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Université de Franche-Comté
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1 Introduction

In this paper we study the existence of positive solutions for Schrödinger type equations
of the form:

−∆u + V (x)u = f(u), u ∈ H1(IRN), (1.1)

where N ≥ 2, f(u) : IR → IR is a nonlinear continuous function and V (x) ∈ C(IR, IR).

If the potential V (x) is constant, namely if (1.1) is autonomous, Berestycki-Lions [1] (for
N = 1 and N ≥ 3) and Berestycki-Gallouët-Kavian [2] (for N = 2) provide an existence
result for a very wide class of nonlinearities (see Theorem 2.1 below). In particular only
conditions on f(s) near 0 and ∞ are required. In contrast, when (1.1) is not autonomous,
up to our knowledge, all existence results require some global conditions on f(s). For

∗Primary: 35J60, Secondary: 58E05
(‡) Partially supported by Waseda University Grant for Special Research Project.



example, the following condition — called the global Ambrosetti-Rabinowitz superlinear
condition — is often assumed.

∃µ > 2 : 0 < µ
∫ s

0
f(τ) dτ ≤ sf(s) for all s ∈ IR.

In this paper, we consider non autonomous cases and assuming a decay condition (v4) on
∇V (x) we derive an existence result which do not need global conditions on f(s). More
precisely, on the nonlinear term f ∈ C(IR+, IR), we assume

(f1) f(0) = 0 and f ′(0) defined as lims→0+ f(s)s−1 exists,

(f2) there is p < ∞ if N = 2, p < N+2
N−2

if N ≥ 3 such that lims→+∞ f(s)s−p = 0,

(f3) lims→+∞ f(s)s−1 = +∞,

and on the potential V ∈ C(IRN , IR),

(v1) f ′(0) < inf σ(−∆ + V (x)), where σ(−∆ + V (x)) denotes the spectrum of the self-
adjoint operator −∆ + V (x) : H2(IRN) → L2(IRN), i.e.,

inf σ(−∆ + V (x)) = inf
u∈H1(IRN )\{0}

∫
IRN |∇u|2 + V (x)u2 dx∫

IRN |u|2 dx

(v2) V (x) → V (∞) ∈ IR as |x| → ∞,

(v3) V (x) ≤ V (∞), a. e. x ∈ IRN ,

(v4) there exists a function φ ∈ L2(IRN) ∩W 1,∞(IRN) such that

|x||∇V (x)| ≤ φ(x)2,∀x ∈ IRN .

Our main result is the following:

Theorem 1.1 Assume N ≥ 2 and (f1)–(f3), (v1)–(v4). Then (1.1) has a non trivial
positive solution.

Remark 1.2 (i) In case where V (x) ≡ V (∞), namely when (1.1) is autonomous, Theo-
rem 1.1 is contained in the result of [1]. See also [2].
(ii) Considering, for a constant L ∈ IR, V + L and f + Ls instead of V and f , we may
assume, without loss of generality that

(v5) f ≥ 0, f ′(0) ≥ 0, α0 ≡ inf σ(−∆ + V (x)) > 0 and 0 ≤ f ′(0) < α0.
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We shall make this assumption throughout the paper.
(iii) We remark that infx∈IRN V (x) ≤ α0 ≤ V (∞).

Theorem 1.1 will be proved by a variational approach. Because we look for a positive
solution, we may assume without restriction that f(s) = 0 for all s ≤ 0. We associate
with (1.1) the functional I : H1(IRN) → IR defined by

I(u) =
1

2

∫
IRN

(|∇u|2 + V (x)u2) dx−
∫
IRN

F (u) dx

where F (s) =
∫ s
0 f(t)dt. We shall work on H1(IRN) ≡ H with the norm

||u||2H1(IRN ) =
∫
IRN

(|∇u|2 + u2)dx.

We also use the notation:

||u||p =
(∫

IRN
|u|p dx

)1/p

for all p ∈ [1,∞),

and remark that by the definition of α0,∫
IRN

|∇u|2 + V (x)u2 dx ≥ α0||u||22 for all u ∈ H. (1.2)

Under, (f1)–(f2) and (v2), (v5) I is a C1 functional and it is standard that any critical
point of I is a nonnegative solution of (1.1).

First we shall prove that under (f1)–(f3) and (v2), (v5), I has a Mountain Pass geometry
(a MP geometry in short). Namely, setting

Γ = {γ ∈ C([0, 1], H), γ(0) = 0 and I(γ(1)) < 0},

that Γ 6= ∅ and
c = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)) > 0.

For such geometry Ekeland’s principle implies the existence of a Palais-Smale sequence (a
PS sequence in short) at the Mountain Pass level c (the MP level in short) for I. Namely
a sequence {un} ⊂ H such that

I(un) → c and I ′(un) → 0 as n →∞.

A crucial step to obtain the existence of a critical point is to show the boundedness
of a sequence of this type. It is challenging under our assumptions. To overcome this
difficulty we use an indirect approach developed in [4]. For λ ∈ [1

2
, 1] we consider the

family of functionals Iλ : H → IR defined by

Iλ(u) =
1

2

∫
IRN

(|∇u|2 + V (x)u2) dx− λ
∫
IRN

F (u) dx.

These functionals have a MP geometry and denoting cλ the corresponding MP levels we
deduce from [4] that there exists a sequence {λj} ⊂ [1

2
, 1] such that
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• λj → 1 as j →∞.

• Iλj
has a bounded PS sequence {uj

n} at level cλj
.

We can see that, for all j ∈ IN, {uj
n} converges weakly to a non trivial critical point uj of

Iλj
. If we can prove that the sequence {uj} is bounded, it will follows (arguing as in [4])

that it is a (bounded) PS sequence for I.

To show that {uj} is bounded we need condition (v4) on V . It allows us to make use of
a Pohozaev type identity to derive, in Proposition 4.2, the boundedness of {uj}. A key
point which allows to use the identity is that {uj} is a sequence of exact critical points.
It is because we need this property that we follow an approximation procedure to obtain
a bounded PS sequence for I, instead of starting directly from an arbitrary PS sequence.

To show that the bounded sequence {uj} converges weakly to a non trivial critical point
of I, the “problem at infinity” plays an important role. It is known since the work of P.L.
Lions [8]. Let I∞ : H → IR be defined by

I∞(u) =
1

2

∫
IRN

(|∇u|2 + V (∞)u2) dx−
∫
IRN

F (u) dx

and set
m∞ = inf{I∞(u) ; u 6= 0, I∞′(u) = 0}.

We shall prove, that {uj} has a non trivial weak limit if c < m∞. In turn we derive that
c < m∞ as a consequence of a general result on autonomous problem in IRN establish in
[5, 6]. Roughly speaking we show in [5, 6] that under general assumptions on f , the MP
value c∞ for I∞ coincides with the least energy level m∞. Namely, one always have

c∞ = m∞. (1.3)

Here
c∞ = inf

γ∈Γ∞
max
t∈[0,1]

I∞(γ(t))

with Γ∞ = {γ ∈ C([0, 1], H), γ(0) = 0 and I∞(γ(1)) < 0}. Moreover, in addition to (1.3),
we show the existence of a path γ0 ∈ Γ∞ such that

max
t∈[0,1]

I∞(γ0(t)) = c∞(= m∞)

with γ0(t)(x) > 0 for all x ∈ IRN , ∀t ∈ (0, 1]. At this point if we assume that V (x) ≤ V (∞)
for all x ∈ IRN but V (x) 6≡ V (∞), we easily get that c < m∞ (if V (x) ≡ V (∞), we recall
that Theorem 1.1 is contained in [1] (see also [2])). Having proved c < m∞ we derive that
uj ⇀ u 6= 0 with I ′(u) = 0 through a precise decomposition of the sequence, as a sum of
translated critical points, in the spirit of the pioneering work [8]. Since we only require
weak conditions on f , in particular f may not be C1, we cannot use one of the many
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decompositions of the literature (see [3] for example). This description being susceptible
of others applications we place it in a self contained section.

The paper is organized as follows. In Section 2 we present the results on least energy
solutions for autonomous problems which are crucial to insure the compactness of bounded
PS sequences. In Section 3 we solve the approximating problems. Section 4 is devoted
to the proof of Theorem 1.1. Finally the decomposition of the PS sequences is given in
Section 5.

2 Some results on autonomous problems

In this section we recall some facts about autonomous equations of the form

−∆u = g(u), u ∈ H1(IRN). (2.1)

Here we state results not only for N ≥ 2 but also for N = 1.

A solution v of (2.1) is said to be a least energy solution if and only if

J(v) = m, where m = inf{J(u); u ∈ H \ {0} is a solution of (2.1)}. (2.2)

Here J : H1(IRN) → IR is the natural functional corresponding to (2.1)

J(u) =
1

2

∫
IRN

|∇u|2 dx−
∫
IRN

G(u) dx

with G(s) =
∫ s
0 g(τ) dτ . The following results are due to Berestycki-Lions [1] for N = 1

and N ≥ 3 and Berestycki-Gallouët-Kavian [2] for N = 2.

Theorem 2.1 Assume that

(g0) g ∈ C(IR, IR) is continuous and odd.

(g1) −∞ < lim inf
s→0

g(s)

s
≤ lim sup

s→0

g(s)

s
= −ν < 0 for N ≥ 3,

lim
s→0

g(s)

s
= −ν ∈ (−∞, 0) for N = 1, 2.

(g2) When N ≥ 3, lim
s→∞

|g(s)|
s

N+2
N−2

= 0.

When N = 2, for any α > 0 there exists Cα > 0 such that

|g(s)| ≤ Cαeαs2

for all s ≥ 0.
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(g3) When N ≥ 2, there exists ξ0 > 0 such that G(ξ0) > 0.
When N = 1, there exists ξ0 > 0 such that

G(ξ) < 0 for all ξ ∈]0, ξ0[, G(ξ0) = 0 and g(ξ0) > 0.

Then J is well defined and of class C1. Also m > 0 and there exists a least energy solution
ω of (2.1) which is a classical solution and satisfies ω > 0 on IRN .

In [5, 6] the authors complemented this result in the following way:

Theorem 2.2 Assume (g0)–(g3). Then setting

ΓJ = {γ ∈ C([0, 1], H1(IRN)), γ(0) = 0 and J(γ(1)) < 0},

we have ΓJ 6= ∅ and b = m with

b = inf
γ∈ΓJ

max
t∈[0,1]

J(γ(t)) > 0.

Moreover for any least energy solution ω of (2.1) as given by Theorem 2.2 there exists a
path γ ∈ Γ such that γ(t)(x) > 0 for all (t, x) ∈ (0, 1]× IRN , ω ∈ γ([0, 1]) and

max
t∈[0,1]

J(γ(t)) = b.

Remark 2.3 In [5, 6] it is also proved that, under (g1)–(g2), there exists c1 > 0, δ0 > 0
such that

J(u) ≥ c1||u||2H1(IRN ) when ||u||
H1(IRN )

≤ δ0.

3 Solutions for approximating problems

For λ ∈ [1
2
, 1] we consider the family of functionals I : H → IR defined by

Iλ(u) =
1

2

∫
IRN

(|∇u|2 + V (x)u2) dx− λ
∫
IRN

F (u) dx.

In Lemma 3.5 we show that for each λ ∈ [1
2
, 1], Iλ has a MP geometry. The corresponding

MP level is denoted cλ. The aim of the section is to prove that for almost every λ ∈ [1
2
, 1],

Iλ possesses a non trivial critical point uλ such that Iλ(uλ) ≤ cλ.

A first step in this direction is to show that, for almost every λ ∈ [1
2
, 1], Iλ possesses a

bounded Palais-Smale sequence (a BPS sequence for short) at the level cλ. For this we
shall use some abstract results of [4].
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Theorem 3.1 Let X be a Banach space equipped with a norm ‖.‖X and let J ⊂ IR+ be
an interval. We consider a family (Iλ)λ∈J of C1-functionals on X of the form

Iλ(u) = A(u)− λB(u), ∀λ ∈ J

where B(u) ≥ 0,∀u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as ‖u‖X →∞.
We assume there are two points v1, v2 in X such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)} ∀λ ∈ J,

where
Γ = {γ ∈ C([0, 1], X), γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ J , there is a sequence {vn} ⊂ X such that

(i) {vn} is bounded , (ii) Iλ(vn) → cλ, (iii) I ′λ(vn) → 0 in the dual X−1 of X.

Remark 3.2 This result which is Theorem 1.1 in [4] is reminiscient of Struwe’s monotonic-
ity trick (see [9]) and can be viewed as its generalization. Since [4], results in the same
spirit, namely which establish the existence of BPS sequence for almost every value of a
parameter, have been obtained for families of functionals enjoying other homotopy invari-
ance. We mention, for example, [10] for a linking type situation. Also it was subsequently
proved in [7] that the condition B(u) ≥ 0, ∀u ∈ X can be removed. In this case there is
no more a monotone dependence of cλ upon λ ∈ J (in contrast to Theorem 3.1 where the
map λ → cλ is non increasing).

Remark 3.3 In Lemma 2.3 of [4] it is also proved that, under the assumptions of Theorem
3.1, the map λ → cλ is continuous from the left.

We shall use Theorem 3.1 with X = H, || · ||X = || · ||H1(IRN ), J = [1
2
, 1]. First we remark

Lemma 3.4 For any ε > 0 there exists a cε > 0 such that

cε||∇u||22 + (α0 − ε)||u||22 ≤
∫
IRN

|∇u|2 + V (x)u2 dx for all u ∈ H.

In particular under (v2),(v5)

||u||2 =
∫
IRN

|∇u|2 + V (x)u2 dx

is equivalent to the norm || · ||H1(IRN ).
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Proof. For δ ∈ (0, 1) we consider the following minimizing problem:

µδ = inf
u∈H1(IRN )\{0}

∫
IRN (1− δ)|∇u|2 + V (x)u2 dx

||u||22
.

We remark that µδ ≥
∫
x∈IRN V (x) > −∞ for all δ ∈ (0, 1). To prove the lemma it is

sufficient to show that limδ→0 µδ ≥ α0. By definition of µδ, there exists uδ ∈ H with
||uδ||H1(IRN ) = 1 such that

(1− δ)||∇uδ||22 +
∫
IRN

V (x)u2
δ dx ≤ (µδ + δ)||uδ||22. (3.1)

From (1.2) it follows that

α0||uδ||22 − δ||∇uδ||22 ≤ (µδ + δ)||uδ||22,

that is,
(α0 − µδ − δ)||uδ||22 ≤ δ||∇uδ||22 ≤ δ → 0 as δ → 0.

Thus if limδ→0 µδ < α0, we have ||uδ||2 → 0 and thus by (3.1) ||∇uδ||2 → 0. This is in
contradiction with ||uδ||H1(IRN ) = 1 and thus it holds that limδ→0 µδ ≥ α0. ♠

The following lemma ensures that Iλ has MP geometry.

Lemma 3.5 Assume that (f1)–(f3), (v1)–(v3) and (v5) hold. Then

(i) there exists a v ∈ H \ {0} with Iλ(v) ≤ 0 for all λ ∈ [1
2
, 1].

(ii)

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(0), Iλ(v)} for all λ ∈ [
1

2
, 1].

Here
Γ = {γ ∈ C([0, 1], H); γ(0) = 0, γ(1) = v}.

Proof. We have for any u ∈ H, λ ∈ [1
2
, 1], Iλ(u) ≤ I1/2(u) = 1

2

∫
IRN |∇u|2 + V (x)u2 dx−

1
2

∫
IRN F (u) dx. Also, by (f3) it is standard to find a v ∈ H \ {0} such that I1/2(v) ≤ 0.

Thus we have (i).

For (ii) we choose ε0 > 0 such that α0 − ε0 > f ′(0). By Lemma 3.4, there exists cε0 > 0
such that

Iλ(u) =
1

2

∫
IRN

|∇u|2 + V (x)u2 dx− λ
∫
IRN

F (u) dx

≥ 1

2
cε0||∇u||22 +

1

2
(α0 − ε0)||u||22 −

∫
IRN

F (u) dx.

8



By Remark 2.3,

J0(u) =
1

2
cε0||∇u||22 +

1

2
(α0 − ε0)||u||22 −

∫
IRN

F (u) dx

satisfies
inf
γ∈Γ

max
t∈[0,1]

J0(γ(t)) > 0.

Thus we have
cλ = inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)) ≥ inf
γ∈Γ

max
t∈[0,1]

J0(γ(t)) > 0.

♠

Remark 3.6 It is standard under (f1)–(f2) and (v1) that there exists a δ0 > 0 indepen-
dent of λ ∈ [1

2
, 1] such that

||u||H1(IRN ) ≥ δ0 for any non trivial critical point u of Iλ.

Iλ(u) = 1
2
||u||2 − λ

∫
IRN F (u) dx = A(u)− λB(u) satisfies A(u) →∞ as ||u||H1(IRN ) →∞,

B(u) ≥ 0 for all u ∈ H. Thus from Lemma 3.5 and Theorem 3.1 we get that Iλ has a
BPS sequence, at the level cλ for almost every λ ∈ [1

2
, 1]. On the convergence of BPS

sequences we have the following result:

Lemma 3.7 Assume that (f1)–(f3), (v2),(v3),(v5) hold and let λ ∈ [1
2
, 1] be arbitrary but

fixed. Then any bounded Palais-Smale sequence {un} for Iλ satisfying lim supn→∞ Iλ(un) ≤
cλ and ||un||H1(IRN ) 6→ 0, after extracting a subsequence, converges weakly to a non trivial
critical point uλ of Iλ with Iλ(uλ) ≤ cλ.

Proof. Since {un} is bounded, from Theorem 5.1 (see also Remark 5.2) which is establish
in Section 5 we know that,

Iλ(un) → Iλ(u0) +
l∑

k=1

I∞λ (wk
λ), (3.2)

with ` ≥ 0, u0 a critical point of Iλ and I∞λ : H → IR given by

I∞λ (u) =
1

2

∫
IRN

(|∇u|2 + V (∞)u2) dx− λ
∫
IRN

F (u)dx.

The wk
λ, for k = 1, .., l are non-trivial critical points of I∞λ . Since any solution of

−∆u + V (∞)u = λf(u), u ∈ H (3.3)

is non negative we can we can regard it as a solution of (2.1) with

g(s) =
{−V (∞)s + λf(s), for s ≥ 0,
−g(−s), for s < 0.
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We observe that a least energy solution for (2.1) — which we may assume positive — is
also a least energy solution of (3.3) and the converse is also true.

Thus, from Theorem 2.1, we see that any non trivial critical point wλ of I∞λ satisfies
I∞λ (wλ) > 0 and all we have to do to prove the lemma is to show that u0 6= 0. Since
||un||H1(IRN ) 6→ 0 we deduce from Theorem 5.1 that if u0 = 0, then ` > 0 and

cλ =
∑̀
k=1

I∞λ (wk
λ) ≥ mλ = inf{I∞λ (u) ; u 6= 0, I∞λ

′(u) = 0}.

In turn we can observe that

cλ < mλ. (3.4)

To see (3.4) let ωλ be a least energy solution of

−∆u + V (∞)u = λf(u)

as provided by Theorem 2.1. Applying Theorem 2.2 to the functional I∞λ we can find
a path γ(t) ∈ C([0, 1], H) such that γ(t)(x) > 0, ∀x ∈ IRN , ∀t ∈ (0, 1], γ(0) = 0,
I∞λ (γ(1)) < 0, ωλ ∈ γ([0, 1]) and

max
t∈[0,1]

I∞λ (γ(t)) = I∞λ (ωλ).

Without restriction we can assume that V 6≡ V (∞) in (v3) (otherwise there is nothing to
prove). Thus

Iλ(γ(t)) < I∞λ (γ(t)) for all t ∈]0, 1]

and it follows from the definition of cλ, that

cλ ≤ max
t∈[0,1]

Iλ(γ(t)) < max
t∈[0,1]

I∞λ (γ(t)) = mλ.

♠

Combining Lemmas 3.5, 3.7, Theorem 3.1 and the observation (see Remark 3.6) that
∀λ ∈ [1

2
, 1], Iλ(un) → cλ 6= 0 implies ||un||H1(IRN ) 6→ 0, we deduce that Iλ has a non

trivial critical point for almost every λ ∈ [1
2
, 1]. We point out that this result is valid

without using condition (v4). As a special case we obtain the existence of a sequence
{(λj, uj)} ⊂ [1

2
, 1]×H with λj → 1 and uj 6= 0 satisfying I ′λj

(uj) = 0 and Iλj
(uj) ≤ cλj

.

4 Proof of Theorem 1.1

The idea of the proof is to show that the sequence {uj} of critical points of Iλj
ob-

tained in Section 3 is bounded and that it is a Palais-Smale sequence for I satisfying
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lim supj→∞ I(uj) ≤ c and ||uj||H1(IRN ) 6→ 0. Then applying Lemma 3.7 we obtain a non
trivial critical point of I and this completed the proof of Theorem 1.1.

To show the boundedness of {uj} ⊂ H we shall make use of the following Pohozaev type
identity. Since its proof is standard we do not provide it. (See for example [1]).

Proposition 4.1 Let u(x) be a critical point of Iλ with λ ∈ [1
2
, 1] arbitrary, then u(x)

satisfies

N − 2

2

∫
IRN

|∇u|2 dx +
N

2

∫
IRN

V (x)u2 dx +
1

2

∫
IRN

∇V (x)xu2 dx−Nλ
∫
IRN

F (u) dx = 0.

(4.1)

Now we apply the above proposition to {(λj, uj)} ⊂ [1
2
, 1] × H obtained in the previous

section.

Proposition 4.2 Assume that (f1)–(f3), (v1)–(v5) hold. Then {uj} ⊂ H is bounded.

Proof. Since Iλj
(uj) ≤ cλj

≤ c 1
2

we deduce, from Proposition 4.1, that∫
IRN

|∇uj|2 dx ≤ 1

2

∫
IRN

|∇V (x)||x|u2
j dx + c 1

2
N.

Thus taking (v4) into account∫
IRN

|∇uj|2 dx ≤ 1

2

∫
IRN

u2
jφ

2 dx + c 1
2
N. (4.2)

Also since I ′λj
(uj)(φ

2uj) = 0,∫
IRN

∇uj∇(φ2uj) dx +
∫
IRN

V (x)u2
jφ

2 dx = λj

∫
IRN

f(uj)ujφ
2 dx. (4.3)

Now it follows from (f3) that for any L > 0 there exists C(L) > 0 such that

f(s)s ≥ Ls2 − C(L) for all s ≥ 0.

We deduce that, for a C̃(L) > 0,∫
IRN

f(uj)ujφ
2 dx ≥ L

∫
IRN

u2
jφ

2 dx− C(L)
∫
IRN

φ2 dx = L
∫
IRN

u2
jφ

2 dx− C̃(L). (4.4)

We also have, for a C > 0, using (4.2)

|
∫
IRN

∇uj∇(φ2uj) dx| ≤
∫
IRN

|∇uj|2φ2 dx + 2
∫
IRN

|∇uj||uj||φ||∇φ| dx

≤
∫
IRN

|∇uj|2φ2 dx +
∫
IRN

|∇uj|2|∇φ|2 dx +
∫
IRN

u2
jφ

2 dx

≤ (||φ||2∞ + ||∇φ||2∞)
∫
IRN

|∇uj|2 dx +
∫
IRN

u2
jφ

2 dx

≤ (||φ||2∞ + ||∇φ||2∞)(
1

2

∫
IRN

u2
jφ

2 dx + c 1
2
N) +

∫
IRN

u2
jφ

2 dx

≤ C
∫
IRN

u2
jφ

2 dx + C. (4.5)
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∫
IRN

V (x)u2
jφ

2 dx ≤ V (∞)
∫
IRN

u2
jφ

2 dx. (4.6)

Finally, combining (4.3)- (4.6), we get,

L
∫
IRN

u2
jφ

2 dx− C̃(L) ≤ (C + V (∞))
∫
IRN

u2
jφ

2 dx + C. (4.7)

Taking L > 0 large enough this shows that∫
IRN

u2
jφ

2 dx

is bounded and thus, by (4.2),
∫
IRN |∇uj|2 dx is bounded.

Next we show that
||uj||22 =

∫
IRn

u2
j dx

stays bounded as j →∞. We argue indirectly and assume

rj ≡ ||uj||2/N
2 →∞.

We set
ũj(x) = uj(rjx).

Then we have
||∇ũj||22 = r2−N

j ||∇uj||22, ||ũj||22 = 1. (4.8)

In particular, {ũj} is a bounded sequence in H1(IRN). We can also observe that ũj(x)
satisfies

− 1

r2
j

∆ũj + V (rjx)ũj = λjf(ũj) in IRN . (4.9)

Now we claim that

sup
x∈IRN

||ũj||2L2(B1(x)) ≡ sup
x∈IRN

∫
B1(x)

ũ2
j dx → 0 as j →∞, (4.10)

where B1(x) = {y ∈ IRN ; |y − x| ≤ 1}. In fact, it sufficies to show

ũj(x + yj) → 0 weakly in H1(IRN) (4.11)

for any sequence {yj} ⊂ IRN . Assume ũj(x + yj) → ũ(x) weakly in H1(IRN) after
extracting a subsequence. We remark that it follows from (v2) that V (rjx + yj) → V (∞)
a.e. in IRN . Then by (4.9) we have

V (∞)ũ = f(ũ) in IRN .

Since ũ(x) ∈ H1(IRN) and ξ = 0 is an isolated solution of V (∞)ξ = f(ξ), we have ũ ≡ 0.
This implies (4.11) and thus (4.10). Now we use the following lemma.
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Lemma 4.3 (see [8]) Assume that {vn} is bounded in H1(IRN) and that

sup
z∈IRN

∫
B1(z)

|vn|2 dx → 0.

Then ||vn||r → 0 for r ∈]2, 2N
N−2

[ when N ≥ 3 and for r ∈]2,∞[ when N = 1, 2. Here

B1(z) = {y ∈ IRN , |y − z| ≤ 1}.

End of the proof of Proposition 4.2. By Lemma 4.3, for p given in (f2) it follows

||ũj||p+1 → 0 as j →∞.

By (f1)–(f2), we have for any δ > 0 there exists Cδ > 0 such that

|f(ξ)− f ′(0)ξ||ξ| ≤ δξ2 + Cδ|ξ|p+1 for all ξ ∈ IR.

Thus we have

|
∫
IRN

(f(ũj)− f ′(0)ũj)ũj dx| ≤ δ||ũj||22 + Cδ||ũj||p+1
p+1 → δ as j →∞.

Since δ > 0 is arbitrary, we have
∫
IRN (f(ũj)− f ′(0)ũj)ũj dx → 0. We remark that f ′(0) <

V (∞) follows from (v5) and Remark 1.2 (iii). Multiplying ũj to (4.9) and itegrating, we
have from (4.8) that

1

r2
j

||∇ũj||22 = −
∫
IRN

(V (rjx)− λjf
′(0))ũ2

j dx + λj

∫
IRN

(f(ũj)− f ′(0)ũj)ũj dx

= −(V (∞)− f ′(0))||ũj||22 + o(1) → −(V (∞)− f ′(0)) < 0

as j →∞. This is a contradiction and ||ũj||22 is bounded as j →∞. ♠

Remark 4.4 When N ≥ 3, we can show the boundedness of ||uj||22 directly. In fact, we
observe that I ′λj

(uj)uj = 0. Namely that∫
IRN

|∇uj|2 + V (x)u2
j dx = λj

∫
IRN

f(uj)uj dx.

By (f1)–(f2), for any δ > 0 there exist Cδ > 0 such that

f(s) ≤ (f ′(0) + δ)s + Cδs
N+2
N−2 for all s ≥ 0.

Thus, by (1.2)

α0

∫
IRN

u2
j dx ≤

∫
IRN

|∇uj|2 + V (x)u2
j dx

≤
∫
IRN

f(uj)uj dx

≤ (f ′(0) + δ)
∫
IRN

u2
j dx + CδC||∇uj||

2N
N−2

2 .

Choosing f ′(0) + δ < α0 = inf σ(−∆ + V (x)), this shows that ||uj||22 is bounded.

13



Lemma 4.5 Assume that (f1)–(f3), (v1)–(v5) hold. Then the sequence {uj} ⊂ H is a
Palais-Smale sequence for I satisfying lim supj→∞ I(uj) ≤ c and ||uj||H1(IRN ) 6→ 0.

Proof. The fact that ||uj||H1(IRN ) 6→ 0 follows from Remark 3.6. Now we have

I(uj) = Iλj
(uj) + (λj − 1)

∫
IRN

F (uj) dx. (4.12)

Since {uj} ⊂ H is bounded,
∫
IRN F (uj) dx stays bounded as j → ∞. Also we recall that

Iλ(uj) ≤ cj and that, by Remark 3.3, limj→∞ cj = c. Thus (4.12) gives

lim sup
j→∞

I(uj) ≤ c.

Also, in the dual of H,
I ′(uj) = I ′λj

(uj) + (λj − 1)f(uj)

and thus limj→∞ I ′(uj) = 0. ♠

Proof of Theorem 1.1:

By Proposition 4.2 and Lemma 4.5, {uj} ⊂ H satisfy the assumptions of Lemma 3.7 for
λ = 1. Thus I possesses a non trivial critical point and this proves Theorem 1.1. ♠

We end this section showing the existence of a least energy solution in the setting of
Theorem 1.1.

Theorem 4.6 Under the assumptions of Theorem 1.1, (1.1) has a least energy solution.
Namely there exists a solution w ∈ H such that I(w) = m where

m = inf{I(u) ; u 6= 0, I ′(u) = 0}.

Proof. Let {un} ⊂ H be a sequence of non trivial critical points of I satisfying I(un) →
m. From the proof of Proposition 4.2 we see, since {I(un)} is bounded from above, that
{un} ⊂ H is bounded. Also by Remark 3.6, ||un||H1(IRN ) 6→ 0.

Thus in particular m > −∞ and {un} ⊂ H is a PS sequence of I. Applying Theorem 5.1
we get that

I(un) → I(u0) +
l∑

k=1

I∞(wk), (4.13)

with l ≥ 0 and u0 a critical point of I. Now let m∞ be the least energy level for I∞.
As in the proof of Lemma 3.7 we assume V 6≡ V (∞), thus, we have m < m∞. Since
I∞(wk) ≥ m∞ > 0 for each k, we deduce u0 6= 0 and ` = 0 from (4.13). Thus there exists
a solution w(x) such that I(w) = m. ♠
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5 Decomposition of bounded Palais-Smale sequences

We consider functionals I : H1(IRN) → IR of the form

I(u) =
1

2

∫
IRN

|∇u|2 + V (x)u2 dx−
∫
IRN

F (u) dx.

We assume f ∈ C(IR) and that V ∈ C(IRN , IR) satisfy (v2) and

(f1’) f(0) = 0 and lims→0+
f(s)

s
= 0,

(f2’) there is p < ∞ if N = 1, 2 and p < N+2
N−2

if N ≥ 3 such that lims→∞ f(s)|s|−p = 0,

(v1’) α0 = inf σ(−∆ + V (x)) > 0,

The aim of the section is to derive a description of the bounded Palais-Smale sequences
of I in the spirit of [8]. We work on H ≡ H1(IRN) with the norm

||u||2 =
∫
IRN

(|∇u|2 + V (x)u2)dx

which is equivalent to the standard H1(IRN) norm (see Lemma 3.4). Our result is:

Theorem 5.1 Assume that (f1’)–(f2’), (v1’), (v2) hold and let {un} be a bounded Palais-
Smale sequence for I. Then there exists a subsequence of {un}, still denoted {un}, an
integer l ∈ IN ∪ {0}, sequences {yk

n} ⊂ IRN , wk ∈ H for 1 ≤ k ≤ l such that,

(i) un ⇀ u0 with I ′(u0) = 0,

(ii) |yk
n| → ∞ and |yk

n − yk′
n | → ∞ for k 6= k′,

(iii) wk 6= 0 and I∞′(wk) = 0 for 1 ≤ k ≤ l,

(iv) ||un − u0 −
∑l

k=1 wk(· − yk
n)|| → 0,

(v) I(un) → I(u0) +
∑l

k=1 I∞(wk),

where we agree that in the case l = 0 the above holds without wk, {yk
n}.

Remark 5.2 The decomposition provided by Theorem 5.1 is still true assuming just that
α0 > f ′(0). To see this it suffices to write I in the form

I(u) =
1

2

∫
IRN

|∇u|2 + (V (x)− f ′(0))u2 dx−
∫
IRN

(F (u)− 1

2
f ′(0)u2) dx
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Remark 5.3 It is standard under (f1’)–(f2’) and (v1’) that there exists a ρ0 > 0 such
that for any non trivial critical point u of I, ||u|| ≥ ρ0.

Proof of Theorem 5.1 The proof consists of several steps:

Step 1: Extracting a subsequence if necessary we can assume that un ⇀ u0 weakly in H
with u0 a critical point of I.

Indeed, since {un} is bounded we may assume that, up to a subsequence, un ⇀ u0 weakly
in H. Let us prove that I ′(u0) = 0. Noting that C∞

0 (IRN) is dense in H, it suffices to
check that I ′(u0)ϕ = 0 for all ϕ ∈ C∞

0 (IRN). But we have,

I ′(un)ϕ− I ′(u0)ϕ =
∫
IRN

∇(un − u0)∇ϕ dx +
∫
IRN

V (x)(un − u0)ϕ dx

−
∫
IRN

(f(un)− f(u0)) ϕ dx → 0,

since vn ⇀ v weakly in H and strongly in Lq
loc(IR

N) for q ∈ [2, 2N
N−2

[ if N ≥ 3, q ≥ 2 if
N = 1, 2. Thus recalling that I ′(un) → 0 we indeed have I ′(u0) = 0.

Now we set v1
n = un − u0.

Step 2: Suppose

sup
z∈IRN

∫
B1(z)

|v1
n|2 dx → 0.

Then un → u0 and Theorem 5.1 holds with l = 0.

We compute

I ′(un)v1
n =

∫
IRN

∇un∇v1
n dx +

∫
IRN

V (x)unv
1
n dx−

∫
IRN

f(un)v1
n dx

=
∫
IRN

∇v1
n∇v1

n dx +
∫
IRN

∇u0∇v1
n dx +

∫
IRN

V (x)|v1
n|2 dx

+
∫
IRN

V (x)u0v
1
n dx−

∫
IRN

f(un)v1
n dx.

Thus,

||v1
n||2 =

∫
IRN

|∇v1
n|2 + V (x)|v1

n|2 dx = I ′(un)v1
n −

∫
IRN

∇u0∇v1
n dx

−
∫
IRN

V (x)u0v
1
n dx +

∫
IRN

f(un)v1
n dx,

and, since I ′(u0)v
1
n = 0, it follows that

||v1
n||2 = I ′(un)v1

n +
∫
IRN

f(un)v1
n dx−

∫
IRN

f(u0)v
1
n dx.

Now I ′(un)v1
n → 0 since {v1

n} is bounded. Also by (f1’)–(f2’), for any ε > 0 there exists
Cε > 0 such that

|f(s)| ≤ ε|s|+ Cε|s|p for all s ≥ 0.
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Thus, from Hölder inequality,∣∣∣∣∫
IRN

f(un)v1
n dx

∣∣∣∣ ≤ ε||un||2 ||v1
n||2 + Cε||un||pp+1 ||v1

n||p+1

and since by Lemma 4.3, ||v1
n||p+1 → 0 this shows that∫

IRN
f(un)v1

n dx → 0.

In a similar way, we have
∫
IRN f(u0)v

1
n dx → 0. Thus v1

n → 0 and Step 2 is completed.

Step 3: Suppose ∃{zn} ⊂ IRN such that, for a d > 0,∫
B1(zn)

|v1
n|2 dx → d > 0.

Then, after extracting a subsequence if necessary, we have for a w ∈ H,

(i) |zn| → ∞, (ii) un(·+ zn) ⇀ w 6= 0, (iii) I∞′(w) = 0.

Clearly (i),(ii) are standard and the point is to show (iii). We define ũn(·) = un(· + zn)
and observe that, as in Step 1, for any ϕ ∈ C∞

0 (IRN),

I∞′(ũn)ϕ− I∞′(w)ϕ → 0.

Thus to prove that I∞′(w) = 0 it suffices to show that I∞′(ũn)ϕ → 0, for any fixed
ϕ ∈ C∞

0 (IRN). We have

I ′(un)ϕ(· − zn) =
∫
IRN

∇un(x)∇ϕ(x− zn) dx +
∫
IRN

V (x)un(x)ϕ(x− zn) dx

−
∫
IRN

f(un(x))ϕ(x− zn) dx

or equivalently

I ′(un)ϕ(· − zn) =
∫
IRN

∇un(y + zn)∇ϕ(y) dy +
∫
IRN

V (y + zn)un(y + zn)ϕ(y) dy

−
∫
IRN

f(un(y + zn))ϕ(y) dy.

Thus, since I ′(un)ϕ(· − zn) → 0, from the definition of ũn it follows that∫
IRN

∇ũn(y)∇ϕ(y) dy +
∫
IRN

V (y + zn)ũn(y)ϕ(y) dy −
∫
IRN

f(ũn(y))ϕ(y) dy → 0. (5.1)

Also, since |zn| → ∞, and ϕ ∈ C∞
0 (IRN),∫

IRN
(V (y + zn)− V (∞))ũn(y)ϕ(y) dy → 0. (5.2)
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Thus we obtain from (5.1), (5.2),

I∞′(ũn)ϕ =
∫
IRN

∇ũn(y)∇ϕ(y) dy +
∫
IRN

V (∞)ũn(y)ϕ(y) dy

−
∫
IRN

f(ũn(y))ϕ(y) dy → 0

and Step 3 is completed.

Step 4: Assume there exists m ≥ 1, {yk
n} ⊂ IRN , wk ∈ H for 1 ≤ k ≤ m such that

|yk
n| → ∞, |yk

n − yk′

n | → ∞ if k 6= k′,

un(·+ yk
n) → wk 6= 0, ∀ 1 ≤ k ≤ m,

I∞′(wk) = 0, ∀ 1 ≤ k ≤ m.

Then

1) If supz∈IRN

∫
B1(z) |un − u0 −

∑m
k=1 wk(· − yk

n)|2 dx → 0 then

||un − u0 −
m∑

k=1

wk(· − yk
n)|| → 0

2) If ∃(zn) ⊂ IRN such that, for a d > 0,∫
B1(zn)

|un − u0 −
m∑

k=1

wk(· − yk
n)|2 dx → d > 0,

then, after extracting a subsequence if necessary, the following holds

(i) |zn| → ∞, |zn − yk
n| → ∞, for all 1 ≤ k ≤ m,

(ii) un(·+ zn) ⇀ wm+1 6= 0, (iii) I∞′(wm+1) = 0.

Assume that (1) holds. Then setting ξn = un − u0 −
∑m

k=1 wk(· − yk
n) we have ξn → 0 in

Lp+1(IRN) and we compute

I ′(un)ξn =
∫
IRN

∇ξn∇ξn dx +
∫
IRN

∇u0∇ξn dx +
∫
IRN

∇(
m∑

k=1

wk(· − yk
n))∇ξn dx

+
∫
IRN

V (x)ξ2
n dx +

∫
IRN

V (x)u0ξn dx

+
∫
IRN

V (x)(
m∑

k=1

wk(· − yk
n))ξn dx−

∫
IRN

f(un)ξn dx.

Thus

||ξn||2 = I ′(un)ξn −
∫
IRN

∇u0∇ξn dx−
∫
IRN

V (x)u0ξn dx−
∫
IRN

∇(
m∑

k=1

wk(· − yk
n))∇ξn dx

−
∫
IRN

V (x)(
m∑

k=1

w(· − yk
n))ξn dx +

∫
IRN

f(un)ξn dx.
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Since I ′(u0)ξn = 0 it follows that

||ξn||2 = I ′(un)ξn −
∫
IRN

f(u0)ξn dx−
m∑

k=1

∫
IRN

∇(wk(· − yk
n))∇ξn dx

−
m∑

k=1

∫
IRN

V (∞)wk(· − yk
n)ξn dx +

m∑
k=1

∫
IRN

(V (∞)− V (x))wk(· − yk
n)ξn dx

+
∫
IRN

f(un)ξn dx,

or equivalently, since I∞′(wk) = 0,

||ξn||2 = I ′(un)ξn −
m∑

k=1

∫
IRN

f(wk)ξn(·+ yk
n) dx

+
m∑

k=1

∫
IRN

(V (∞)− V (x))wk(· − yk
n)ξn dx +

∫
IRN

(f(un)− f(u0))ξn dx

and using repeatedly the fact that ||ξn||p+1 → 0 we deduce that ||ξn|| → 0.

Now we assume that (2) hold. Clearly (i),(ii) hold. To show (iii) we set ũn = un(· + zn)
and observe that for all ϕ ∈ C∞

0 (IRN),

I∞′(un)ϕ− I∞′(wm+1)ϕ → 0.

Thus we just have to prove that I∞′(un)ϕ → 0 and this is done as in Step 1.

Step 5: Conclusion

By Step 1 we know that un ⇀ u0 with I ′(u0) = 0 and this is (i) of Theorem 5.1. If the
assumption of Step 2 holds, then un → u0 and Theorem 5.1 hold with l = 0. Otherwise
the assumption of Step 3 holds. We set {y1

n} = {zn} and w1 = w. Now if 1) of Step 4
holds with m = 1 this proves (ii)–(iv) of Theorem 5.1. If not, 2) of Step 4 must hold and
setting {y2

n} = {zn} and w2 = w2 we iterate Step 4. Clearly all we have to do to end the
proof of (i)–(iv) is to show that 1) of Step 4 must occur after a finite number of iterations.
But we observe, on one hand, that by the properties of the weak convergence, ∀m ≥ 1

lim
n→∞

||un||2 − ||u0||2 −
m∑

k=1

||wk||2 = lim
n→∞

||un − u0 −
m∑

k=1

wk(· − yk
n)||2 ≥ 0.

On the other hand, by Remark 5.3, there is a ρ0 > 0 such that ||w|| ≥ ρ0 for any non
trivial critical point of I∞. Thus at one point, say for l ∈ IN, 1) of Step 4 will occur.

To complete the proof of Theorem 5.1 we just have to show that

I(un) → I(u0) +
l∑

k=1

I∞(wk).
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Writing un = u0 + (un − u0) we first prove that

I(un) → I(u0) + I∞(un − u0). (5.3)

Indeed

I(un) =
1

2

∫
IRN

|∇u0|2 dx +
1

2

∫
IRN

|∇(un − u0)|2 dx +
1

2

∫
IRN

∇u0∇(un − u0) dx

+
1

2

∫
IRN

V (x)u2
0 dx +

1

2

∫
IRN

V (x)(un − u0)
2 dx

+
∫
IRN

V (x)u0(un − u0) dx−
∫
IRN

F (un) dx,

or equivalently

I(un) = I(u0) + I∞(un − u0) +
∫
IRN

∇u0∇(un − u0) dx

+
1

2

∫
IRN

(V (x)− V (∞))(un − u0)
2 dx +

∫
IRN

V (x)u0(un − u0) dx

+
∫
IRN

F (un − u0) dx +
∫
IRN

F (u0) dx−
∫
IRN

F (un) dx.

Thus all we have to show to prove (5.3) is that∫
IRN

[F (un − u0) + F (u0)− F (un)] dx → 0.

But under (f1’)–(f2’) this is classical (see [3] for example). Now one proves that

I∞(un − u0) →
l∑

k=1

I∞(wk)

in the same way and using the observation that I∞ is autonomous. ♠
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