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Abstract

We consider the equation

−u′′ = g(u), u(x) ∈ H1(R). (0.1)

Under general assumptions on the nonlinearity g we prove that the, unique up

to translation, solution of (0.1) is at the mountain pass level of the associated

functional. This result extends a corresponding result for least energy solutions

when (0.1) is set on RN .
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1 Introduction

This note is a continuation of our study [7] on the nonlinear scalar field equations:

−∆u = g(u), u(x) ∈ H1(RN ). (1.1)

In [7], we showed, when N ≥ 2, that least energy solutions of (1.1) admit a mountain
pass characterization under the conditions:

(g0) g(s) ∈ C(R,R) is continuous and odd.

(g1) −∞ < lim inf
s→0

g(s)
s

≤ lim sup
s→0

g(s)
s

< 0 for N ≥ 3,

lim
s→0

g(s)
s

∈ (−∞, 0) for N = 2.

(g2) When N ≥ 3, lim
s→∞

g(s)

|s|N+2
N−2

= 0.

When N = 2, for any α > 0

lim
s→∞

g(s)
eαs2 = 0.

(g3) There exists s0 > 0 such that G(s0) > 0, where

G(s) =
∫ s

0

g(τ) dτ.

More precisely, under the above conditions, we observe that the natural functional
corresponding to (1.1):

I(u) =
1
2

∫

RN

|∇u|2 dx−
∫

RN

G(u) dx ∈ C1(H1(RN ),R), (1.2)

has a mountain pass geometry and that defining the mountain pass value by

b = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (1.3)

where
Γ = {γ(t) ∈ C([0, 1],H1(RN )); γ(0) = 0, I(γ(1)) < 0},

the following result holds.

Theorem 1.1 ([7]) Assume N ≥ 2 and (g0)–(g3). Then least energy solutions of
(1.1) have a mountain pass characterization, that is,

b = m, (1.4)
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where b > 0 is defined in (1.3) and

m = inf{I(u); u ∈ H1(R) \ {0} is a solution of (1.1)}. (1.5)

Moreover, for any least energy solution ω(x) of (1.1), there exists a path γ ∈ Γ such
that

ω ∈ γ([0, 1]) and max
t∈[0,1]

I(γ(t)) ≤ I(ω). (1.6)

We remark that

(i) Exactly under the conditions (g0)–(g3), the existence of a least energy solution
of (1.1) is shown in Berestycki-Lions [2] (for N ≥ 3) and Berestycki-Gallouët-
Kavian [3] (for N = 2). It is also observed that these conditions are almost
necessary for the existence of a solution.

(ii) To get a mountain pass characterization, we remark that we do not assume
the monotonicity of

s 7→ g(s)
s

; (0,∞) → R.

(iii) In the study of non-autonomous elliptic problems, informations on the least
energy level of associated autonomous problems often play a crucial role. For
a discussion of this feature, on problems of the type

−∆u = g(x, u), u(x) ∈ H1(RN ),

we refer to [6]. For an application to singular perturbation problems for
nonlinear Schrödinger equations of the form:

−ε2∆u + V (x)u = g(u), u(x) ∈ H1(RN ),

we refer to [8, 10].

In view of Theorem 1.1, it is natural to ask if there is a corresponding result when
N = 1. The purpose of this note is to study this problem and to show the following:

Theorem 1.2 Assume N = 1, (g0) and

(g1’) c0 = − lims→0
g(s)

s ∈ (0,∞).

(g2’) There exists s0 > 0 such that

G(s) < 0 for all s ∈ (0, s0),
G(s0) = 0,

g(s0) > 0.

Then
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(i) (1.1) has a unique positive solution ω(x), up to translation. Moreover, after
a suitable translation, ω(x) satisfies

ω(0) = s0,

ωx(x) > 0 in (−∞, 0),
ωx(x) < 0 in (0,∞),
ω(−x) = ω(x).

(ii) The set of all solutions of (1.1) is {±ω(x− t); t ∈ R} ∪ {0}. In particular all
(non trivial) solutions of (1.1) are least energy solutions.

(iii) The corresponding functional I(u) defined in (1.2) has a mountain pass ge-
ometry and

b = m, (1.7)

(b > 0 and m are defined in (1.3), (1.5)). In addition for any least energy
solution ω(x) of (1.1) there exists a path γ ∈ Γ such that (1.6) hold.

Remark 1.3 In [2], Berestycki and Lions showed that for a locally Lipschitz contin-
uous function g(s) satisfying g(0) = 0, (g2’) is a necessary and sufficient condition
for the existence of a non-zero solution of

−uxx = g(u), in R,

u(x) → 0 as x → ±∞,

u(x0) > 0 for some x0 ∈ R.

Moreover under (g2’) they show the existence of a unique (up to translation) positive
solution. It was also shown that the solution and its derivative decay exponentially
if we assume (g1’) in addition to (g2’).

Theorem 1.2 has connections with the work on second order autonomous Hamil-
tonian systems by variational method. See, for example, Ambrosetti-Bertotti [1],
Bolotin [4], Caldiroli [5], Rabinowitz-Tanaka [9] and references therein. Actually for
proving Theorem 1.2 we do use techniques and results developed in [9, 5]. However,
the main focus when dealing with systems is on the existence of homoclinic orbits.
In particular, in [1, 4, 5, 9] Hamiltonian systems of the type

q̈ +∇V (q) = 0, (1.8)
q(t) → 0 as t → ±∞ (1.9)

are studied and the existence of a nontrivial homoclinic solution is shown under the
following assumptions:

(v0) V ∈ C2(RN ,R),

(v1) V (0) = 0 and V ′′(0) is negative definite,
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(v2) Ω = {x ∈ RN ; V (x) < 0} ∪ {0} is bounded and ∇V (q) 6= 0 for all x ∈ ∂Ω.

In our paper, in contrast, our focus in not as much on the existence (and uniqueness)
but on proving the mountain pass characterization of least energy solutions. In
that direction we remark that functional I(q) : H1(R,RN ) → R defined below has
a mountain pass geometry and that it can be used to find homoclinic solutions of
(1.8)–(1.9).

I(q) =
∫ ∞

−∞

1
2
|q̇|2 − V (q) dt. (1.10)

However, mountain pass characterization for least energy solutions is not true for
systems. Indeed we have

Theorem 1.4 When N ≥ 2, there exists a potential V (q) satisfying (v0)–(v2) and

b > m,

where b is the mountain pass value and m is the least energy level for I(q) given in
(1.10).

We shall give an example of such potential at the end of the paper.
The proof of Theorem 1.2 crucially relies on the conservation of total energy, a con-
sequence of the fact that (1.1) is autonomous. Points (i)-(ii) are somehow classical
to establish. To prove (1.7) we first use an idea from Caldiroli [5] to obtain a path
satisfying (1.6) and this proves that b ≤ m. The proof that b ≥ m (remember we
do not know in advance if b is a critical value) relies on a result by Rabinowitz and
Tanaka [9].

2 Uniqueness of homoclinic and periodic
solutions

From now on we assume N = 1 and (g0), (g1’), (g2’). Since we do not assume a
Lipschitz condition on g(s), some justifications are required for the uniqueness of
homoclinic and periodic solutions of (1.1).

By (g2’), we can find δ0 > 0, `0 ∈ (0, δ0] such that

(i)

sg(s) ≤ −c0

2
s2 for |s| ≤ 2δ0, (2.1)

g(s) > 0 for s ∈ [s0 − 2δ0, s0]. (2.2)

(ii) In particular, G(s) =
∫ s

0
g(τ) dτ is monotone in [0, 2δ0] and [s0 − 2δ0, s0].

(iii)

For any C ∈ [G(`0), 0), the equation G(s) = C has exactly 2 solutions.
One of them — denoted by µ0(C) — belongs to (0, δ0] and the other
— denoted by µ1(C) — belongs to [s0 − δ0, s0). (2.3)
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Proposition 2.1 For any C ∈ [G(`0), 0], the following problem has a unique solu-
tion u(x) up to translation.

−uxx = g(u) in R,

1
2
|ux|2 + G(u) = C in R,

u(R) ∩ (0, s0] 6= ∅.

Moreover, if C = 0, u(x) is a homoclinic solution emanating from 0. If C ∈
[G(`0), 0), it is a periodic solution.

Proof. We first deal with the case C ∈ [G(`0), 0). It is easily seen that u(x) ∈
[µ0(C), µ1(C)] for all x. By (2.1) and (2.2), u(x) cannot be constant and we can
find a maximal interval (a, b) ⊂ R, where ux(x) > 0. We remark that

ux =
√

2
√

C −G(u) in (a, b).

Thus setting FC(s) =
∫ s

2δ0

1√
2
√

C−G(τ)
dτ : (µ0(C), µ1(C)) → R, we have

d

dx
FC(u(x)) = 1 in (a, b). (2.4)

Thus, we have for a suitable constant A

FC(u(x)) = x + A in (a, b).

We remark that FC is a strictly increasing function and that −∞ < FC(µ0(C)) <
FC(µ1(C)) < ∞ since g(µ0(C)) < 0, g(µ1(C)) > 0 (this follows from (2.1) and
(2.2)). By the maximality of the interval, we observe that u(a) = µ1(C), u(b) =
µ1(C).

In a maximal interval (a′, b′), where ux < 0, we can repeat the same argument
and observe that

d

dx
FC(u(x)) = −1 in (a′, b′) (2.5)

and that u(a′) = µ1(C) and u(b′) = µ0(C). Thus in any maximal interval (α, β),
where ux(x) 6= 0, we have either (2.4) or (2.5). This shows that u(x) is periodic
and unique up to translation.

We argue in a similar way when C = 0. Setting F0(s) =
∫ s

2δ0

1√
2
√
−G(τ)

dτ :

(0, s0) → R, we have
d

dt
F0(f(x)) = ±1. (2.6)

We also observe that −∞ = F0(0) < F0(s0) < ∞ by (g2’). Thus any maximal
interval, where ux > 0 (ux < 0 resp.), must be of a form (−∞, a) with a < ∞
((b,∞) with −∞ < b resp.) and thus u(x) is a homoclinic solution. Uniqueness
also follows from (2.6).



Characterization of Least Energy Solutions 467

Corollary 2.2 The set of all solutions of (1.1) is

{±ω(x− y); y ∈ R} ∪ {0},

where ω(x) is the unique positive homoclinic solution of (1.1) satisfying ω(0) = s0.

Proof. Let u(x) be a non-zero solution of (1.1). Since u(x) and ux(x) decay to 0
exponentially as |x| → ∞, we have

1
2
|ux|2 + G(u) = 0 in R.

We assume that u(x) is positive somewhere and take a maximal interval (a, b)
((a′, b′) resp.), where u > 0 and ux > 0 (ux < 0 resp.). As in the proof of Proposition
2.1, we can see that (a, b) = (−∞, x0) ((a′, b′) = (x0,∞) resp.) for some x0 ∈ R.
Thus u(x) is a positive homoclinic solution and u(x) = ω(x − y) for a suitable
y ∈ R, by uniqueness. In the same way, we can also see that if u(x) is negative
somewhere, then u(x) is a negative homoclinic solution and u(x) = −ω(x−y) holds
for a suitable y ∈ R.

3 A mountain pass geometry for I(u) and proof
that b = m

In what follows we use the notation:

||u||2L2(A) =
∫

A

|u|2 dx,

||u||2H1(A) =
∫

A

|ux|2 + |u|2 dx

for A ⊂ R.
First we claim that I(u) has a mountain pass geometry under (g0), (g1’), (g2’).

We say that I(u) has a mountain pass geometry if

(i) I(0) = 0.

(ii) There exists ρ0 > 0 such that

I(u) ≥ 0 for all ||u||H1(R) ≤ ρ0, (3.1)
inf

||u||H1(R)=ρ0

I(u) > 0. (3.2)

(iii) There exists u0 ∈ H1(R) such that

||u0||H1(R) ≥ ρ0 and I(u0) < 0. (3.3)
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In fact, I(0) = 0 is trivial. By (2.1) we have

−G(s) ≥ c0

4
s2 for |s| ≤ 2δ0.

Choosing ρ0 > 0 so that ||u||H1(R) ≤ ρ0 implies ||u||L∞(R) ≤ 2δ0, we have

inf
||u||H1(R)=ρ0

I(u) ≥ inf
||u||H1(R)=ρ0

(
1
2
||ux||2L2(R) +

c0

4
||u||2L2(R)

)

≥ min{1
2
,
c0

4
}ρ2

0.

Thus (3.1)–(3.2) holds. Choosing u0(x) = h̃L(x), where h̃L(x) is given in (3.6)
below, we can also see that (3.3) holds. Thus I(u) has a mountain pass geometry.

Let ω(x) be the unique positive homoclinic solution of (1.1) such that ω(0) = s0.
We shall construct a path γ ∈ Γ such that

ω ∈ γ([0, 1]), (3.4)
max

t∈[0,1]
I(γ(t)) ≤ I(ω). (3.5)

For this we use an idea from Caldiroli [5] and define h : R→ R by

h(x) =





ω(x) in [0,∞),
x4 + s0 in [−ε0, 0),
ε4
0 + s0 in(−∞,−ε0].

Here ε0 > 0 is chosen so that

1
2
|hx(x)|2 −G(h(x)) = 8x6 −G(x4 + s0) < 0 for x ∈ (−ε0, 0].

By (g2’), we can choose such an ε0 > 0. For y ∈ R, we also define

h̃y(x) =

{
h(x− y) for x ≥ 0,

h̃y(−x) for x < 0.
(3.6)

We easily observe that

||h̃y||H1(R) → 0 as y → −∞,

||h̃y||H1(R) → ∞ as y →∞,

h̃0(x) = ω(x),
I(h̃y) ≤ I(ω) for all y ∈ R,

I(h̃y) → −∞ as y →∞.

Thus, choosing a large L > 1 such that I(h̃L) < 0 and defining

γ(t)(x) = h̃ϕ(t)(x),
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where ϕ : (0, 1] → R is a continuous function such that limt→0 ϕ(t) = −∞ and
ϕ(1) = L, we have (3.4) and (3.5). Summarizing our study, we get that b ≤ m,
where b and m are defined in (1.3) and (1.5).

At this point to end the proof of Theorem 1.2 we just have to show that b ≥ m. We
shall now prove this inequality.

For every γ ∈ Γ one has that ||γ(0)||∞ = 0 and ||γ(1)||∞ > s0. Hence, by continuity,
there exists t0 ∈ (0, 1) such that ||γ(t0)|| = s0. Thus

γ([0, 1]) ∩X0 6= ∅, (3.7)

where
X0 = {u ∈ H1(R); ||u||∞ = s0}.

This implies
b ≥ inf

u∈X0
I(u). (3.8)

Now thanks to a result by Rabinowitz and Tanaka, Theorem 2.2 in [9], there exists
a homoclinic orbit ū ∈ X0 such that I(ū) = infu∈X0 I(u). Then, by (ii) of Theorem
1.2, ū = ω(·+ t0) for some t0 ∈ R and therefore b ≥ I(ū) = I(ω) = m.

4 A counter example for systems — Proof of
Theorem 1.4

We end the paper by showing that the mountain pass characterization of least energy
solutions established in Theorem 1.2 do not hold any more if (1.1) is replaced by
a system. In this case the uniqueness (up to translation) of solutions (see (ii) of
Theorem 1.2) may fail, and, as we shall see, the minimizer in X0 obtained in [9]
may not be a least energy solution. According to the proof of b ≥ m this shows
that in general b > m.

To construct a counter example, we use an idea from singular Hamiltonian systems.
Let

q̈ +∇V (q) = 0. (4.1)

Choose e ∈ RN \{0}, N ≥ 2 and let V (q) ∈ C2(RN \{e},R) be a potential satisfying
for a small h > 0

(V1) V (q) ≤ 0 for all q ∈ RN and V (q) = 0 holds if and only if q = 0.

(V2) V (q) = −1 in RN \ (Bh(0) ∪Bh(e)).

(V3) V ′′(0) is negative definite.

(V4) V (q) = − 1
|q−e|2 for q ∈ Bh/2(e).
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Here we use the notation: Bh(y) = {x ∈ RN ; |x − y| < h} for y ∈ RN . By the
result of Tanaka [11], we know that (4.1) has at least one non trivial homoclinic
orbit q0(t). We remark that q0(t) satisfies

|q0(t)| ≤ |e|+ h for all t ∈ R.

Indeed, suppose that t0 ∈ R satisfies |q0(t0)| = maxt∈R |q0(t)|. Then
1
2

d2

dt2 |q0(t0)|2 ≤ 0 and thus we have

(q̈0(t0), q0(t0)) + |q̇0(t0)|2 = −(∇V (q0(t0)), q0(t0))− 2V (q0(t0)) ≤ 0.

Here we used the fact that 1
2 |q̇|2 + V (q0(t)) ≡ 0. By (V2) it can take place only in

Bh(0) ∪Bh(e) and we have |q0(t0)| ≤ |e|+ h.
Set δ0 = min |q0(t) − e| and modify V (q) in Bδ0/2(e) to get a smooth potential

Ṽ (q) satisfying Ṽ (q) < 0 for all q 6= 0. Next for a large R > 0 we set

ṼR(q) =

{
Ṽ (q) if |q| ≤ R,

(|q| −R)2 − 1 if |q| ≥ R,

and we consider the following Hamiltonian system

q̈ +∇ṼR(q) = 0. (4.2)

Let us show that for sufficiently large R > 1 the mountain pass level bR associated
with (4.2) satisfies bR > m where m is the least energy level associated with (4.2).
Indeed, q0(t) is still a solution of (4.2) and thus the least energy level for (4.2)
is bounded from above by a constant independent of R. On the contrary for the
mountain pass level bR in a similar way to (3.7)–(3.8), we have

bR ≥ 2 inf
q∈XR

∫ ∞

0

1
2
|q̇|2 − ṼR(q) dt,

where

XR = {q(t) ∈ H1(0,∞;RN ); |q(0)| = R + 1, |q(t)| ≤ R + 1 for all t ∈ [0,∞)}.
Let q ∈ XR be any function, we choose [s0, s1] ⊂ (0,∞) so that

|q(s0)| = R, |q(s1)| = R/2, |q(t)| ∈ [R/2, R] for t ∈ [s0, s1].

Since we may assume V (q) = −1 in BR(0) \BR/2(0), we have

∫ ∞

0

1
2
|q̇|2 − V (q) dt ≥

∫ s1

s0

1
2
|q̇|2 − V (q) dt =

∫ s1

s0

1
2
|q̇|2 + 1 dt

≥
∫ s1

s0

√
2|q̇| dt ≥

√
2|q(s1)− q(s0)|

≥ R√
2
.

This shows that bR →∞ as R →∞ and thus bR > m for R > 0 large enough.



Characterization of Least Energy Solutions 471

References

[1] A. Ambrosetti, M.L. Bertotti, Homoclinics for second order conservative systems, Par-
tial Differential Equations and related subjects, (ed. M. Miranda), Pitman Research
Notes in Math. Ser., (1992).

[2] H. Berestycki and P.L. Lions, Nonlinear scalar field equations I, Arch. Rat. Mech.
Anal. 82 (1983), 313-346.
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