
sequences for Iλ at the level cλ ∈ IR admit a convergent subsequence. Then there exists
{(λn, un)} ⊂ [1− ε, 1]×X with

λn → 1 and {λn} is increasing

Iλn(un) = cλn and I ′λn
(un) = 0 in X−1

such that, if {un} ⊂ X is bounded, there hold,

I(un) = Iλn(un) + (λn − 1)B(un) → lim
n→∞ cλn = c1

I ′(un) = I ′λn
(un) + (λn − 1)B′(un) → 0 in X−1.

The point of Corollary 1.2 is that if {un} is bounded, it is a BPS sequence for I at the
level c1. Clearly Corollary 1.2 is a direct consequence of Theorem 1.1 if we prove that the
map λ → cλ is continuous from the left. This is done in Lemma 2.3.

At this point however one may wonder about the interest of Corollary 1.2. Indeed the
existence of a Palais-Smale sequence for I at the MP level was already known and the
only remaining problem was, as it is now, to show that it is a bounded sequence. So what
progress have we made ? In reality our position is now much more advantageous since
with respect to a standard Palais-Smale sequence, the sequence {un} given in Corollary 1.2
possesses properties which are very useful when one tries to establish that it is bounded.
The difference is that instead of starting from a sequence of approximate critical points
of I (as can be view a standard Palais-Smale sequence) we now start from a sequence
of exact critical points of nearby functionals. The fact that un is an exact critical point
often provides additional informations on the sequence {un} which help to show that it is
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bounded. For example imagine that I is defined on a Sobolev space and that its critical
points (as those of Iλn) correspond to solutions of a PDE problem. Then they possess
stronger regularity properties than normally do elements of the ambient space. Also a
use of a maximum principle can often garanties a given sign for un, ∀n ∈ IN (see Section
3 for an application of this idea). Moreover there sometimes exist constraints that un

must satisfies. Just think of all situations where the solutions of a PDE problem satisfy
a Pohozaev’s type identity. More globally, for λ ∈ IR, let

Kλ = {u ∈ X : Iλ(u) = cλ and I ′λ(u) = 0}
and suppose that ∪λ∈[1−ε,1]Kλ is bounded for a ε > 0. Then, if for all λ ∈ [1 − ε, 1] any
BPS sequence for Iλ at the level cλ ∈ IR admit a convergent subsequence, the functional
I has a critical point.

The idea of constructing Palais-Smale sequences that possess some extra properties which
might help to ensure their boundedness, or more generally their convergence, is an old
topic. Among some significant contributions in that direction let us mention [5, 20] where
Morse type informations on the sequence prove crucial to ensure its compactness. Also
this is the central issue in [14].

Remark 1.3 It should be clear that possibilities of using Theorem 1.1 to construct a
special, up to boundedness, Palais-Smale sequence for a given functional exist in a large
variety of situations. A particular important case is the following. Let X be a Banach
space with norm ‖.‖ and I ∈ C1(X, IR) be such that I(0) = 0. Assume that there are two
positive constants r, ρ and v ∈ X with ‖v‖ > ρ satisfying

I(u) ≥ r if ‖u‖ = ρ and I(v) ≤ 0.

Under these hypotheses I has a Mountain-Pass geometry and we denote by c ≥ r the MP
level. Now writing I as

I(u) = I(u)− 0||u||2
we see that there exists ε > 0 such that the family

Iλ(u) = I(u)− λ||u||2 for λ ∈ [0, ε]

satisfies the assumptions of Theorem 1.1. Indeed Iλ(v) ≤ 0 for all λ ≥ 0 and since for
‖u‖ = ρ

Iλ(u) = I(u)− λ||u||2 ≥ r − λρ2

the claim holds as soon as ε < rρ−2. Thus, when in addition the family (Iλ)λ∈[0,ε] satisfies
the compactness conditions of Corollary 1.2, we obtain, up to boundedness, a special
Palais-Smale sequence for I at the level c̃ := limλ→0+ cλ. Note that if the map λ → cλ is
discontinuous at λ = 0 we may have c̃ < c. But clearly also c̃ > 0 = I(0). Thus as far as
the search of a non-trivial critical point is concerned we can forget that c̃ and c may be
different. 2
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In a second part of the paper we apply the abstract results of Section 2 to study the
existence of solutions of the problem

−∆u(x) + Ku(x) = f(x, u(x))
u ∈ H1(IRN), K > 0.

}
(P )

Because we shall look for positive solutions we may assume without restriction that
f(x, s) = 0,∀s < 0, a.e. x ∈ IRN . We require f to satisfy

(H1) (i) f : IRN × IR+ → IR is a Caratheodory function.

(ii) f(., s) ∈ L∞(IRN) and f(., s) is 1-periodic in xi, 1 ≤ i ≤ N .

(H2) There is p ∈]2, 2N
N−2

[ if N ≥ 3 and p > 2 if N = 1, 2 such that lim
s→∞ f(x, s)s1−p = 0,

uniformly for x ∈ IRN .

(H3) f(x, s)s−1 → 0 if s → 0, uniformly in x ∈ IRN .

(H4) There is a ∈]0,∞] such that f(x, s)s−1 → a if s →∞, uniformly in x ∈ IRN .

Let G : IRN × IR+ → IR be defined by

G(x, s) =
1

2
f(x, s)s− F (x, s) with F (x, s) =

∫ s

0
f(x, t) dt.

We shall also use

(A1) G(x, s) ≥ 0,∀s ≥ 0, a.e. x ∈ IRN and there is δ > 0 such that

f(x, s)s−1 ≥ K − δ =⇒ G(x, s) ≥ δ.

(A2) There is D ∈ [1,∞[ such that, a.e. x ∈ IRN ,

G(x, s) ≤ DG(x, t), ∀(t, s) ∈ IR+ × IR+ with s ≤ t.

Theorem 1.4

(i) Assume that (H1)-(H4) and (A1) hold with a < ∞ in (H4). Then if K ∈]0, a[ there
exists a non-trivial positive solution of (P).

(ii) Assume that (H1)-(H4) and (A2) hold with a = ∞ in (H4). Then there exists a
non-trivial positive solution of (P).

Remark 1.5 If f(x, s)s−1 is a non decreasing function of s ≥ 0, a.e. x ∈ IRN both
(A1) and (A2) are satisfied. In particular then (A2) holds with D = 1. Note also that
(A2) implies (A1) and thus the assumption on G is weaker when the nonlinearity is
asymptotically linear. Finally observe that (H2) always hold when a < ∞ in (H4). 2
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Theorem 1.4 will be proved using a variational procedure in the spirit of Corollary 1.2.
For the moment note that formally each critical point of the functional I : H1(IRN) → IR
defined by

I(u) =
1

2

∫

IRN
(|∇u|2 + Ku2) dx−

∫

IRN
F (x, u) dx

is a solution of problem (P). Also by the weak maximum principle it is a positive solution
of (P). As we shall see, when hypotheses (H1)-(H4) hold and K ∈]0, a[, I possesses a
Mountain Pass geometry.

The existence of solutions of (P) or of closely related problems have been extensively
studied these last years (see [7, 31, 33]). In the special case where f is autonomous,
namely when the nonlinearity does not depend explicitly on x ∈ IRN , the existence of one
solution of (P) (and even infinity many) was proved by Berestycki and Lions [7] under
hypotheses (H1)-(H4). To obtain the existence of one solution they develop a subtle
Lagrange multiplier procedure which ultimately relies on the Pohozaev’s identity for (P).
The lack of compactness due to the translational invariance of (P) is regained working in
the subspace of H1(IRN) of radially symmetric functions. In the general case where f is
not autonomous, Pohozaev’s identity provides no informations and, in the previous work,
in addition to (H1)-(H4), it is usually assumed that

(SQC) ∃µ > 2 such that 0 ≤ µF (x, s) ≤ f(x, s)s, ∀s ≥ 0, a.e. x ∈ IRN .

The condition (SQC), from now on referred as the superquadraticity condition, was orig-
inally introduced in [3] and is still present in most work involving the search of critical
points of Mountain-Pass type. Roughly speaking the role of (SQC) is to insure that all
Palais-Smale sequences for I at the MP level are bounded.

In Theorem 1.4 we replace (SQC) by (A1) if a < ∞ or by (A2) if a = ∞ in (H4). A
simple calculation shows that (SQC) implies that f(x, .) must increase at least as sµ−1

for s → ∞. So when a < ∞ it is not possible that (SQC) holds. When a = ∞ it may
happen that (SQC) is satisfied but our requirements on f does not imply it. For example
(SQC) is not true for the nonlinearity f(x, s) = f(s) = s ln(s+1) for s ≥ 0 which satisfies
(H1)-(H4) and (A2).

To our knowledge when a = ∞ in (H4) there is no general result on (P) without assuming
the (SQC) condition. We believe however that the method applied in [1] to deal with an
equation of the type (P), set on a bounded domain of IRN , could be extended to cover
the case of IRN . However, in addition to (H1)-(H4), it is required in [1] that f(x, s)s−1

is convex and this is substantially stronger than (A2). When a < ∞ in (H4) we just
know two results [31, 33] which can be compared to Theorem 1.4. In [33], (P) is studied
assuming that f is radial as a function of x ∈ IRN . A similar hypothesis is present in [31]
on a problem related to (P) arising from a model of self-trapping of an electro-magnetic
wave. There, as in many papers dealing with a nonlinearity which is not superquadratic,
is used an abstract critical point theorem due to Bartolo, Benci and Fortunato [6] which
is based on the work of Cerami [11]. Thanks to the radial assumption the problems are
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somehow set on IR and possess a much stronger compactness. It is not clear to us how
the arguments developed in [31, 33] could be extended to treat a general problem on IRN .
Also in addition to (H1)-(H4) the assumptions that f(x, s)s−1 is non decreasing and that
G(x, s) → +∞ as s → ∞, a.e. x ∈ IRN are needed both in [31] and [33]. Finally f has
to satisfy a superquadraticity condition for s ≥ 0 small. Namely for some δ > 0 there is
a µ > 2 such that

0 ≤ µF (x, s) ≤ f(x, s)s, ∀s ∈ [0, δ], a.e. x ∈ IRN .

For all these reasons we believe that Theorem 1.4, both in the cases a = ∞ and a < ∞
that we treat in a unified way, strongly generalize the previous existence results.

Let us now sketch the proof of Theorem 1.4. We start by noticing that I is of the form

I(u) = A(u)−B(u)

with A(u) → +∞ as ‖u‖ → ∞ and B(u) ≥ 0, ∀u ∈ H1(IRN). Then, thanks to Lemmas
3.1 and 3.2, we show that the family of functionals defined by

Iλ(u) = A(u)− λB(u), λ ∈ [1, 2]

satisfies the assumptions of Theorem 1.1. Thus we get that for almost every λ ∈ [1, 2]
there exists a bounded sequence {vm} ⊂ H1(IRN) such that

Iλ(vm) → cλ and I ′λ(vm) → 0 in H−1(IRN).

Using the translational invariance of (P) we establish in Lemma 3.5 that there is a sequence
{ym} ⊂ ZZN such that um(x) := vm(x − ym) satisfies um ⇀ uλ 6= 0 weakly in H1(IRN)
with Iλ(uλ) ≤ cλ and I ′λ(uλ) = 0. From the weak maximum principle we get that uλ ≥ 0
a.e. x ∈ IRN . At this point we have proved the existence of a sequence {(λn, un)} ⊂
[1, 2]×H1(IRN) with un ≥ 0 a.e. x ∈ IRN such that

• λn → 1 and {λn} is decreasing.

• un 6= 0, Iλn(un) ≤ cλn and I ′λn
(un) = 0.

In Lemma 3.6, assuming that {un} ⊂ H1(IRN) is bounded we show how to obtain a
non-trivial critical point of I corresponding to a positive solution of (P). To prove the
boundedness of {un} we develop an original approach, relying somehow on P.L. Lions
work [19] on the concentration compactness principle, which, we believe, could be applied
to a large variety of problem where (SQC) does not hold. The proof is by contradiction
assuming that ‖un‖ → ∞. Then setting wn = un‖un‖−1 (and using if necessary the
translational invariance of (P)) there is a subsequence of {wn} with wn ⇀ w in H1(IRN)
satisfying one of the two following alternatives.
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1. (non-vanishing) ∃α > 0, R < ∞ such that

lim
n→∞

∫

BR

w2
n dx ≥ α > 0,

2. (vanishing)

lim
n→∞ sup

y∈ZZN

∫

y+BR

w2
n dx = 0, ∀R < ∞.

We shall prove that none of the two cases can occurs and this will give us the desired
contradiction. If we assume that {wn} does not vanish then w 6= 0. To eliminate this
alternative we distinguish the cases a < ∞ and a = ∞ in (H4). When a < ∞ we show in
Lemma 3.7 that w 6= 0 satisfies the equation

−∆w + Kw = aw, x ∈ IRN .

Since the operator −∆ has no eigenvector in H1(IRN) this is a contradiction. When
a = ∞ we show in Lemma 3.8 that the condition f(x, s)s−1 →∞ as s →∞ a.e. x ∈ IRN

prevents the set Ω = {x ∈ IRN : w(x) > 0} to have a non-zero Lebesgue measure. But
this is the case since w 6= 0. To eliminate alternative (2) we distinguish again the cases
a < ∞ and a = ∞. Noticing that, ∀n ∈ IN,

∫

IRN
G(x, un) dx ≤ cλn

λn

≤ c

we show in Lemma 3.9 that when a < ∞ and (A1) holds the integrals goes to +∞. Finally
when a = ∞ we show in Lemma 3.10 that the vanishing of {wn} is incompatible with
the “nice” radial behaviour of I which is insured (A2). Having proved the boundedness
of {un} ⊂ H1(IRN) the proof of Theorem 1.4 is completed.
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Notation

Throughout the article the letter C will denote various positive constants whose exact
value may change from line to line but are not essential to the analysis of the problem.
Also if we take a subsequence of a sequence {un} we shall denote it again {un}.
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2 Abstract Results

In this section we give the proof of Theorem 1.1 and we show that it is sharp in the sense
that a BPS sequence cannot be found for every λ ∈ J . Since J ⊂ IR+ and B(u) ≥ 0,
∀u ∈ X, the map λ → cλ is non increasing. Thus c′λ, the derivative of cλ with respect to
λ, exists almost everywhere. Theorem 1.1 will be proved if we establish that the existence
of c′λ implies that Iλ has a BPS sequence at the level cλ.

Let λ ∈ J be an arbitrary but fixed value where c′λ exists. Let {λn} ⊂ J be a strictly
increasing sequence such that λn → λ.

Proposition 2.1 There exist a sequence of paths {γn} ⊂ Γ and K = K(c′λ) > 0 such
that

(i) ||γn(t)|| ≤ K if γn(t) satisfies

Iλ(γn(t)) ≥ cλ − (λ− λn). (2.1)

(ii) max
t∈[0,1]

Iλ(γn(t)) ≤ cλ + (−c′λ + 2)(λ− λn).

Proof. Let {γn} ⊂ Γ be an arbitrary sequence such that

max
t∈[0,1]

Iλn(γn(t)) ≤ cλn + (λ− λn). (2.2)

Note that such sequence exists since the class of paths Γ is independent of λ. We shall
prove that, for n ∈ IN sufficiently large, {γn} is a sequence as we are looking for. When
γn(t) satisfies (2.1) we have

Iλn(γn(t))− Iλ(γn(t))

λ− λn

≤ cλn + (λ− λn)− cλ + (λ− λn)

λ− λn

=
cλn − cλ

λ− λn

+ 2.

Since c′λ exists, there is n(λ) ∈ IN such that ∀n ≥ n(λ)

−c′λ − 1 ≤ cλn − cλ

λ− λn

≤ −c′λ + 1 (2.3)

and thus ∀n ≥ n(λ),
Iλn(γn(t))− Iλ(γn(t))

λ− λn

≤ −c′λ + 3.

Consequently

B(γn(t)) =
Iλn(γn(t))− Iλ(γn(t))

λ− λn

≤ −c′λ + 3.
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Also

A(γn(t)) = Iλn(γn(t)) + λnB(γn(t))

≤ cλn + (λ− λn) + λn(−c′λ + 3)

≤ C.

Using our assumption that either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞, the uniform
boundedness of A(γn(t)) and B(γn(t)) proves (i). To prove (ii) observe that from (2.3),
we have, ∀n ≥ n(λ)

cλn ≤ cλ + (−c′λ + 1)(λ− λn). (2.4)

Using (2.2), (2.4) and since
Iλn(v) ≥ Iλ(v), ∀v ∈ X

we get

Iλ(γn(t)) ≤ Iλn(γn(t))

≤ cλn + (λ− λn)

≤ cλ + (−c′λ + 2)(λ− λn).

Thus Point (ii) also holds. ♠

Roughly speaking Proposition 2.1 says that there exists a sequence of paths {γn} ⊂ Γ
such that

max
t∈[0,1]

Iλ(γn(t)) → cλ

for which, for all n ∈ IN sufficiently large, starting from a level strictly below cλ, all
the “top” of the path is contained in the ball centred at the origin of fixed radius K =
K(c′λ) > 0. Now for α > 0 we define

Fα = {u ∈ X : ||u|| ≤ K + 1 and |Iλ(u)− cλ| ≤ α}

where the constant K > 0 is given in Proposition 2.1.

Proposition 2.2 For all α > 0

inf{||I ′λ(u)|| : u ∈ Fα} = 0. (2.5)

Proof. Seeking a contradiction we assume that (2.5) does not hold. Then there exists
α > 0 such that for any u ∈ Fα one has

||I ′λ(u)|| ≥ α (2.6)
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and without loss of generality we can assume that

0 < α <
1

2
[cλ −max{Iλ(v1), Iλ(v2)}] .

A classical deformation argument then says that there exist ε ∈]0, α[ and a homeomor-
phism η : X → X such that

η(u) = u, if |Iλ(u)− cλ| ≥ α (2.7)

Iλ(η(u)) ≤ Iλ(u), ∀u ∈ X (2.8)

Iλ(η(u)) ≤ cλ − ε, ∀u ∈ X satisfying ||u|| ≤ K and Iλ(u) ≤ cλ + ε. (2.9)

Let {γn} ⊂ Γ be the sequence obtained in Proposition 2.1. We choose and fix m ∈ IN
sufficiently large in order that

(−c′λ + 2)(λ− λm) ≤ ε. (2.10)

Clearly by (2.7), η(γm) ∈ Γ. Now if u = γm(t) satisfies

Iλ(u) ≤ cλ − (λ− λm)

then (2.8) implies that

Iλ(η(u)) ≤ cλ − (λ− λm). (2.11)

On the other hand if u = γm(t) satisfies

Iλ(u) > cλ − (λ− λm)

then Proposition 2.1 and (2.10) implies that u is such that ||u|| ≤ K with Iλ(u) ≤ cλ + ε.
Applying (2.9) one has

Iλ(η(u)) ≤ cλ − ε ≤ cλ − (λ− λm). (2.12)

Thus combining (2.11) and (2.12) we get

max
t∈[0,1]

Iλ(η(γm(t))) ≤ cλ − (λ− λm)

which contradicts the variational characterisation of cλ. ♠

Proof of Theorem 1.1. Since Proposition 2.2 is true there exists a Palais-Smale sequence
for Iλ at the level cλ ∈ IR which is contained in the ball of radius K + 1 centred at the
origin. This proves the theorem. ♠

Lemma 2.3 The map λ → cλ is continuous from the left.
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Proof. Seeking a contradiction we assume there are λ0 ∈ J and {λn} ⊂ J with λn <
λ0, ∀n ∈ IN and λn → λ0 for which

cλ0 < lim
n→∞ cλn .

Let δ = lim
n→∞ cλn − cλ0 > 0. By definition of cλ0 there is γ0 ∈ Γ such that

max
t∈[0,1]

Iλ0(γ0(t)) < cλ0 +
δ

3
.

Using the fact that, Iλ(u) = Iλ0(u) + (λ0 − λ)B(u), ∀λ ∈ J, ∀u ∈ X, we get, ∀λ < λ0

max
t∈[0,1]

Iλ(γ0(t)) < cλ0 +
δ

3
+ (λ0 − λ) max

t∈[0,1]
B(γ0(t)).

But B being continuous we have maxt∈[0,1] B(γ0(t)) ≤ C for a C > 0 and thus, for any
n ∈ IN sufficiently large,

max
t∈[0,1]

Iλn(γ0(t)) < cλ0 +
2δ

3
.

We reach a contradiction noticing that by definition of cλn

max
t∈[0,1]

Iλn(γ0(t)) ≥ cλn . ♠

We end this section by presenting a family (Iλ)λ∈J for which there does not exist a BPS
sequence for every λ ∈ J . As we already mentioned this example was provided to us by
Brezis [9] and it shows that Theorem 1.1 is sharp. Let F : IR2 → IR be defined by

F (x, y) = x2 − (x− 1)3y2.

The space IR2 is equipped with the Euclidean norm ‖(x, y)‖ =
√

x2 + y2. Around the
origin F behaves as ‖(x, y)‖2. Moreover taking x > 0 sufficiently large we see that
F (x, 1) < 0. In particular F has a Mountain-Pass geometry and as we notice in Remark
1.3 there exists ε > 0 such that the family of functions (Fλ)λ∈[0,ε] defined by

Fλ(x, y) = F (x, y)− λ(x2 + y2)

satisfies the assumptions of Theorem 1.1. In fact it is even possible to assume that
λ ∈ [−ε, ε]. Let us show that there is no BPS sequence for F = F0 at the Mountain-Pass
level. We have

{
Fx = 2x− 3(x− 1)2y2

Fy = −2(x− 1)3y.

Thus any sequence {(xn, yn)} ⊂ IR2 such that ‖F ′(xn, yn)‖ → 0 must satisfy

2xn − 3(xn − 1)2y2
n → 0 (2.13)

(xn − 1)3yn → 0. (2.14)

Without restriction we can assume that xn → x ∈ [−∞,∞] and yn → y ∈ [−∞,∞]. We
distinguish two cases

13



• xn 6→ 1. Then from (2.14) we get that yn → 0 and since

(xn − 1)2y2
n =

[
(xn − 1)3yn

]2/3
y4/3

n → 0

it follows from (2.13) that xn → 0.

• xn → 1. Then from (2.13), (xn − 1)2y2
n → 2/3 and in particular |yn| → ∞.

In the first case F (xn, yn) → 0 and in the second F (xn, yn) → 1. We deduce that the
Mountain-Pass level for F is c = 1 and that there is no BPS sequence for F at this level.
Analyzing the Palais-Smale sequences of Fλ for λ ∈ [−ε, ε]\{0} we find that there always
exists a critical point at the Mountain-Pass level cλ = (1−λ)(1−λ1/3)2. We have cλ → 1
as λ → 0 and thus cλ is continuous on [−ε, ε]. Moreover

c′λ = (1− λ1/3)(
5

3
λ1/3 − 1− 2

3
λ−2/3) for λ ∈]− ε, ε[\{0}

and thus c′λ exists for all λ ∈]− ε, ε[\{0}. On the contrary we can check that c′λ for λ = 0
does not exist as we already knew from Theorem 1.1.

3 Applications

The main aim of this section is to prove Theorem 1.4 applying the abstract variational
approach of Section 2. In the proofs that follow, we shall routinely take N ≥ 3. The
proofs for N = 1 or N = 2 are not more complicated. Our working space is the Sobolev
space H1(IRN) equipped with the norm

‖u‖ =
{∫

IRN
(|∇u|2 + Ku2) dx

} 1
2

which, since K > 0, is equivalent to the usual one. We denote by ‖·‖p, for each p ∈ [1,∞],
the standard norm of the Lebesgue space ÃLp(IRN). As we mentioned in the introduction
proving Theorem 1.4 amounts to find a non-trivial critical point of the functional I :
H1(IRN) → IR defined by

I(u) =
1

2
‖u‖2 −

∫

IRN
F (x, u) dx.

A proof that, under (H1)-(H3), I is a C1-functional is given in Proposition 2.1 of [12].
Let us show that I has a Mountain-Pass geometry. Since I(0) = 0 this is a consequence
of two following results.

Lemma 3.1 Assume that (H1)-(H3) hold. Then I(u) =
1

2
‖u‖2 + o(‖u‖2) as u → 0.
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Proof. By (H3) we know that f(x, s)s−1 → 0 as s → 0 uniformly in x ∈ IRN . Thus for
any ε > 0 it follows by (H2) that there exists a Cε > 0 such that

f(x, s) ≤ εs + Cεs
p−1, ∀s ≥ 0, a.e. x ∈ IRN (3.1)

or equivalently that

F (x, s) ≤ ε

2
s2 +

Cε

p
sp,∀s ≥ 0, a.e. x ∈ IRN . (3.2)

We deduce that ∫

IRN
F (x, u) dx ≤ ε

2
‖u‖2 + C‖u‖p

p

and this implies that
∫
IRN F (x, u) dx = o(‖u‖2) as u → 0. ♠

Lemma 3.2 Assume that (H1), (H2), (H4) hold and that K ∈]0, a[. Then we can find a
v ∈ H1(IRN), v 6= 0 satisfying I(v) ≤ 0.

Proof. Without loss of generality we can assume that a < ∞ in (H4). The proof is
based in the construction of a family of testing functions that we borrow from [33] (see
also [29]). Let

d2(N) =
∫

IRN
e−2|x|2dx and D(N) = 4[d(N)]−2

∫

IRN
|x|2e−2|x|2dx.

For α > 0 we set
wα(x) = [d(N)]−1α

N
4 e−α|x|2 .

Straightforward calculations shows that

‖wα‖2 = 1 and ‖∇wα‖2
2 = αD(N).

Thus in particular if we fix α ∈ (0,
a−K

D(N)
) we get that

‖∇wα‖2
2 < (a−K). (3.3)

On the other hand by (H4)

lim
s→∞

F (x, s)

s2
=

a

2
, uniformly in x ∈ IRN .

and since, for every x ∈ IRN , twα(x) → +∞ as t → +∞ it follows that

lim
t→+∞

F (x, twα)

t2w2
α

=
a

2
, a.e. x ∈ IRN .
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Now observe that (H1),(H3) and (H4) implies the existence of a constant C < ∞ such
that ∀s ≥ 0, a.e. x ∈ IRN ,

0 ≤ F (x, s)

s2
≤ C. (3.4)

Thus using (3.4) it follows by Lebesgue’s theorem that

lim
t→+∞

∫

IRN

F (x, twα)

t2
dx =

a

2

∫

IRN
w2

α dx =
a

2
.

Now using (3.3) we get

lim
t→+∞

I(twα)

t2
=

1

2
‖∇wα‖2

2 +
K

2
‖wα‖2

2 − lim
t→+∞

∫

IRN

F (x, twα)

t2
dx

=
1

2
‖∇wα‖2

2 +
K

2
− a

2
< 0

and the lemma is proved. ♠

We define on H1(IRN) the family of functionals

Iλ(u) =
1

2
‖u‖2 − λ

∫

IRN
F (x, u) dx, λ ∈ [1, 2].

Lemma 3.3 Assume that (H1)-(H4) hold. The family (Iλ) with λ ∈ [1, 2] satisfies the
hypotheses of Theorem 1.1. In particular for almost every λ ∈ [1, 2] there exists a bounded
sequence {vm} ⊂ H1(IRN) satisfying

Iλ(vm) → cλ and I ′λ(vm) → 0 in H−1(IRN).

Proof. For the v ∈ H1(IRN) obtained in Lemma 3.2, Iλ(v) ≤ 0 for all λ ≥ 1 since

∫

IRN
F (x, u) dx ≥ 0, ∀u ∈ H1(IRN).

Also from Lemma 3.1 we know that
∫

IRN
F (x, u) dx = o(‖u‖2) as u → 0.

Thus setting
Γ =

{
γ ∈ C([0, 1], H1(IRN)), γ(0) = 0 and γ(1) = v

}

we have, ∀λ ∈ [1, 2],
cλ := inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)) > 0.

An application of Theorem 1.1 now completes the proof. ♠
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In the rest of the paper we shall often use the following terminology. Let {un} ⊂ H1(IRN)
be an arbitrary bounded sequence. If it is possible to translate each un in IRN such that
the translated sequence (still denoted {un}) satisfies, up to a subsequence, ∃α > 0, R < ∞
such that

lim
n→∞

∫

BR

u2
n dx ≥ α > 0

we say that {un} does not vanish. If it is not the case then necessarily one has

lim
n→∞ sup

y∈ZZN

∫

y+BR

u2
n dx = 0, ∀R < ∞

and in this case we say that {un} vanish.

Lemma 3.4 Assume that (H1)-(H3) hold. Let {un} ⊂ H1(IRN) be an arbitrary bounded
sequence which vanish. Then

lim
n→∞

∫

IRN
G(x, un) dx = 0.

Proof. It is known that if {un} ⊂ H1(IRN) vanish then un → 0 strongly in Lq(IRN) for
all q ∈]2, 2N

N−2
[. A proof of this result is given in Lemma 2.18 of [12]. It is a special case

of Lemma I.1 of [19]. Now by (3.1) and (3.2) we know that ∀ε > 0, ∃ Cε > 0 such that

∫

IRN
f(x, un)un dx ≤ ε‖un‖2

2 + Cε‖un‖p
p

∫

IRN
F (x, un) dx ≤ ε

2
‖un‖2

2 +
Cε

p
‖un‖p

p.

Thus if {un} ⊂ H1(IRN) vanish both

∫

IRN
f(x, un)un dx → 0 and

∫

IRN
F (x, un) dx → 0

and the lemma follows from the definition of G. ♠

Lemma 3.5 Assume that (H1)-(H4) and either (A1) or (A2) hold. Let λ ∈ [1, 2] be fixed.
Then for all bounded sequences {vm} ⊂ H1(IRN) satisfying

• 0 < lim
m→∞ Iλ(vm) ≤ cλ

• I ′λ(vm) → 0 in H−1(IRN)

there exists {ym} ⊂ ZZN such that, up to a subsequence, um(x) := vm(x − ym) satisfies
um ⇀ uλ 6= 0 with Iλ(uλ) ≤ cλ and I ′λ(uλ) = 0.
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Proof. Since {vm} ⊂ H1(IRN) is bounded we have

∫

IRN
G(x, vm) dx = Iλ(vm)− 1

2
I ′λ(vm)vm → lim

m→∞ Iλ(vm) > 0.

Thus we see, by Lemma 3.4, that {vm} ⊂ H1(IRN) does not vanish and there is {ym} ⊂ ZZN

such that, up to a subsequence, um(x) := vm(x− ym) satisfies: ∃α > 0, R < ∞ such that

lim
m→∞

∫

BR

u2
m dx ≥ α > 0. (3.5)

Moreover since problem (P) is invariant under the translation group associated to the
periodicity of f(., s) we still have

• 0 < lim
m→∞ Iλ(um) ≤ cλ

• I ′λ(um) → 0 in H−1(IRN).

We have, up to a subsequence, um ⇀ uλ for a uλ ∈ H1(IRN) and to complete the proof
of the lemma we just need to show, that uλ 6= 0, I ′λ(uλ) = 0 and Iλ(uλ) ≤ cλ.

Step 1 uλ 6= 0

Since (3.5) hold we get by the compactness of the Sobolev embedding H1(BR) ↪→ L2(BR)
that

‖uλ‖2
2 ≥

∫

BR

u2
λ dx = lim

m→∞

∫

BR

u2
m dx ≥ α > 0.

Thus uλ 6= 0 and Step 1 is completed.

Step 2 I ′λ(uλ) = 0

Noting that C∞
0 (IRN) is dense in H1(IRN) it suffices to check that I ′λ(v)ϕ = 0 for all

ϕ ∈ C∞
0 (IRN). Let (·, ·) denote the inner product on H1(IRN) associated to our chosen

norm. Then

I ′λ(um)ϕ− I ′λ(uλ)ϕ = (um − uλ, ϕ)−
∫

IRN
(f(x, um)− f(x, uλ)) ϕ dx → 0

since um ⇀ uλ weakly in H1(IRN) and strongly in Lq
loc(IR

N) for q ∈ [2, 2N
N−2

[. Thus
recalling that I ′λ(um) → 0 we indeed have that I ′λ(uλ) = 0.

Step 3 Iλ(uλ) ≤ cλ

Observe that either (A1) or (A2) imply that

G(x, s) ≥ 0, ∀s ≥ 0, a.e. x ∈ IRN . (3.6)
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Thus using Fatou’s Lemma we get using Step 2

cλ ≥ lim
m→∞

[
Iλ(um)− 1

2
I ′λ(um)um

]

= lim
m→∞

∫

IRN
G(x, um) dx

≥
∫

IRN
G(x, uλ) dx

= Iλ(uλ)− 1

2
I ′λ(uλ)uλ = Iλ(uλ).

This ends the proof of the lemma. ♠

At this point combining Lemmas 3.3 and 3.5 we deduce the existence of a sequence
{(λn, un)} ⊂ [1, 2]×H1(IRN) with un ≥ 0 a.e. x ∈ IRN such that

• λn → 1 and {λn} is decreasing

• un 6= 0, Iλn(un) ≤ cλn and I ′λn
(un) = 0.

Since

1

2
‖un‖2 − λn

∫

IRN
F (x, un) dx ≤ cλn and ‖un‖2 = λn

∫

IRN
f(x, un)un dx

we have in particular that ∫

IRN
G(x, un) dx ≤ cλn

λn

.

Clearly
cλn

λn

is increasing and bounded by c = c1. It follows that

∫

IRN
G(x, un) dx ≤ c, ∀n ∈ IN. (3.7)

Lemma 3.6 Assume that (H1)-(H4) and either (A1) or (A2) hold. If the sequence
{un} ⊂ H1(IRN) given above is bounded there exists u 6= 0 such that I ′(u) = 0. In
particular u is a non-trivial positive solution of (P).

Proof. First notice that

I ′(un)v = I ′λn
(un)v + (λn − λ)

∫

IRN
f(x, un)v dx → 0, ∀v ∈ H1(IRN).

Now knowing that

I(un) = Iλn(un) + (λn − λ)
∫

IRN
F (x, un) dx
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we distinguish two cases. Either lim supn→∞ Iλn(un) > 0 or lim supn→∞ Iλn(un) ≤ 0. In
the first case we get lim supn→∞ I(un) > 0 and the result follows from Lemma 3.5. In
the second case we define the sequence {zn} ⊂ H1(IRN) by zn = tnun with tn ∈ [0, 1]
satisfying

Iλn(zn) = max
t∈[0,1]

Iλn(tun). (3.8)

(If for a n ∈ IN, tn defined by (3.8) is not unique we choose the smaller possible value). By
construction {zn} ⊂ H1(IRN) is bounded. Moreover on one hand I ′λn

(zn)zn = 0, ∀n ∈ IN
and thus

λn

∫

IRN
G(x, zn) dx = Iλn(zn)− 1

2
I ′λn

(zn)zn = Iλn(zn). (3.9)

On the other hand it is easily seen, following the proof of Lemma 3.1, that I ′λn
(u)u =

||u||2 + o(‖u‖2) as u → 0, uniformly in n ∈ IN. Thus, since I ′λn
(un) = 0, there is α > 0

such that ||un|| ≥ α, ∀n ∈ IN. Recording that lim supn→∞ Iλn(un) ≤ 0, we then obtain
from Lemma 3.1 and (3.8) that lim infn→∞ Iλn(zn) > 0 and from (3.9) it follows that

lim inf
n→∞

∫

IRN
G(x, zn) dx = lim inf

n→∞ Iλn(zn) > 0.

Lemma 3.4 then shows that {zn} does not vanish and so neither {un}. At this point we
conclude repeating Steps 1 and 2 of the proof of Lemma 3.5. ♠

In view of Lemma 3.6 to complete the proof of Theorem 1.4 we just need to check that
{un} ⊂ H1(IRN) is bounded. This is the purpose of our last four lemmas. Seeking a
contradiction we assume that ‖un‖ → ∞ and define the sequence {wn} ⊂ H1(IRN) by

wn =
un

‖un‖ .

Clearly ‖wn‖ = 1 and thus wn ⇀ w up to a subsequence. Either {wn} ⊂ H1(IRN) vanish
or it does not vanish. Using (A1) when a < ∞ or (A2) when a = ∞ in (H4) we shall
prove that none of these alternatives can occur and this contradiction will prove that
{un} ⊂ H1(IRN) is bounded. Assume first that {wn} ⊂ H1(IRN) does not vanish. Then,
as in the proof of Lemma 3.5, using if necessary the translation invariance of problem (P),
we get that wn ⇀ w 6= 0. Also we can assume without loss of generality that wn → w
a.e. x ∈ IRN . At this point the proof bifurcates to cover separately the cases a < ∞ and
a = ∞ in (H4).

Lemma 3.7 Assume that (H1)-(H4) hold with a < ∞ in (H4) and that K ∈]0, a[. Then
the non-vanishing of {wn} ⊂ H1(IRN) is impossible.
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Proof. We shall prove 0 6= w ∈ H1(IRN) satisfies the eigenvalue problem

−∆w(x) + Kw(x) = aw(x), x ∈ IRN . (3.10)

This gives us the desired contradiction since it is well known that the operator −∆ has
no eigenvalue in H1(IRN). To prove that (3.10) holds it suffices to check that, for any
ϕ ∈ C∞

0 (IRN),

∫

IRN
[∇w∇ϕ + Kwϕ] dx =

∫

IRN
[awϕ] dx. (3.11)

Recall that I
′
λn

(un) = 0. Thus we have

−∆un + Kun = λnf(x, un) in H−1(IRN).

Consequently {wn} ⊂ H1(IRN) satisfies

−∆wn + Kwn = λn
f(x, un)

un

wn in H−1(IRN),

and this implies that, ∀ϕ ∈ C∞
0 (IRN),

∫

IRN
[∇wn∇ϕ + Kwnϕ] dx =

∫

IRN

[
λn

f(x, un)

un

wnϕ

]
dx. (3.12)

Since wn ⇀ w weakly in H1(IRN) we have, ∀ϕ ∈ C∞
0 (IRN),

∫

IRN
[∇wn∇ϕ + Kwnϕ] dx →

∫

IRN
[∇w∇ϕ + Kwϕ] dx. (3.13)

We claim that

λn
f(x, un)

un

wn → aw, a.e. x ∈ IRN . (3.14)

To prove (3.14) it is convenient to distinguish the cases w(x) = 0 and w(x) 6= 0 (without
loss of generality we can assume that w 6= 0 is defined everywhere on IRN). Let x ∈ IRN

be such that w(x) = 0. Using the assumptions (H1),(H3) and (H4) we see that there
exists C < ∞ such that

0 ≤ f(x, s)

s
≤ C, ∀s ≥ 0, a.e. x ∈ IRN . (3.15)

Thus since {λn} ⊂ IR is bounded and wn(x) → w(x) a.e. x ∈ IRN we have for such
x ∈ IRN

0 ≤ λn
f(x, un(x))

un(x)
wn(x) ≤ λnCwn(x) → 0 = aw(x).
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Now let x ∈ IRN be such that w(x) 6= 0. Then we necessarily have un(x) →∞ and thus,
using (H4), we get since λn → 1

λn
f(x, un(x))

un(x)
→ a.

Consequently also in this case

λn
f(x, un(x))

un(x)
wn(x) → aw(x) (3.16)

and (3.14) is established. Now let ϕ ∈ C∞
0 (IRN) be arbitrary but fixed and let Ω ⊂ IRN

be a compact set such that supp ϕ ⊂ Ω. By the compactness of the Sobolev embedding
H1(Ω) ↪→ L1(Ω) we have wn → w strongly in L1(Ω). Thus in particular there is a
h ∈ L1(Ω) such that wn(x) ≤ h(x) a.e. x ∈ Ω (see Theorem IV.9 in [8]) and using again
(3.15) we have

0 ≤ λn
f(x, un)

un

wn ≤ Cwn ≤ Ch, a.e. x ∈ Ω. (3.17)

Now (3.14) and (3.17) allows to apply Lebesgue theorem and we get

∫

IRN

[
λn

f(x, un)

un

wnϕ

]
dx →

∫

IRN
[awϕ] dx. (3.18)

Since (3.18) holds for an arbitrary ϕ ∈ C∞
0 (IRN), combining (3.13) and (3.18) we indeed

get (3.11). Thus (3.10) holds and the lemma is proved. ♠

Lemma 3.8 Assume that (H1)-(H4) hold with a = ∞ in (H4). Then the non-vanishing
of {wn} ⊂ H1(IRN) is impossible.

Proof. From
−∆un + Kun = λnf(x, un)

we deduce that

−∆wn + Kwn = λn
f(x, un)

||un|| . (3.19)

Multiplying (3.19) by an arbitrary v ∈ H1(IRN) and integrating it follows that

∫

IRN
[∇wn∇v + Kwnv] dx = λn

∫

IRN

f(x, un)

||un|| v dx.

Thus if wn ⇀ w, we have, ∀v ∈ H1(IRN),

lim
n→∞

∫

IRN

f(x, un)

||un|| v dx =
∫

IRN
[∇w∇v + Kwv] dx
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and in particular setting v = w we get

lim
n→∞

∫

IRN

f(x, un)

||un|| w dx = ||w||2 < ∞. (3.20)

But on Ω = {x ∈ IRN : w(x) 6= 0} we have, since a = ∞,

f(x, un)

||un|| w =
f(x, un)

un

wnw → +∞, a.e. x ∈ IRN .

Thus taking into account that |Ω| > 0 and using Fatou’s Lemma we deduce that

lim
n→∞

∫

IRN

f(x, un)

||un|| w dx = +∞.

This contradicts (3.20). ♠

Now we shall prove that the vanishing of {wn} ⊂ H1(IRN) is forbidden. Here also we
distinguish the cases a < ∞ and a = ∞ and (H4).

Lemma 3.9 Assume that (H1)-(H4) hold with a < ∞ in (H4). Then if (A1) hold the
vanishing of {wn} ⊂ H1(IRN) is impossible.

Proof. We have
−∆un + Kun = λnf(x, un).

Thus

−∆wn + Kwn = λn
f(x, un)

un

wn. (3.21)

Multiplying (3.21) by wn and integrating we get

∫

IRN

[
|∇wn|2 + Kw2

n

]
dx = λn

∫

IRN

f(x, un)

un

w2
n dx

and we deduce from the normalization of {wn} ⊂ H1(IRN) that

lim
n→∞

∫

IRN

f(x, un)

un

w2
n dx = 1. (3.22)

We define for δ > 0 given in (A1)

Ωn = {x ∈ IRN :
f(x, un)

un

≤ K − δ

2
}.
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Then since, 1 = ||wn||2 = ||∇wn||22 + K||wn||22, we have

∫

Ωn

f(x, un)

un

w2
n dx ≤ (K − δ

2
)
∫

Ωn

w2
n dx

≤ 1

K
(K − δ

2
).

Consequently we see, using (3.22), that necessarily

lim inf
n→∞

∫

IRN\Ωn

f(x, un)

un

w2
n dx > 0. (3.23)

We claim that

lim sup
n→∞

|IRN\Ωn| = ∞. (3.24)

Seeking a contradiction we assume that

lim sup
n→∞

|IRN\Ωn| < ∞. (3.25)

Note that by (3.15)

∫

IRN\Ωn

f(x, un)

un

w2
n dx ≤ C

∫

IRN\Ωn

w2
n dx. (3.26)

But, since {wn} ⊂ H1(IRN) vanishs, we have taking into account (3.25)

lim
n→∞

∫

IRN\Ωn

w2
n dx → 0

and thus (3.26) contradicts (3.23). The contradiction proves that (3.24) is true. Now
observe that by (A1), G(x, s) ≥ 0, ∀s ≥ 0, a.e. x ∈ IRN and thus, ∀n ∈ IN,

∫

IRN
G(x, un) dx =

∫

Ωn

G(x, un) dx +
∫

IRN\Ωn

G(x, un) dx

≥
∫

IRN\Ωn

G(x, un) dx.

Taking into account (3.7) we deduce that, for all n ∈ IN,
∫

IRN\Ωn

G(x, un) dx ≤ C. (3.27)

But on IRN\Ωn we have
f(x, un)

un

≥ K − δ

2
and thus by (A1)

G(x, un) ≥ δ, a.e. x ∈ IRN\Ωn. (3.28)

Combining (3.24) and (3.28) we get a contradiction with (3.27). ♠
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Lemma 3.10 Assume that (H1)-(H4) hold with a = ∞ in (H4). Then if (A2) hold the
vanishing of {wn} ⊂ H1(IRN) is impossible.

Proof. We use again the sequence {zn} ⊂ H1(IRN) introduce in Lemma 3.6. We claim
that, under our assumptions and since we assume that ||un|| → ∞,

lim
n→∞ Iλn(zn) = +∞. (3.29)

Seeking a contradiction we assume that for a M < ∞

lim inf
n→∞ Iλn(zn) ≤ M (3.30)

and we define, for the corresponding subsequence, {kn} ⊂ H1(IRN) by

kn =
√

4M
un

‖un‖ .

Now, since {kn} ⊂ H1(IRN) vanishs and is bounded, from the proof of Lemma 3.4, we
get that ∫

IRN
F (x, kn) dx → 0.

It follows that, for n ∈ IN sufficiently large,

Iλn(kn) = 2M − λn

∫

IRN
F (x, kn) dx ≥ 3

2
M. (3.31)

Since kn and zn corresponds, for all n ∈ IN, to the same direction we see using the definition
of zn that (3.31) contradicts (3.30). Thus (3.29) hold. Now we have I

′
λn

(zn)zn = 0,∀n ∈ IN,
and thus

Iλn(zn) = Iλn(zn)− 1

2
I
′
λn

(zn)zn = λn

∫

IRN
G(x, zn) dx. (3.32)

Combining (3.29) and (3.32) we see that

∫

IRN
G(x, zn) dx → +∞.

But from (A2) and (3.7) we also have

∫

IRN
G(x, zn) dx ≤ D

∫

IRN
G(x, un) dx ≤ C. (3.33)

This contradiction proves the lemma. ♠
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