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1 Introduction

In this paper we study the existence of positive solutions for Schrodinger type equations
of the form:
—Au+V(x)u = f(u), u € H'Y(IRY), (1.1)

where N > 2, f(u) : IR — IR is a nonlinear continuous function and V' (z) € C(IR,IR).

If the potential V' (z) is constant, namely if (1.1) is autonomous, Berestycki-Lions [1] (for
N =1 and N > 3) and Berestycki-Gallouét-Kavian [2] (for N = 2) provide an existence
result for a very wide class of nonlinearities (see Theorem 2.1 below). In particular only
conditions on f(s) near 0 and oo are required. In contrast, when (1.1) is not autonomous,
up to our knowledge, all existence results require some global conditions on f(s). For
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example, the following condition — called the global Ambrosetti-Rabinowitz superlinear
condition — is often assumed.

Jpu>2: 0<u/sf(7')d7§sf(s) for all s € IR.
0

In this paper, we consider non autonomous cases and assuming a decay condition (v4) on
VV (z) we derive an existence result which do not need global conditions on f(s). More
precisely, on the nonlinear term f € C(IR™,IR), we assume

(f1) f(0) =0 and f’(0) defined as lim, o+ f(s)s™! exists,
f2) there is p < oo if N = 2, p < &*2 if N > 3 such that lim,_. ., f(s)s™? =0,
N—2

(3) lim, ;o0 f(8)s7! = 400,
and on the potential V € C(IRY,1R),

(vl) f(0) < info(—A + V(x)), where o(—A + V(z)) denotes the spectrum of the self-
adjoint operator —A + V(z) : H*(IRY) — L*(IRV), i.e.,

. , Jry |Vul> + V(z)u? dx
fo(—A = f
nfo(=A+V(z) wer (R )\ (0) Jrw |ul? dz

(v2) V(z) — V(o0) € IR as |z| — oo,
(v3) V(z) < V(0), a. e. € IRV,
(v4) there exists a function ¢ € L2(IRY) N W< (IRY) such that

[2|[VV (2)] < é(2)*, Vo € RY,
Our main result is the following:

Theorem 1.1 Assume N > 2 and (f1)-(f3), (vi)-(v4). Then (1.1) has a non trivial
positive solution.

Remark 1.2 (i) In case where V(x) = V(00), namely when (1.1) is autonomous, Theo-
rem 1.1 is contained in the result of [1]. See also [2].

(ii) Considering, for a constant L € IR, V + L and f + Ls instead of V and f, we may
assume, without loss of generality that

(vb) f>0, f(0) >0, ap =info(—A+V(z)) >0and 0 < f/(0) < ay.



We shall make this assumption throughout the paper.
(iii) We remark that inf cpznv V(z) < o < V(00).

Theorem 1.1 will be proved by a variational approach. Because we look for a positive
solution, we may assume without restriction that f(s) = 0 for all s < 0. We associate
with (1.1) the functional I : H'(IRY) — IR defined by

1
Iw) =5 [ (VP + V(@) do = [ Plu)do
2 JrN RY
where F(s) = [ f(t)dt. We shall work on H!(IR™) = H with the norm

||U||f’_]1(IRN) == /IRN(|VU|2 + UQ)dx

We also use the notation:

1/p
lull, = (/IRN |ul|? d:c) for all p € [1, 00),

and remark that by the definition of ay,
/ VU + V(@) de > aollull} for all u € H. (1.2)
R

Under, (f1)-(f2) and (v2), (v5) I is a C" functional and it is standard that any critical
point of I is a nonnegative solution of (1.1).

First we shall prove that under (f1)—(f3) and (v2), (v5), I has a Mountain Pass geometry
(a MP geometry in short). Namely, setting

['={y e C(0,1], H),7(0) = 0 and I(y(1)) < 0},

that T’ # () and

c= Hellt trél[g,}l{] I(y(t)) > 0.

For such geometry Ekeland’s principle implies the existence of a Palais-Smale sequence (a
PS sequence in short) at the Mountain Pass level ¢ (the MP level in short) for /. Namely
a sequence {u,} C H such that

I(u,) —c¢ and [I'(u,) — 0 asn — oo.

A crucial step to obtain the existence of a critical point is to show the boundedness
of a sequence of this type. It is challenging under our assumptions. To overcome this
difficulty we use an indirect approach developed in [4]. For \ € [%, 1] we consider the
family of functionals I, : H — IR defined by

I(u) = ;/}RN(|VU|2 + V(z)u?) dz — A - F(u) d.

These functionals have a MP geometry and denoting ¢y the corresponding MP levels we
deduce from [4] that there exists a sequence {A;} C [3,1] such that
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e \; —lasj— oo.

e I, has a bounded PS sequence {u/} at level c,,.

We can see that, for all j € N, {u/} converges weakly to a non trivial critical point wu; of
I,. If we can prove that the sequence {u;} is bounded, it will follows (arguing as in [4])
that it is a (bounded) PS sequence for I.

To show that {u;} is bounded we need condition (v4) on V. It allows us to make use of
a Pohozaev type identity to derive, in Proposition 4.2, the boundedness of {u;}. A key
point which allows to use the identity is that {u;} is a sequence of exact critical points.
It is because we need this property that we follow an approximation procedure to obtain
a bounded PS sequence for I, instead of starting directly from an arbitrary PS sequence.

To show that the bounded sequence {u;} converges weakly to a non trivial critical point
of I, the “problem at infinity” plays an important role. It is known since the work of P.L.

Lions [8]. Let I*°: H — IR be defined by

I°(u) = ; /IRN(\VUF + V(oo)u?) dx — /]RN F(u)dx

and set
m®> = inf{I*(u);u # 0, I**'(u) = 0}.

We shall prove, that {u;} has a non trivial weak limit if ¢ < m™. In turn we derive that
¢ < m™ as a consequence of a general result on autonomous problem in IRY establish in
[5, 6]. Roughly speaking we show in [5, 6] that under general assumptions on f, the MP
value ¢ for I*° coincides with the least energy level m™. Namely, one always have

™ =m™. (1.3)

Here

¢ = inf max [ (v(1))
with I'™° = {~ € C([0,1], H),v(0) = 0 and I*=(y(1)) < 0}. Moreover, in addition to (1.3),
we show the existence of a path v9 € I'* such that

tem[gf]f (0(t)) = > (=m™)

with v(t)(x) > 0 for all z € IR™, V¢ € (0, 1]. At this point if we assume that V(x) < V(c0)
for all z € IRY but V(x) # V(00), we easily get that ¢ < m*™ (if V(x) = V(oc0), we recall
that Theorem 1.1 is contained in [1] (see also [2])). Having proved ¢ < m® we derive that
uj — u # 0 with I'(u) = 0 through a precise decomposition of the sequence, as a sum of
translated critical points, in the spirit of the pioneering work [8]. Since we only require
weak conditions on f, in particular f may not be C!, we cannot use one of the many



decompositions of the literature (see [3] for example). This description being susceptible
of others applications we place it in a self contained section.

The paper is organized as follows. In Section 2 we present the results on least energy
solutions for autonomous problems which are crucial to insure the compactness of bounded
PS sequences. In Section 3 we solve the approximating problems. Section 4 is devoted
to the proof of Theorem 1.1. Finally the decomposition of the PS sequences is given in
Section 5.

2 Some results on autonomous problems

In this section we recall some facts about autonomous equations of the form
—Au = g(u), u e H' (IRY). (2.1)
Here we state results not only for N > 2 but also for N = 1.
A solution v of (2.1) is said to be a least energy solution if and only if
J(v) = m, where m = inf{J(u); v € H \ {0} is a solution of (2.1)}. (2.2)

Here J : H'(IRY) — IR is the natural functional corresponding to (2.1)

J(u) = ;/IRN |Vul? do — /}RN G(u) dx

with G(s) = [y g(7) dr. The following results are due to Berestycki-Lions [1] for N = 1
and N > 3 and Berestycki-Gallouét-Kavian [2] for N = 2.

Theorem 2.1 Assume that

(90) g € C(IR,IR) is continuous and odd.

(91) —o0 <limiglfg(8) Slimsup@ =—-v <0 for N > 3,
s— S s—0 S

lir%g(s) = —v € (—00,0) for N =1,2.
s— S

(92) When N > 3, lim |gg| =0.
sN—2

When N = 2, for any;z > 0 there exists C, > 0 such that

lg(s)] < C,e for all s > 0.



(93) When N > 2, there exists & > 0 such that G(&y) > 0.
When N =1, there exists & > 0 such that

G(€) <0 for all € €]0,&[, G(&)=0 and g(&) > 0.

Then J is well defined and of class C'. Also m > 0 and there exists a least energy solution
w of (2.1) which is a classical solution and satisfies w > 0 on IRY.

In [5, 6] the authors complemented this result in the following way:

Theorem 2.2 Assume (g0)-(93). Then setting
Ty = {y e C([o,1], H{(IRY)),7(0) = 0 and J(~(1)) < 0},
we have T'y # () and b = m with

b= inf max J(vy(t)) > 0.

~v€l' s te[0,1]

Moreover for any least energy solution w of (2.1) as given by Theorem 2.2 there ezists a
path v € T such that y(t)(x) > 0 for all (t,z) € (0,1] x RN, w € 7([0,1]) and

max J(vy(t)) = b.

te(0,1]

Remark 2.3 In [5, 6] it is also proved that, under (gl)—(g2), there exists ¢; > 0, 09 > 0
such that

T(w) > 1l ul By vy when [lull, o, < 0.

Hl(IRN)

3 Solutions for approximating problems

For X € [1, 1] we consider the family of functionals I : H — IR defined by

1
L) = f/ (Vul + V(z)a?) de — A [ F(u)dz.
2 JmrY RN
In Lemma 3.5 we show that for each \ € [%, 1], I has a MP geometry. The corresponding
MP level is denoted cy. The aim of the section is to prove that for almost every A € [%, 1],
I, possesses a non trivial critical point uy such that I(uy) < c,.

A first step in this direction is to show that, for almost every A € [%, 1], I, possesses a
bounded Palais-Smale sequence (a BPS sequence for short) at the level ¢). For this we
shall use some abstract results of [4].



Theorem 3.1 Let X be a Banach space equipped with a norm ||.||x and let J C IR be
an interval. We consider a family (Ix)xes of Ct-functionals on X of the form

I\(u) = A(u) — AB(u), YA € J

where B(u) > 0,Yu € X and such that either A(u) — +00 or B(u) — +00 as ||u||x — oo.
We assume there are two points vy, ve in X such that

cx = inf max I, (y(t)) > max{I\(v1), I\(v2)} VA€ J,

~v€I' te[0,1]

where
I'={y € C([0,1], X),7(0) = v1,7(1) = va}.
Then, for almost every X\ € J, there is a sequence {v,} C X such that

(1) {vn} is bounded , (i1) I (v,) — cx, (i44) I5(v,) — 0 in the dual X' of X.

Remark 3.2 This result which is Theorem 1.1 in [4] is reminiscient of Struwe’s monotonic-
ity trick (see [9]) and can be viewed as its generalization. Since [4], results in the same
spirit, namely which establish the existence of BPS sequence for almost every value of a
parameter, have been obtained for families of functionals enjoying other homotopy invari-
ance. We mention, for example, [10] for a linking type situation. Also it was subsequently
proved in [7] that the condition B(u) > 0, Vu € X can be removed. In this case there is
no more a monotone dependence of ¢, upon A € J (in contrast to Theorem 3.1 where the
map A — ¢, is non increasing).

Remark 3.3 In Lemma 2.3 of [4] it is also proved that, under the assumptions of Theorem
3.1, the map A — ¢, is continuous from the left.

We shall use Theorem 3.1 with X = H, || - |[x = |[ - [|jr @y, J = [5,1]. First we remark

1
29
Lemma 3.4 For any € > 0 there exists a c. > 0 such that
ce||Vul|3 + (g — &) |ul|3 < / N |Vul? + V(2)u*dr  for allu € H.
R
In particular under (v2),(v5)
= [ IVul? + V(@)u? do
RN

is equivalent to the norm || - || g1 g,



Proof. For § € (0,1) we consider the following minimizing problem:

s = g Jry (1= 6)\Vu|22—i— V(z)u? d:v‘
ueH(IRY)\{0} [Jull3

We remark that ps > [,cpny V(z) > —oo for all § € (0,1). To prove the lemma it is
sufficient to show that lims g us > «p. By definition of us, there exists us € H with
|[us|| g1 mvy = 1 such that

(A= O)IVusl+ [ V)i do < (s +0)us] 3. (3.1
From (1.2) it follows that

oo |us|lz — ol Vusllz < (15 + 0)[us]]3.

that is,
(a0 — 15 — O)[usl3 < 0||Vus|l; <5 —0 asd — 0.

Thus if lims_q s < ag, we have ||us]|o — 0 and thus by (3.1) ||Vus||a — 0. This is in
contradiction with [|us|| g1 gy = 1 and thus it holds that lims o ps > . )

The following lemma ensures that I, has MP geometry.

Lemma 3.5 Assume that (f1)-(f3), (v1)-(v3) and (v5) hold. Then

(i) there exists a v € H\ {0} with I (v) <0 for all X € [3,1].

(it)
cx = inf max I, (y(t)) > max{I,(0), I\(v)} for all X € [;, 1].

v€T te[0,1]
Here
I'={yeC([0,1],H); v(0) = 0,7(1) = v}.

Proof. We have for any u € H, X € [3,1], I\(u) < I1)2(v) = 3 Jgn |Vul]? + V(z)u? dz —
1 gy F(u) dz. Also, by (£3) it is standard to find a v € H \ {0} such that I;5(v) < 0.
Thus we have (i).

For (ii) we choose €9 > 0 such that ag — o > f’(0). By Lemma 3.4, there exists ¢, > 0
such that

1
L(u) = §/IRN IVul? + V(z)u® do — A . F(u)dx

1 1
> SeulIVull+ 5 (a0 —=o)llull - [ | Fu)do.



By Remark 2.3,

1 1
Jo(w) = SeelIVullf + 5 (a0 = 2o)llulf = [ | Flw)da

satisfies

inf )
inf max Jo(v(t)) >0

Thus we have

= inf I > inf i
¢r = Inf max A(v(t) = Inf max Jo(7(t)) >0

)

Remark 3.6 It is standard under (f1)—(f2) and (v1) that there exists a dy > 0 indepen-
dent of X € [1, 1] such that

|[ul| 1 ravy > 6o for any non trivial critical point u of .

In(u) = §l[ul|> = X fgs F(u) de = A(u) — AB(u) satisfies A(u) — 00 as ||ul] g1 gy — o0,

B(u) > 0 for all w € H. Thus from Lemma 3.5 and Theorem 3.1 we get that I, has a
BPS sequence, at the level ¢, for almost every A € [%, 1]. On the convergence of BPS
sequences we have the following result:

Lemma 3.7 Assume that (f1)-(f3), (v2),(v3),(v5) hold and let X € [3,1] be arbitrary but
fized. Then any bounded Palais-Smale sequence {u,} for I satisfying limsup,,_, . Ix(u,) <
cex and ||up|| g gy 7 0, after extracting a subsequence, converges weakly to a non trivial
critical point uy of Iy with Iy(uy) < c.

Proof. Since {u,} is bounded, from Theorem 5.1 (see also Remark 5.2) which is establish
in Section 5 we know that,

I(up) — In(ug) + ;; I (wh), (3.2)

with ¢ > 0, ug a critical point of I and I3° : H — IR given by
00 1 2 2
INOEE /RN(|vu| + V(o)) dz =X [ F(uda.
The wk, for k =1, .., are non-trivial critical points of I5°. Since any solution of
—Au+V(co)u=Af(u), uweH (3.3)

is non negative we can we can regard it as a solution of (2.1) with

[ —=V(c0)s+ Af(s), fors>0,
(s) = { —g(—s), for s < 0.



We observe that a least energy solution for (2.1) — which we may assume positive — is
also a least energy solution of (3.3) and the converse is also true.

Thus, from Theorem 2.1, we see that any non trivial critical point wy of I3° satisfies
I¥(wy) > 0 and all we have to do to prove the lemma is to show that uy, # 0. Since
||[n| | rvy 7+ 0 we deduce from Theorem 5.1 that if ug = 0, then £ > 0 and

l
o = 3 () 2 my = inf{I"(w) su # 0, I3 (u) = 0},
k=1

In turn we can observe that
cy < my. (3.4)
To see (3.4) let wy be a least energy solution of
—Au+ V(oo)u = Af(u)

as provided by Theorem 2.1. Applying Theorem 2.2 to the functional I$° we can find
a path (t) € C([0,1], H) such that v(t)(x) > 0, Vo € IRY, V¢t € (0,1], v(0) = 0,
FG(1) <0, wn € 1(0, 1)) and
I = Iy :
s I3 (1) = 1)
Without restriction we can assume that V' # V(00) in (v3) (otherwise there is nothing to

prove). Thus
I(y(t)) < I (v(t)) for all t €]0,1]

and it follows from the definition of c,, that

< > = .
Ox < max L(y(1)) < max I3 (v(2)) = ma

)

Combining Lemmas 3.5, 3.7, Theorem 3.1 and the observation (see Remark 3.6) that
YA € [5,1], In(un) — cx # 0 implies |[un]| g1 myy 7 0, we deduce that Iy has a non
trivial critical point for almost every A € [%, 1]. We point out that this result is valid
without using condition (v4). As a special case we obtain the existence of a sequence
{Nuj)} € [3,1] x H with A\; — 1 and u; # 0 satisfying I3 (uj) = 0 and Iy, (u;) < cy,;.

4 Proof of Theorem 1.1

The idea of the proof is to show that the sequence {u;} of critical points of I, ob-
tained in Section 3 is bounded and that it is a Palais-Smale sequence for I satisfying
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limsup;_, I(u;) < c and ||| vy 7> 0. Then applying Lemma 3.7 we obtain a non
trivial critical point of I and this completed the proof of Theorem 1.1.

To show the boundedness of {u;} C H we shall make use of the following Pohozaev type
identity. Since its proof is standard we do not provide it. (See for example [1]).

Proposition 4.1 Let u(x) be a critical point of Iy with X\ € [L,1] arbitrary, then u(x)

2
satisfies
N -2 , N , 1 )
R ad - “NA[ F —0.
5 /IRN |Vu|*de + 5 /IRN V(x)u® dx + 2/IRN VV(x)zu®de A . (u) dz (401)

Now we apply the above proposition to {(\;,u;)} C [3,1] x H obtained in the previous
section.

Proposition 4.2 Assume that (f1)-(f3), (v1)-(v5) hold. Then {u;} C H is bounded.
Proof. Since I, (u;) < ¢y, < c1 we deduce, from Proposition 4.1, that

1
2 2
/IF{N|VUj‘ d:z:g§/IRN|VV(JU)||x]ude;+C%N.

Thus taking (v4) into account

1
/]RN (V| de < §/IRN u e’ dr+ciN. (4.2)
Also since I} (u;)(¢%u;) =0,
/IRN ViV (6, do + /]RN V(z)ulg? de = \; /}RN Fu;)uyé? da. (4.3)

Now it follows from (f3) that for any L > 0 there exists C'(L) > 0 such that
f(s)s > Ls* — C(L) for all s > 0.
We deduce that, for a C'(L) > 0,

/ fluy)ugd? da > L/ W2 da — (L) / $dr = L/ ¢ dr—C(L).  (44)
R R R R
We also have, for a C' > 0, using (4.2)

[ VuV@u)del < [ VuPetdr+2 [ 1V lul¢l Vol da
/}RN |Vu,|?¢? do + /IRN |Vu; 2| V|* dz + /}RN u§¢2 dx
< (0l + IVol2) [ 1V Pde+ [ ulg?dr

1

(811 + VI G [ uld*da+ey,N)+ [ udo?de

C /}RN w2¢? dz + C. (4.5)

IN

IA

IN

11



/]RN V(2)ulg? d < V(oo) /IRN u2? dz, (4.6)

Finally, combining (4.3)- (4.6), we get,

L /}RN w2g? da — C(L) < (C + V(00)) /}RN w22 da + C. (4.7)

Taking L > 0 large enough this shows that

2,2
/IRN u;¢” dr
is bounded and thus, by (4.2), [r~ [Vu,|? dz is bounded.

Next we show that
2 2
sl = [l do
stays bounded as j — co. We argue indirectly and assume

_ 2/N
Ty = \|Uj||2/ — 0.

We set

tj(z) = u;(rjz).
Then we have
Va3 = 2N Vull3,  [la]]; = 1. (4.8)

In particular, {@;} is a bounded sequence in H'(IR"). We can also observe that i;(z)
satisfies

1. . . N .
—ﬁAuj + V(rjo)i; = \if(i;) in IRY. (4.9)
j
Now we claim that
~ 2 _ ~9 .
; = -d 0 , 4.10
Sl = S8 f Bl =0 oo 10

where B)(z) = {y € IRY; |y — 2| < 1}. In fact, it sufficies to show
ij(z+y;) — 0 weakly in H'(IR") (4.11)

for any sequence {y;} C IR". Assume i;(x + y;) — @(z) weakly in H'(IR") after
extracting a subsequence. We remark that it follows from (v2) that V (r;z +y;) — V(00)
a.e. in IRY. Then by (4.9) we have

V(co)i = f(@) inIRM.

Since @(z) € H'(IRY) and € = 0 is an isolated solution of V(co)¢ = f(£), we have @& = 0.
This implies (4.11) and thus (4.10). Now we use the following lemma.
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Lemma 4.3 (see [8]) Assume that {v,} is bounded in H'(IRY) and that

sup |0, |? dz — 0.
2cRN /B1(?)

Then ||vp|l, — 0 for r €]2, 22[ when N > 3 and for r €]2,00] when N = 1,2. Here

Bi(z) ={y e R", |y — 2| < 1}.
End of the proof of Proposition 4.2. By Lemma 4.3, for p given in (f2) it follows
|@5][p41 — 0 asj — oo.
By (f1)-(f2), we have for any ¢ > 0 there exists Cs > 0 such that
f(€) = ['(0)€llE] < 6¢” + TsleP+! for all € € R
Thus we have
| (S (@5) = FO)ag)a; dal < 6|5 + Csllasllyis — 0 asj — oo.
Since 6 > 0 is arbitrary, we have [p~(f(@;) — f'(0)@;)4; dv — 0. We remark that f/(0) <

V(o0) follows from (v5) and Remark 1.2 (111) Multiplying @; to (4.9) and itegrating, we
have from (4.8) that

1 - Fras N~
SVl = = [ (Vse) =\ )i de+ s [ (£(@5) = £/(0))i da
j
= —(V(00) = f((O)Ia;]3 + o(1) = =(V(00) = f'(0)) <0
as j — oo. This is a contradiction and ||1,||3 is bounded as j — oc. [ )

Remark 4.4 When N > 3, we can show the boundedness of ||u;||3 directly. In fact, we
observe that I§ (u;)u; = 0. Namely that

/ Vu; | + V(z)u do = A / (u;)u; d.
By (f1)—(f2), for any 6 > 0 there exist Cs > 0 such that

f(s) < (f(0)+d)s+ 058% for all s > 0.
Thus, by (1.2)

o /IRN wide < /IRN Vu; [+ V(x)uf do
Vs d
/IRN fuj)u; dx
< (FO0)+0) [ utdr+ CC|[Tuy 13

IN

Choosing f'(0) + 6 < ap = inf o(—A + V(z)), this shows that ||u;|[3 is bounded.
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Lemma 4.5 Assume that (f1)-(f3), (v1)-(v5) hold. Then the sequence {u;} C H is a
Palais-Smale sequence for I satisfying limsup;_, I(u;) < ¢ and ||u;|| g1 gyy 7 0.

Proof. The fact that ||u;|| ;1) 7> 0 follows from Remark 3.6. Now we have

I(w;) = Ly () + (\ = 1) [ Flu;)da. (4.12)

Since {u;} C H is bounded, [~ F(u;)dx stays bounded as j — oco. Also we recall that
I\(uj) < ¢; and that, by Remark 3.3, lim;_,o ¢; = ¢. Thus (4.12) gives

limsup I (u;) <ec.
Jj—oo
Also, in the dual of H,
I'(uy) = I, (ug) + (A — 1) f(uy)
and thus lim;_, I'(u;) = 0. )
Proof of Theorem 1.1:

By Proposition 4.2 and Lemma 4.5, {u;} C H satisfy the assumptions of Lemma 3.7 for
A = 1. Thus I possesses a non trivial critical point and this proves Theorem 1.1. e

We end this section showing the existence of a least energy solution in the setting of
Theorem 1.1.

Theorem 4.6 Under the assumptions of Theorem 1.1, (1.1) has a least energy solution.
Namely there exists a solution w € H such that I(w) = m where

m = inf{l(u);u #0, I'(u) = 0}.

Proof. Let {u,} C H be a sequence of non trivial critical points of I satistying I(u,) —
m. From the proof of Proposition 4.2 we see, since {I(u,)} is bounded from above, that
{un} C H is bounded. Also by Remark 3.6, ||u,|| g1 gy 72 0.

Thus in particular m > —oo and {u,} C H is a PS sequence of I. Applying Theorem 5.1
we get that
I
I(uy) — I(ug) + > I (w"), (4.13)
k=1
with [ > 0 and uy a critical point of I. Now let m., be the least energy level for 1.
As in the proof of Lemma 3.7 we assume V # V(o00), thus, we have m < m™. Since

I°°(wk) > m> > 0 for each k, we deduce 1 # 0 and ¢ = 0 from (4.13). Thus there exists
a solution w(x) such that I(w) = m. [ )
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5 Decomposition of bounded Palais-Smale sequences
We consider functionals I : H'(IR™) — IR of the form

I(u) = ;/IRN |Vul? + V(x)u? do — /IRN F(u)dz.

We assume f € C(IR) and that V € C(IRY,IR) satisfy (v2) and

(f1’) f(0) = 0 and lim, o+ L& =0,

s

(f2’) thereis p < oo if N = 1,2 and p < £+2 if N > 3 such that lim,_.., f(s)|s| ™ =0,

(v1’) ap = info(—A+V(x)) >0,

The aim of the section is to derive a description of the bounded Palais-Smale sequences
of I in the spirit of [8]. We work on H = H'(IR") with the norm

= [ (Vul? + V(«)u)do
which is equivalent to the standard H'(IR") norm (see Lemma 3.4). Our result is:

Theorem 5.1 Assume that (f1°)-(f2°), (v1’), (v2) hold and let {u,} be a bounded Palais-
Smale sequence for I. Then there exists a subsequence of {u,}, still denoted {u,}, an
integer | € N U {0}, sequences {y*} C RN, w* € H for 1 <k <1 such that,

(1) w, — ug with I'(ug) = 0,

(ii) lys| — oo and |y} — yi | — oo for k # K/,
(iii) w* # 0 and I (w*) =0 for 1 <k <1,
(iv) |Jun — o = Yy w*(- = y@)|| = 0,

(v) I(un) = I(ug) + Ljoy I (w"),

where we agree that in the case | = 0 the above holds without w*, {yk}.

Remark 5.2 The decomposition provided by Theorem 5.1 is still true assuming just that
ap > f'(0). To see this it suffices to write I in the form

I =5 [ Vel + (V) = PO e~ [ () = 3 f(0)?) de

IRN
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Remark 5.3 It is standard under (f1’)—(f2’) and (v1’) that there exists a py > 0 such
that for any non trivial critical point w of I, ||u|| > po.
Proof of Theorem 5.1 The proof consists of several steps:

Step 1: Ezxtracting a subsequence if necessary we can assume that u, — ug weakly in H
with ug a critical point of I.

Indeed, since {u, } is bounded we may assume that, up to a subsequence, u,, — uy weakly
in H. Let us prove that I’(ug) = 0. Noting that C$°(IR™) is dense in H, it suffices to
check that I'(ug)p = 0 for all ¢ € C°(IRY). But we have,

I'(un)p — I'(ug)p = /IRN V(un — ug) Ve dx + /IRN V(x)(un — up)p dzx
— [ ) = fluo)) ¢ dz — 0,

since v, — v weakly in H and strongly in L{ (IRY) for ¢ € [2, Z5[if N > 3,¢ > 2 if
N =1,2. Thus recalling that I'(u,) — 0 we indeed have I’(ug) = 0.
Now we set v} = u,, — ug.
Step 2: Suppose

sup v} |2 dx — 0.

2cRN /B1(?)
Then u,, — ug and Theorem 5.1 holds with | = 0.

We compute
/ 1 _ 1 1 1
I'(up)v, = /IRN Vu, Vo, dx + /]RN V(z)upv, dor — /]RN f(up)v, dx
— / Vulvol de +/ Vo Vol de +/ V(@)|o}[? de
RN RN RY
/IRN V(z)ugv), dr — /}RN f(u)v} de.
Thus,
l|[vi])? = /]RN Vol P+ V() |ol)Pde = I'(u,)v) — /]RN Vuo Vo) do
- /IRN V(z)ugv), dx + /]RN f(up)v} du,
and, since I'(ug)v. = 0, it follows that
3P = P un)os+ [ | flu)ehde = [ fuo)oy da.

Now I'(u,)vl — 0 since {v}} is bounded. Also by (f1’)-(f2’), for any € > 0 there exists
C. > 0 such that
1f(s)] <els| + C|s|P for all s > 0.
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Thus, from Hoélder inequality,

[ S ok da] < lunlle lodll+ Colun s 1ol

and since by Lemma 4.3, ||v}||,+1 — 0 this shows that

/]RN f(uy)vl dz — 0.

In a similar way, we have [p~ f(ug)v} dz — 0. Thus v} — 0 and Step 2 is completed.

Step 3: Suppose 3{z,} € IRY such that, for a d >0,

/ v |2 dr — d > 0.
Bi(zn)

Then, after extracting a subsequence if necessary, we have for a w € H,
(1) |zn] = 00, (1) un(-+2z,) = w#0, (itd) I°(w)=0.

Clearly (i),(ii) are standard and the point is to show (iii). We define @, () = u,(- + 2,)
and observe that, as in Step 1, for any ¢ € C°(IRY),

I () o — I (w)p — 0.

Thus to prove that °'(w) = 0 it suffices to show that I°(a,)e — 0, for any fixed
¢ € C°(IRY). We have

I'(up)p(- —2,) = /}RN Vu,(x)Vo(r — z,) de + /IRN V(x)un(x)p(x — 2,) dx

o (@)l = 2) do

or equivalently

Iup)p(- —2z0) = /RN Vua(y + 20)Veo(y) dy + /IRN V(y =+ zn)un(y + 20)0(y) dy

- /]RN flun(y + 20)) 0 (y) dy.

Thus, since I'(u,)¢(- — z,) — 0, from the definition of @, it follows that
/}RN Vi, (y)Ve(y) dy + /IRN V(y + za)in(y)e(y) dy — | f(@n(y)e(y)dy — 0. (5.1)
Also, since |z,| — oo, and ¢ € C°(IRY),
SV 2) = V(00)in(y)ie(y) dy — 0. (5:2)
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Thus we obtain from (5.1), (5.2),
ool [~ o ~ ~
1) = [ Vi@)Ve)dy+ [ V(e m)ely)dy
= Jon F@n@))e(y) dy — 0
and Step 3 is completed.
Step 4: Assume there exists m > 1, {y*} C RN, w* € H for 1 <k < m such that

lynl = 00, lyn—un| — oo if k#K,
U, (- +yF) = wh #£0, V1I<Ek<m,
I®w*) =0, Y1<k<m.
Then

1) I SUPcs Ji, oy [t — 110 — Sfy wh(- — )2 da — 0 then

[[tn — 1o — Zw =yl =0

2) If I(z,) € IRY such that, for a d > 0,

/B() —uo—Zw =y dr — d >0,

then, after extracting a subsequence if necessary, the following holds

(i) |zl — 00, |zn — y,’il — 00, forall 1 <k <m,

(i1)  wn(- 4 20) = W™ £0,  (idd) (W) = 0.
Assume that (1) holds. Then setting &, = u, — ug — Sp; w*(- — y*) we have &, — 0 in
LPT(IRY) and we compute

I'(un)en = / V&V, d+ / VgV, da + / V(S wh(- — 4)Ven da
k=1
+ /}R V(z)e2 da:—l—/ r)uo, dv

m

b [ VO e = [ e

k=1
Thus

Il = Fw)é = [ VuVede— [ V@ugde— [ V(3w —yf) Ve do

k=1
_ /IRN V(m)(f: — yn )& dx + / f(up)&, dx.

k=1
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Since I'(ug)&, = 0 it follows that
Il = T, - / (0)6 dr z o VO~ ) Vo

S MUCTEEVATESS / ~ V(@)wh( — ) do
/RN (n)n d,

or equivalently, since I°°'(w*) = 0,

lal® = Fn)é =3 [ | F@hel+yh) da

=1

sy /RN<v<oo> ~ V@)t = ynde+ [ (Flun) = f(u0))é do
k=1

o

and using repeatedly the fact that ||£,||,+1 — 0 we deduce that ||¢,|| — 0.

Now we assume that (2) hold. Clearly (i),(ii) hold. To show (iii) we set @, = u,(- + 25)
and observe that for all ¢ € C°(IRY),

]OO/(Un)(P _ Ioo,(wm+1)g0 - 0.
Thus we just have to prove that I°(u,)¢ — 0 and this is done as in Step 1.

Step 5: Conclusion

By Step 1 we know that w, — ug with I'(ug) = 0 and this is (i) of Theorem 5.1. If the
assumption of Step 2 holds, then u,, — ug and Theorem 5.1 hold with [ = 0. Otherwise
the assumption of Step 3 holds. We set {y.} = {z,} and w' = w. Now if 1) of Step 4
holds with m = 1 this proves (ii)—(iv) of Theorem 5.1. If not, 2) of Step 4 must hold and
setting {y2} = {z,} and w? = w? we iterate Step 4. Clearly all we have to do to end the
proof of (i)—(iv) is to show that 1) of Step 4 must occur after a finite number of iterations.
But we observe, on one hand, that by the properties of the weak convergence, Vm > 1

m
lim {[un][* = [Juoll* = > [lw|* = lim [fuy, — uo — Zw —y)l* = 0.

n—00
k=1

On the other hand, by Remark 5.3, there is a py > 0 such that ||w|| > po for any non
trivial critical point of I°°. Thus at one point, say for [ € IN, 1) of Step 4 will occur.

To complete the proof of Theorem 5.1 we just have to show that

I
I(un) — I(ug) + > I°(wh)

k=1
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Writing w,, = ug + (u,, — ug) we first prove that

I(up) — I(uo) + 1% (un — uo). (5.3)
Indeed
_ 2 —up)? B
I(u,) = 2/ |Vug|* dx + 2/ up)|” dx + = / VueV (u, —ug) dx
+ 2/ r)uddr + = / (U, — up)* dx

/}RN V(z)uo(u, — ug) de — /IRN F(u,) dx,
or equivalently

I(u,) = I(up)+ I™(u, —ug) + /]RN VuoV (u, — ug) dz

1 2
g fon (V@) = V(00) (1 — o) e + /}RN V() o (tn — o) da

/NF(u — g dx+/ (uo dx—/NF(un)dx.
R R
Thus all we have to show to prove (5.3) is that

[ [P = o)+ Flu) = F(ug)] dz = 0.

But under (f1’)—(f2’) this is classical (see [3] for example). Now one proves that

IOO —'LL(] ZIOO

in the same way and using the observation that /*° is autonomous. [ )
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