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1 Introduction

We consider a family of equations

−∆u(x) + λu(x) = f(x, u(x)), λ > 0, x ∈ IRN , (1)λ

where the nonlinearity f : IRN × IR → IR satisfies f(x, 0) = 0, a.e. x ∈ IRN . We say that
λ = 0 is a bifurcation point for (1)λ if there exists a sequence {(λn, un)} ⊂ IR+×H1(IRN)
of nontrivial solutions of (1)λn with λn → 0 and ||un||H1(IRN ) → 0. In this case {(λn, un)}
is called a bifurcating sequence. The aim of the paper is to show that weak conditions on
f(x, .) around zero suffice to guarantee that λ = 0 is a bifurcation point for (1)λ. More
precisely suppose there is δ > 0 such that

(H1) f : IRN × [−δ, δ] → IR is Caratheodory.

(H2) lim
|x|→∞

f(x, s) = 0 uniformly for s ∈ [−δ, δ].

(H3) There exists K > 0 such that lim sup
s→0

|f(x, s)

s
| ≤ K uniformly in x ∈ IRN .

(H4) lim
s→0

F (x, s)

s2
= 0 uniformly in x ∈ IRN with F (x, s) :=

∫ s

0
f(x, t) dt.

∗Primary: 35 J20, Secondary: 35 B32
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(H5) One of the following conditions holds

(i) N ≥ 1 and there exist A > 0, d ∈]0, 2[ and α ∈]0, 2(2−d)
N

[ such that

F (x, s) ≥ A(1 + |x|)−d|s|2+α for all s ∈ [−δ, δ] and a.e. x ∈ IRN .

(ii) N = 1 and there exists α ∈]0, 2[ such that

F (x, s) ≥ r(x)|s|2+α for all s ∈ [−δ, δ] and a.e. x ∈ IR,

where r ∈ L∞(IR), r ≥ 0 and
∫

IR
r(x) dx > 0 (the value +∞ is possible).

Our main result is the following:

Theorem 1.1 Assume that (H1)-(H5) hold. Then λ = 0 is a bifurcation point for (1)λ.

Note that, when ∂sf(x, s) = 0 for s = 0, λ = 0 corresponds to the infimum of the (es-
sential) spectrum of the linearisation of (1)λ. The study of bifurcation, from the infimum
of the spectrum, for equations of the type of (1)λ started in the late’s 70. The equations
being set on IRN these problems are caracterised by a lack of compactness. Also λ = 0 is
not an eigenvalue. Thus Rabinowitz’s alternative (see [8]) does not apply and in general
one expects weaker results. This is why different definitions of bifurcation points have
been introduced. They range from requiring as in our case that (0, 0) ∈ IR × H1(IRN)
is an accumulation point of nontrivial solutions of (1)λ to (0, 0) being an ending point
of a smooth curve of solutions parametrized by λ. A whole array of methods, analytic,
topological or variational have been used or developed to handle these questions. In our
terminology for a bifurcation point, the sharpest results have been obtained by variational
methods either free [14, 16] or with constraint [9, 12, 15] (see also [3, 7] for related results).

A first originality of our result is that only conditions on f(x, .) around zero are required.
To this end we modify f : IRN × IR → IR outside of IRN × [−δ, δ] and we show that the
new family of equations has a bifurcating sequence {(λn, un)} ⊂ IR+ × H1(IRN). Then
we prove that ||un||L∞(IRN ) → 0 and thus λ = 0 is also a bifurcation point for (1)λ. This
idea of modifying the nonlinearity and passing through L∞- bifurcation to avoid requiring
global conditions of f had been forseen by some specialists [11] but so far was not written
down (with the exception of [6] where N = 1 and thus the argument is trivial). In that
direction we mention a recent paper [2] where this idea is used on a problem which, even
if not dealing with bifurcation, is related.

Our main achievement however is that our local conditions on f are weak local conditions.
Indeed, in the papers studying bifurcation through variational methods, the following
condition is always required

(SQC) ∃µ > 2 such that 0 ≤ µF (x, s) ≤ f(x, s)s for all s ∈ IR and a.e. x ∈ IRN .
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(In case of constrained variational approachs µ ≥ 2 ). Thus even if, using the L∞-
bifurcation trick, we can forget about f(x, .) outside of an interval [−δ, δ], (SQC) with
s ∈ [−δ, δ] replacing s ∈ IR must still be required. This assumption is much stronger than
ours. To see this let

F (x, s) = (1 + |x|)−1|s|2+α(2 + sin
1

|s|α )

where α ∈]0, 2
N

[. Clearly f(x, s) := ∂sF (x, s) satisfies (H1)-(H5). But lims→0 f(x, s)s−1

does not exist and there are sequences sn ↘ 0 with f(x, sn) < 0 < f(x, sn+1) for all
n ∈ IN and a.e. x ∈ IRN . Namely f(x, .) is indefinite in sign. In contrast when (SQC)
holds necessarily f(x, s)s−1 → 0 if s → 0 and f(x, s) ≥ 0 for all s ≥ 0 and a.e. x ∈ IRN .

The condition (SQC) is a key ingredient in the two main steps of the classical (uncon-
strained) variational approaches. The first step is to find a solution uλ of (1)λ for any λ >
0. The condition (SQC) insures that the functional associated to (1)λ, Jλ : H1(IRN) → IR
defined by

Jλ(u) =
1

2

∫

IRN
(|∇u|2 + λu2) dx−

∫

IRN
F (x, u) dx,

has bounded Palais-Smale sequences. Thanks to the compactness condition (H2), this
permits to use the Mountain-Pass theorem (see [1]) to get a critical point uλ at the
Mountain-Pass level. In the second step one proves that ||uλ||H1(IRN ) → 0 as λ → 0.
Here (SQC) gives a crucial relation between Jλ(uλ) and ||uλ||H1(IRN ) and the bifurcation
is proved controlling the decrease of Jλ(uλ) → 0 as λ → 0 with test functions.

In our paper we still study bifurcation with a variational method. However to overcome the
lack of (SQC) we need to introduce new ideas. We exploit some monotonicity properties
of (1)λ and this is reminicient of Struwe’s work on the so called “monotonicity trick” (see
[10], Chapter II, Section 9). The sketch of the proof of Theorem 1.1 is as follows. We
denote by (Iλ)λ>0 the family of functionals obtained by modifying f(x, .) outside [−δ, δ].
We show there exists λ0 > 0, such that for all λ ∈]0, λ0], the following sets are non empty

Γλ = {γ ∈ C([0, 1], H1(IRN)), γ(0) = 0 and Iλ(γ(1)) < 0}
and

c(λ) := inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) > Iλ(0) = 0.

Namely Iλ has, for λ ∈]0, λ0], a Mountain-Pass geometry. The function λ → c(λ) is non
decreasing and thus differentiable almost everywhere. We prove that for each λ ∈]0, λ0]
where the derivative c

′
(λ) of c(λ) exists, Iλ has a bounded Palais-Smale sequence contained

in a ball of H1(IRN) centred at the origin whose radius goes to zero when both c(λ) → 0
and c

′
(λ) → 0. Using the compactness properties of (1)λ insured by (H2) we deduce that

(1)λ has, for such λ, a nontrivial solution lying in the ball. Now test functions show
that c(λ)λ−1 → 0 as λ → 0. It implies the existence of a strictly decreasing sequence
λn → 0 such that c(λn) → 0 and c

′
(λn) → 0. For the corresponding solutions we have

||un||H1(IRN ) → 0 and this proves the bifurcation for the modified problem. Since the
bifurcation also occurs in the L∞- norm this ends the proof of Theorem 1.1.
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Notation Throughout the article the letter C will denote various positive constants
whose exact value may change from line to line but are not essential to the analysis of the
problem. Also we make the convention that when we take a subsequence of a sequence
{un} we denote it again {un}.

2 The Variational Setting

In this section we modify f(x, .) outside [−δ, δ] . We show that to the new family of

equations ˜(1)λ corresponds, for λ > 0 sufficiently small, a family of C1- functionals having
a Mountain-Pass geometry. Moreover the Mountain-Pass value c(λ) is a non decreasing
function of λ.

We denote by ‖ · ‖p for each p ∈ [1,∞] the standard norm of the Lebesgue space ÃLp(IRN).
Our working space is the Sobolev space H1(IRN) := H equipped with the norm ||u||2 :=
||∇u||22 + ||u||22. Let f̃ : IRN × IR → IR be defined by

f̃(x, s) =





f(x,−δ) if s ≤ −δ, a.e. x ∈ IRN

f(x, s) if s ∈ [−δ, δ], a.e. x ∈ IRN

f(x, δ) if s ≥ δ, a.e. x ∈ IRN .

¿From (H3) we see that for all s ∈ IR and a.e. x ∈ IRN

|f̃(x, s)| ≤ K|s| and |F̃ (x, s)| ≤ K

2
|s|2 with F̃ (x, s) :=

∫ s

0
f̃(x, t) dt. (2.1)

It follows in particular that for all u ∈ H

∫

IRN
F̃ (x, u) dx ≤ K

2
||u||22. (2.2)

We denote by ˜(1)λ the new family of equations obtained replacing f by f̃ and we introduce
the functionals Iλ : H → IR with

Iλ(u) = ||∇u||22 + λ ||u||22 − 2
∫

IRN
F̃ (x, u) dx.

It is standard that Iλ is a C1-functional for each λ ≥ 0. Moreover to a critical point uλ

of Iλ corresponds a solution (λ, uλ) ∈ IR×H of ˜(1)λ (see [14] for such results). Next we
show that, for λ > 0 small, Iλ has a Mountain-Pass geometry.

Lemma 2.1 Assume that (H1)-(H5) hold. There exists λ0 > 0 such that for all λ ∈]0, λ0]
the sets

Γλ = {γ ∈ C([0, 1], H), γ(0) = 0 and Iλ(γ(1)) < 0}
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are non empty. Moreover for λ ∈]0, λ0]

c(λ) := inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) > Iλ(0) = 0

and the function λ → c(λ) is non decreasing.

Note that Iλ1(u) ≤ Iλ2(u) for all u ∈ H and 0 ≤ λ1 ≤ λ2. Thus Γλ2 ⊂ Γλ1 whenever
0 ≤ λ1 ≤ λ2 and λ → c(λ) is non decreasing. Since Iλ(0) = 0 for all λ ≥ 0 the lemma is
now a direct consequence of Lemmas 2.2 and 2.3.

Lemma 2.2 Assume that (H1)-(H4) hold. Then Iλ(u) ≥ λ||u||2 + o(‖u‖2) as u → 0 for
all λ ∈]0, 1].

Proof. From (H4) and (2.1) we see that for any ε > 0 and q ∈]2, 2N
N−2

] (q > 2 if N = 1, 2)
there exists C(ε, q) > 0 such that

F̃ (x, s) ≤ ε|s|2 + C(ε, q)|s|q.

Thus, by the Sobolev’s embeddings, there exists C̃(ε, q) > 0 such that for all u ∈ H

∫

IRN
F̃ (x, u) dx ≤ ε||u||2 + C̃(ε, q)||u||q

and we deduce that ∫

IRN
F̃ (x, u) dx = o(‖u‖2) as u → 0.

Since for u ∈ H and λ ∈]0, 1], Iλ(u) ≥ λ||u||2 − 2
∫

IRN
F̃ (x, u) dx, the lemma follows. ♠

Lemma 2.3 Assume that (H1)-(H5) hold. There are λ0 > 0 and v0 ∈ H with Iλ0(v0) < 0.

Proof. The proof is based on the use of test functions that were first introduced in [13].

For λ > 0 we define vλ(x) = δe−
√

λ|x|. Straightforward calculations give

||vλ||22 = B(N)λ−
N
2 and ||∇vλ||22 = B(N)λ1−N

2

with

B(N) = δ2
∫

IRN
e−2|y|dy. (2.3)

Thus

||∇vλ||22 + λ ||vλ||22 = 2B(N)λ1−N
2 . (2.4)
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Now when (H5)(i) holds
∫

IRN
F̃ (x, vλ) dx ≥ A

∫

IRN
(1 + |x|)−d|vλ|α+2 dx

with

A
∫

IRN
(1 + |x|)−d|vλ|α+2 dx ≥ δα+2A λ−

N
2

∫

IRN
(1 +

|y|√
λ

)−de−(α+2)|y| dy

≥ δα+2A λ−
N
2 λ

d
2 2−d

∫

|y|≥1
|y|−de−(α+2)|y| dy

:= D(N, d, α)λ
d
2
−N

2 . (2.5)

It follows that
Iλ(vλ) ≤ 2B(N)λ1−N

2 − 2D(N, d, α)λ
d
2
−N

2 .

Since d < 2 we clearly have Iλ(vλ) < 0 for all λ > 0 sufficiently small. On the other hand
when (H5)(ii) holds we have

∫

IR
F̃ (x, vλ) dx ≥

∫

IR
r(x)|vλ|α+2 dx

with, for all λ > 0 sufficiently small,
∫

IR
r(x)|vλ|α+2 dx = δα+2

∫

IR
r(x)e−(α+2)

√
λ|x| dx

≥ δα+2e−(α+2)
√

λµ
∫

|x|≤µ
r(x) dx (for all µ > 0)

≥ 1

2
δα+2e−(α+2)

√
λµ min{

∫

IR
r(x) dx, 1} (for µ > µ0)

≥ 1

4
δα+2 min{

∫

IR
r(x) dx, 1}

:= E(α). (2.6)

Thus using (2.4) we get

Iλ(vλ) ≤ 2B(N)
√

λ− 2E(α)

and as precedingly Iλ(vλ) < 0 for λ > 0 sufficiently small. It is important to note that our
proof only uses the behaviour of f̃(x, .) on [−δ, δ], namely when it corresponds to f(x, .).
Thus the lemma is independent of the particular choice of f̃ that we have made. ♠

3 Some Nice Paths

Since the map λ → c(λ) is non decreasing, c
′
(λ), the derivative of c(λ), exists almost

everywhere. We claim that for any λ ∈]0, λ0], where c
′
(λ) exists, there is a sequence of

paths {γm} ⊂ Γλ with
max
t∈[0,1]

Iλ(γm(t)) → c(λ)
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having “nice” localisation properties. Namely, starting from a level strictly below c(λ), the
“top” of each path is contained in same ball centred at the origin whose radius β(λ) > 0
has the property β(λ) → 0 when both c(λ) → 0 and c

′
(λ) → 0. To see this let λ ∈]0, λ0[ be

an arbitrary but fixed value where c
′
(λ) exists. Let {λm} ⊂]0, λ0[ be a strictly decreasing

sequence with λm → λ. Our claim is a direct consequence of the following result.

Proposition 3.1 For any ε > 0 there exists a sequence of paths {γm} ⊂ Γλ such that for
m ∈ IN sufficiently large

(i) ||γm(t)||22 ≤ c
′
(λ) + 3ε when

Iλ(γm(t)) ≥ c(λ)− ε(λm − λ). (3.1)

(ii) max
t∈[0,1]

Iλ(γm(t)) ≤ c(λ) + (c
′
(λ) + 2ε)(λm − λ).

Making the choice ε = c(λ) > 0 we have when (3.1) hold

||γm(t)||2 ≤ (5 + 3K) c(λ) + (1 + K) c
′
(λ) := β2(λ)

for K > 0 defined in (H3) and m ∈ IN sufficiently large.

Proof. Let {γm} ⊂ Γλ be an arbitrary sequence such that

max
t∈[0,1]

Iλm(γm(t)) ≤ c(λm) + ε(λm − λ). (3.2)

Note that such sequence exists since Γλm ⊂ Γλ for all m ∈ IN. When γm(t) satisfies (3.1)
we have

Iλm(γm(t))− Iλ(γm(t))

λm − λ
≤ c(λm) + ε(λm − λ)− c(λ) + ε(λm − λ)

λm − λ

=
c(λm)− c(λ)

λm − λ
+ 2ε.

Also since c
′
(λ) exists, there is m0 = m0(λ, ε) such that for all m ≥ m0

c
′
(λ)− ε ≤ c(λm)− c(λ)

λm − λ
≤ c

′
(λ) + ε. (3.3)

Thus for all m ≥ m0

||γm(t)||22 =
Iλm(γm(t))− Iλ(γm(t))

λm − λ
≤ c

′
(λ) + 3ε
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and this proves (i). Now to get (ii) notice that from (3.3) we have for all m ≥ m0

c(λm) ≤ c(λ) + (c
′
(λ) + ε)(λm − λ). (3.4)

Using (3.2), (3.4) and since Iλm(v) ≥ Iλ(v) for all v ∈ H, it follows that for all t ∈ [0, 1]

Iλ(γm(t)) ≤ Iλm(γm(t))

≤ c(λm) + ε(λm − λ)

≤ c(λ) + (c
′
(λ) + ε)(λm − λ) + ε(λm − λ).

This ends the proof of (ii). Finally if we choose ε = c(λ) > 0 we both have when (3.1)
holds and m ∈ IN is sufficiently large

||γm(t)||22 ≤ c
′
(λ) + 3c(λ) and Iλ(γm(t)) ≤ 2c(λ).

Thus using (2.2) we get

||∇γm(t)||22 = Iλ(γm(t))− λ||γm(t)||22 + 2
∫

IRN
F̃ (x, γm(t)) dx

≤ Iλ(γm(t)) + 2
∫

IRN
F̃ (x, γm(t)) dx

≤ Iλ(γm(t)) + K||γm(t)||22
≤ 2c(λ) + K(c

′
(λ) + 3c(λ)).

We deduce that, when (3.1) holds,

||γm(t)||2 := ||∇γm(t)||22 + ||γm(t)||22
≤ (5 + 3K) c(λ) + (1 + K) c

′
(λ).

This ends the proof of the proposition. ♠

4 A Critical Point For Almost Every λ ∈]0, λ0]

In this section we prove that when c
′
(λ) exists the functional Iλ has a nontrivial critical

point which is contained in the ball of radius 2β(λ) centred at the origin. For a > 0 we
define

Fa = {u ∈ H : ||u|| ≤ 2β(λ) and |Iλ(u)− c(λ)| ≤ a}

Proposition 4.1 For all a > 0

inf{||I ′λ(u)|| : u ∈ Fa} = 0. (4.1)
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Proof. Seeking a contradiction we assume that (4.1) does not hold. Then, because of the
Mountain-Pass geometry (see Lemma 2.1), a > 0 can be chosen such that for any u ∈ Fa

||I ′λ(u)|| ≥ a and 0 < a <
1

2
c(λ). (4.2)

A classical deformation argument says that there exist µ ∈]0, a[ and a homeomorphism
η : H → H such that

η(u) = u if |Iλ(u)− c(λ)| ≥ a (4.3)

Iλ(η(u)) ≤ Iλ(u) for all u ∈ H (4.4)

and

Iλ(η(u)) ≤ c(λ)− µ for all u ∈ H satisfying ||u|| ≤ β(λ) and Iλ(u) ≤ c(λ) + µ. (4.5)

Let {γm} ⊂ Γλ be the sequence obtained in Proposition 3.1 where the choice ε = c(λ) > 0
is made. By Proposition 3.1 (ii) we can select a k ∈ IN sufficiently large so that

max
t∈[0,1]

Iλ(γk(t)) ≤ c(λ) + µ. (4.6)

Clearly by (4.2) and (4.3), η ◦ γk ∈ Γλ. Now if u = γk(t) with Iλ(u) ≤ c(λ)− c(λ)(λk − λ)
then (4.4) implies that

Iλ(η(u)) ≤ c(λ)− c(λ)(λk − λ). (4.7)

On the other hand if u = γk(t) with Iλ(u) > c(λ)− c(λ)(λk−λ) then Proposition 3.1 and
(4.6) imply that u is such that ||u|| ≤ β(λ) with Iλ(u) ≤ c(λ) + µ. Now (4.5) gives that

Iλ(η(u)) ≤ c(λ)− µ (4.8)

which, combined with (4.7), yields

max
t∈[0,1]

Iλ(η ◦ γk(t)) < c(λ).

This contradicts the variational characterisation of c(λ) and proves the proposition. ♠

Lemma 4.1 Assume that (H1)-(H5) hold. For all λ ∈]0, λ0] where c
′
(λ) exists there is

uλ ∈ H with 0 < ||uλ|| ≤ 2β(λ) such that (λ, uλ) ∈ IR+ ×H is a solution of ˜(1)λ.

Proof. ¿From Proposition 4.1, when c
′
(λ) exists, Iλ has a Palais-Smale sequence {um} ⊂

H at the level c(λ) which is contained in the ball of radius 2β(λ) centred at the origin.
Since {um} is bounded, without loss of generality we can assume that um ⇀ uλ weakly
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in H. To end the proof we just need to show that um → uλ strongly in H. The condition
I
′
λ(um) → 0 in H−1 is just

−∆um + λum − f̃(x, um) → 0 in H−1.

Because of (H2), f̃(x, um) → f̃(x, uλ) in H−1. This is a classical result (see for example
[13], Lemma 5.2) that we give without proof. Actually, thanks to the vanishing of f̃(x, s)
at infinity we are somehow back to the case of a bounded domain. We deduce that

−∆um + λum → f̃(x, uλ) in H−1. (4.9)

Now let L : H → H−1 be defined by

(Lu)v =
∫

IRN
(∇u∇v + λuv) dx.

Since λ > 0, L is invertible and we deduce from (4.9) that um → L−1f̃(x, uλ) in H.
Consequently by uniqueness of the limit, um → uλ in H. ♠

5 A Special Sequence λn → 0

In this section we show that (H5), which insures a lower bound on F (x, .) around zero,
implies that c(λ)λ−1 → 0 as λ → 0. From this result we deduce the existence of a
strictly decreasing sequence λn → 0 with c(λn) → 0 and c

′
(λn) → 0. In particular, then

β(λn) → 0 and from Lemma 4.1 we get a bifurcating sequence for (1̃)λ.

Lemma 5.1 Assume that (H1)-(H5) hold. Then c(λ)λ−1 → 0 as λ → 0.

Proof. We use again the test functions vλ(x) = δe−
√

λ|x| introduced in Lemma 2.3. By
the proof of Lemma 2.3 we know that Iλ(vλ) < 0 for all λ ∈]0, λ0]. Thus, because of the
variational characterisation of c(λ), necessarily c(λ) ≤ maxt∈[0,1] Iλ(tvλ). ¿From (2.4) we
have for all λ ∈]0, λ0] and all t ∈ [0, 1]

Iλ(tvλ) = t2
[
||∇vλ||22 + λ ||vλ||22

]
− 2

∫

IRN
F̃ (x, tvλ) dx

= 2B(N)λ1−N
2 t2 − 2

∫

IRN
F̃ (x, tvλ) dx

where B(N) is defined in (2.3). We distinguish the cases (i) and (ii) in (H5). When
(H5)(i) holds we have using (2.5) that for all λ ∈]0, λ0] and all t ∈ [0, 1]

∫

IRN
F̃ (x, tvλ) dx ≥ A

∫

IRN
(1 + |x|)−d|tvλ|α+2 dx

= tα+2 A
∫

IRN
(1 + |x|)−d|vλ|α+2 dx

≥ D(N, d, α)λ
d
2
−N

2 tα+2.
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Thus for all λ ∈]0, λ0] and all t ∈ [0, 1]

Iλ(tvλ) ≤ 2B(N)λ1−N
2 t2 − 2D(N, d, α)λ

d
2
−N

2 tα+2. (5.1)

Elementary calculations show that the maximum of the right hand side of (5.1), viewed
as a function of t ∈ [0, 1], is of the form C(N, d, α)λθ with θ = (1− N

2
)(α+2

α
)− 2

α
(d

2
− N

2
).

Thus recording that, by (H5)(i), α < 2(2− d)N−1 we deduce that c(λ)λ−1 → 0 as λ → 0.
Now when (H5)(ii) holds we have, using (2.6), that for all λ ∈]0, λ0] and all t ∈ [0, 1]

∫

IR
F̃ (x, tvλ) dx ≥

∫

IR
r(x)|tvλ|α+2 dx

= tα+2
∫

IR
r(x)|vλ|α+2 dx

≥ E(α)tα+2.

Thus for all λ ∈]0, λ0] and all t ∈ [0, 1]

Iλ(tvλ) ≤ 2B(1)
√

λt2 − 2E(α)tα+2. (5.2)

The maximum of the right hand side of (5.2) is of the form C(α)λθ with θ = (α+2
2α

) and
here also we deduce, since α < 2 by (H5)(ii), that c(λ)λ−1 → 0 as λ → 0. ♠

Lemma 5.2 Assume that (H1)-(H5) hold. There exists a strictly decreasing sequence
λn → 0 with c(λn) → 0 and c

′
(λn) → 0.

Proof. ¿From Lemma 5.1 we know that c(λ)λ−1 → 0 as λ → 0 and thus trivially c(λ) → 0
as λ → 0. We claim there exists λn ↘ 0 with c

′
(λn) → 0. Seeking a contradiction we

assume that
a := lim inf

λ→0
c
′
(λ) > 0.

Since the function λ → c(λ) is non decreasing and positive, we have for λ > 0 sufficiently
small,

c(λ) ≥ c(λ)− lim
h→0

c(h)

≥ lim
h→0

∫ λ

h
c
′
(t) dt

≥ lim
h→0

∫ λ

h

a

2
dt =

a

2
λ.

This is in contradiction with c(λ)λ−1 → 0 as λ → 0 and the lemma is proved. ♠
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6 Conclusion

In this last section we end the proof of Theorem 1.1 showing that the bifurcating sequence
{(λn, un)} ⊂ IR+ × H obtained in Section 5 for ˜(1)λ also satisfies ||un||∞ → 0. We have
for all n ∈ IN

∆un = λnun − f̃(x, un)

and thus because of (2.1)

|∆un| ≤ λn|un|+ |f̃(x, un)| ≤ λ0|un|+ K|un|. (6.1)

Using the Calderon-Zymund estimate ([4], Chap. 2, 3, Prop. 8):

|| ∂2u

∂xi∂xj

||p ≤ C(p)||∆u||p for all u ∈ W 2,p(IRN), 1 < p < ∞,

we see from (6.1) that if {un} ⊂ Lp(IRN) for a p ∈]1,∞[ then also {un} ⊂ W 2,p(IRN) and

||un||W 2,p(IRN ) ≤ C(p)||un||p for all n ∈ IN. (6.2)

We recall the continuous embedding W 2,p(IRN) ↪→ L∞(IRN) for any p > N
2
. Thus, when

N ≤ 3, using the estimate (6.2) with p = 2, we directly check that ||un||∞ ≤ C||un||2 for

a C > 0 and all n ∈ IN. When N ≥ 4 we use the embedding W 2,p(IRN) ↪→ L
Np

N−2p (IRN)
and iterate (6.2) starting from p = 2. After a finite number of steps we also obtain that
||un||∞ ≤ C||un||2 for a C > 0 and all n ∈ IN. Since ||un||2 → 0 it completes the proof of
Theorem 1.1.

Remark 6.1 The boot-strap argument is particularly simple here because of the “linear”
estimate (6.1). This estimate follows from our choice of f̃ . In the classical variational
approach, where (SQC) must hold, proving that the bifurcation in L∞ also occurs is more
difficult (see also [2]). 2

Remark 6.2 The condition (H5) used to show that Iλ has a Mountain-Pass geometry
(see Lemma 2.1) and that c(λ)λ−1 → 0 as λ → 0 (see Lemma 5.1) is sharp. Indeed for
N ≥ 3 the nonlinearity defined on IRN × IR by f(x, s) = (1 + |x|)−d|s|2+α with d ∈]0, 2[

and α ∈]2(2−d)
N

, 4
N

] satisfies (H1)-(H4) but not (H5). It is proved in Theorem 4.8 of [14]
that with this f , (1)λ has no bifurcating sequence. For this f , Lemma 2.1 holds and thus,
necessarily, c(λ)λ−1 → 0 as λ → 0 is no longer true. 2
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[5] Küpper T. and Reimer D., Necessary and sufficient conditions for bifurcation from
the continuous spectrum, Nonlinear Analysis, T. M. A., Vol. 3 (1979), 555-561.
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