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Abstract. We investigate the problem of Lp-maximal regularity on Ba-
nach spaces having a Schauder basis. Our results improve those of a recent
paper. The results contained in this note will be detailled and included in
a forthcoming paper.

1. Introduction

We will only recall the basic facts and definitions on maximal regularity.
For further information, we refer the reader to [1], [3], [6] or [5].

We consider the following Cauchy problem:{
u′(t) +B(u(t)) = f(t) for 0 ≤ t < T
u(0) = 0

where T ∈ (0,+∞), −B is the infinitesimal generator of a bounded analytic
semigroup on a complex Banach space X and u and f are X-valued functions
on [0, T ). Suppose 1 < p < ∞. B is said to satisfy Lp−maximal regularity if
whenever f ∈ Lp([0, T );X) then the solution

u(t) =

∫ t

0

e−(t−s)Bf(s) ds

satisfies u′ ∈ Lp([0, T );X). Clearly, this property does not depend on T ∈
(0,+∞). Besides, it is known that B has Lp-maximal regularity for some
1 < p < ∞ if and only if it has Lp-maximal regularity for every 1 < p < ∞
[2], [3], [7]. We thus say simply that B satisfies maximal regularity (MR).

As in [5], we define:

Definition 1.1. A complex Banach space X has the maximal regularity prop-
erty (MRP) if B satisfies (MR) whenever −B is the generator of a bounded
analytic semigroup.

Let us recall that De Simon [2] proved that any Hilbert space has (MRP),
and that the question whether Lq for 1 < q 6= 2 < ∞ has (MRP) remained
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open until recently. Indeed, in [5] it is shown that a Banach space with an
unconditional basis (or more generally a separable Banach lattice) has (MRP)
if and only if it is isomorphic to a Hilbert space.

In this paper we attempt to work without these unconditionality assump-
tions and study the (MRP) on Banach spaces with a Schauder basis. In partic-
ular, we show that a UMD Banach space with a Schauder basis and satisfying
(MRP) must be isomorphic to an `2 sum of finite dimensional spaces.

This work was done during a visit of the second author to the Department of
Mathematics of the University of Missouri in Columbia in fall 1999; he would
like to thank the Department for its warm hospitality.

2. Notation and background

We will follow the notation of [5]. Let us now introduce more precisely a
few notions.
If F is a subset of the Banach space X, we denote by [F ] the closed linear
span of F .
We denote by (εk)

∞
k=1 the standard sequence of Rademacher functions on [0, 1].

We denote by (hk)k≥0 the Haar system on L2([0, 1] enumerated in its natural
order. More precisely: h0(t) = 1 on [0, 1]; for k ≥ 0 and 0 ≤ m ≤ 2k − 1
h2k+m(t) = 1 if m

2k
< t ≤ m

2k
+ 1

2k+1 and h2k+m(t) = −1 if m
2k

+ 1
2k+1 < t ≤ m+1

2k
.

Let αk = ‖hk‖22.
Let 1 ≤ p < ∞. A Banach space X has type p if there is a constant C > 0
such that for every finite sequence (xk)

K
k=1 in X:

(

∫ 1

0

‖
K∑
k=1

εk(t)xk‖2 dt)1/2 ≤ C(
K∑
k=1

‖xk‖p)1/p.

Notice that every Banach space is of type 1.
A closed subspace E of a Banach space X is said to be c-complemented in X
if there is a continuous linear projection P from X onto E with ‖P‖ ≤ c.
Two Banach spaces X and Y are c-isomorphic if there a continuous linear
isomorphism T from X onto Y such that ‖T‖ ‖T−1‖ ≤ c.
Two basic sequences (xk)k≥1 and (yk)k≥1 are c-equivalent if there is a linear
isomorphism T from [xk]k≥1 onto [yk]k≥1 with ‖T‖ ‖T−1‖ ≤ c and such that
for all k ≥ 1, T (xk) = yk.
We denote by ω<ω the set of all finite sequences of positive integers, including
the empty sequence denoted ∅. For a = (a1, .., ak) ∈ ω<ω, |a| = k is the
length of a (|∅| = 0). For a = (a1, .., ak) (respectively a = ∅), we denote
(a, n) = (a1, .., ak, n) (respectively (a, n) = (n)). A subset β of ω<ω is a branch
of ω<ω if there exists (σn)∞n=1 ⊂ N such that β = {(σ1, .., σn); n ≥ 1}.
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In this paper, for a Banach space X, we call tree in X any family (ya)a∈ω<ω ⊂
X. A tree (ya)a∈ω<ω is weakly null if for any a ∈ ω<ω, (y(a,n))n≥1 is a weakly
null sequence.

A tree (ya)a∈ω<ω is a Haar tree if for any branch β of ω<ω,
∑
a∈β

yaha converges

in L2([0, 1];X).
Let (ya)a∈ω<ω be a tree in the Banach space X. Let T ⊂ ω<ω, (ya)a∈T is a
full subtree of (ya)a∈ω<ω if ∅ ∈ T and for all a ∈ T , there are infinitely many
n ∈ N such that (a, n) ∈ T . notice that if (ya)a∈T is a full subtree of a weakly
null Haar tree (ya)a∈ω<ω , then it can be reindexed as a weakly null Haar tree
(za)a∈ω<ω

Let (En)n≥1 be a sequence of closed subspaces of X. Assume that (En)n≥1 is
a Schauder decomposition of X and let (Pn)n≥1 be the associated sequence of
projections from X onto En. For convenience we will also denote this Schauder
decomposition by (En, Pn)n≥1.

We now state a result of [5] that will be an essential tool for this paper:

Theorem 2.1. Let (En, Pn)n≥1 be a Schauder decomposition of the Banach
space X. Let Zn = P ∗nX

∗ and Z = [∪∞n=1Zn]. Assume X has (MRP). Then
there is a constant C > 0 so that whenever (un)Nn=1 are such that un ∈
[E2n−1, E2n] and (u∗n)Nn=1 are such that u∗n ∈ [Z2n−1, Z2n] then(∫ 2π

0

‖
N∑
n=1

P2nune
i2nt‖2 dt

2π

)1/2

≤ C

(∫ 2π

0

‖
N∑
n=1

une
i2nt‖2 dt

2π

)1/2

and (∫ 2π

0

‖
N∑
n=1

P ∗2nu
∗
ne
i2nt‖2 dt

2π

)1/2

≤ C

(∫ 2π

0

‖
N∑
n=1

u∗ne
i2nt‖2 dt

2π

)1/2

.

3. The main results

We begin with a general result on spaces with a Schauder basis:

Theorem 3.1. Let X be a Banach space of type p > 1 and with a Schauder
basis (xn)∞n=1. If X has (MRP), then there is a constant C > 0 so that for any
(uk)

K
k=1 block basic sequence with respect to the basis (xn):

1

C

K∑
k=1

‖uk‖2 ≤
∫ 1

0

‖
K∑
k=1

εk(t)uk‖2 dt ≤ C

K∑
k=1

‖uk‖2.

Proof. We begin with the left hand side inequality. As usual we can replace
the εk’s by their complex valued counterparts: the functions t 7→ ei2

kt. it is
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then equivalent to show that there exists C > 0 so that for any block basic
sequence (uk)

K
k=1: ∫ 2π

0

‖
K∑
k=1

ei2
ktuk‖2

dt

2π
≥ 1

C

K∑
k=1

‖uk‖2. (∗)

Assume that (*) is false. In particular, we can find a block basic sequence
u1, ..., uk1 with uk =

∑rk+ρk
j=rk

ajxj, 1 = r1 < .. < rk < rk + ρk < rk+1 < .. and∫ 2π

0

‖
k1∑
k=1

ei2
ktuk‖2

dt

2π
≤

k1∑
k=1

‖uk‖2.

Now [xj, j > rk1 + ρk1 ] is of type p > 1, so by [4] there exist rk1 + ρk1 < s1 <
t1 <∞ and a subspace F1 of [xj, s1 ≤ j ≤ t1] which is 2-complemented in X

and 2-isomorphic to `k12 .
Then, still assuming that (*) is false, we can construct by induction a block

basic sequence (uk)
∞
k=1 such that

(i) For any k ≥ 1, uk =
∑rk+ρk

j=rk
ajxj with 1 = r1 < .. < rk < rk+ρk < rk+1 < ..

and
0 = k0 < k1 < k2 < .. < kn < .. so that

∀n :

kn+1∑
k=kn+1

‖uk‖2 ≥ 2n
∫ 2π

0

‖
kn+1∑

k=kn+1

ei2
ktuk‖2

dt

2π
.

And, for all n
(ii) rkn + ρkn < sn < tn < rkn+1 and a subspace Fn of [xj, sn ≤ j ≤ tn] which

is 2-complemented in X and 2-isomorphic to `
kn−kn−1

2 .
Denote now Gk = [xrk , .., xrk+1−1] if k /∈ {k1, .., kn, ..}, Gkn = [xrkn , .., xsn−1]

and Hn = [xsn , .., xrkn+1
−1]. We have blocked the basis (xn) into the Schauder

decomposition:

G1 ⊕ ...⊕Gk1 ⊕H1 ⊕ ..⊕Gkn+1 ⊕ ..⊕Gkn+1 ⊕Hn ⊕ ..
In order to create new Schauder decompositions of X, we will need the

following elementary lemma, that we state without a proof:

Lemma 3.2. Let (En)n≥1 be a Schauder decomposition of a Banach space X.
Assume that for any n ≥ 1 there exists a continuous projection Pn from En
onto a subspace F2n of En and denote by F2n−1 the kernel of this projection. If
the Pn’s are uniformly bounded, then (Fn)n≥1 is also a Schauder decomposition
of X.

By the Hahn-Banach Theorem, there is a norm 1 projection from Gk onto
[uk]. We denote by G̃k the kernel of this projection and will use the decompo-
sition Gk = G̃k ⊕ [uk].
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Now, there is a projection of norm at most 2 from Hn onto Fn. Let H̃n be its
kernel and write Hn = Fn ⊕ H̃n.

Then, by Lemma 3.2,
∞∑
n=1

⊕(G̃kn−1+1 ⊕ [ukn−1+1]⊕ ..⊕ G̃kn ⊕ [ukn ]⊕ Fn ⊕ H̃n)

is a Schauder decomposition of X.
Let us now denote by (ek)

kn
k=kn−1+1 a basis of Fn which is 2-equivalent to the

canonical basis of `
kn−kn−1

2 . Then
∞∑
n=1

⊕(G̃kn−1+1 ⊕ [ukn−1+1]⊕ [ekn−1+1]⊕ ..⊕ G̃kn ⊕ [ukn ]⊕ [ekn ]⊕ H̃n)

is also a Schauder decomposition of X.
And by Lemma 3.2, so is

∞∑
n=1

⊕
(
(

kn∑
k=kn−1+1

G̃k ⊕ [uk + ‖uk‖ek]⊕ [ek])⊕ H̃n

)
.

Finally we block this decomposition into a new decomposition (En)n≥1 in
such a way that for any k ≥ 1, E2k = [ek]. Since X has the (MRP), we can
apply Theorem 2.1 with vk = uk = uk + ‖uk‖ek − ‖uk‖ek, for all k ≥ 1. Then
we obtain that there exists K > 0 such that:

∀n ≥ 1 :

kn+1∑
k=kn+1

‖uk‖2 ≤ K

∫ 2π

0

‖
kn+1∑

k=kn+1

ei2
ktuk‖2

dt

2π
.

This is in contradiction with our construction.

If we assume now that the right hand side inequality claimed in Theorem 3.1 is
false, we construct similarly a block basic sequence (uk) denying this inequality
in which we interlace some finite dimensional hilbertian spaces. But, with
similar notation, we will make use of the Schauder decompositon

∞∑
n=1

⊕
(
(

kn∑
k=kn−1+1

G̃k ⊕ [uk + ‖uk‖ek]⊕ [uk])⊕ H̃n

)
.

Then we block this decomposition into (En)n≥1 in such a way that E2k = [uk]
and apply Theorem 2.1 with vk = ‖uk‖ek = (uk + ‖uk‖ek)− uk.

�

As an application, we obtain the following result

Theorem 3.3. Let X be a UMD Banach space with a Schauder basis and
satisfying (MRP). Then X is isomorphic to an `2-sum of finite dimensional
spaces.
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Proof. Let ‖ ‖ be the norm of X, (xk)k≥0 be a Schauder basis of X and
(x∗k)k≥0 the coordinate functionals associated with the basis (xk)k≥0. Since X
is reflexive, (x∗k)k≥0 is a basis of X∗. We will need the applications defined from
{k ∈ N; k ≥ 1} into {k ∈ N; k ≥ 2} as follows: if k ≤ 0 and 0 ≤ m ≤ 2k − 1,
we set ϕ(2k + m) = 2k+1 + m and ψ(2k + m) = 2k+1 + 2k + m. We have the
following lemma:

Lemma 3.4. There exists a constant C > 0 such that for any block basic
sequence (uk)k≥0 with respect to (xk), for any K ≥ 0:

1

C

K∑
k=0

αk‖uk‖2 ≤
∫ 1

0

‖
K∑
k=0

ukhk(t)‖2 dt ≤ C

K∑
k=0

αk‖uk‖2.

Proof. (
∑K

k=0 ukhk)K≥0 is a martingale on L2([0, 1];X). Since X is UMD, there
is a constant C1 > 0 such that for any block basic sequence (uk)k≥0 and any
K ≥ 0:

1

C1

∫ 1

0

∫ 1

0

‖
K∑
k=0

ε(s)ukhk(t)‖2 ds dt ≤
∫ 1

0

‖
K∑
k=0

ukhk(t)‖2 dt

≤ C1

∫ 1

0

∫ 1

0

‖
K∑
k=0

ε(s)ukhk(t)‖2 ds dt.

Moreover, since X is UMD, it has a type > 1 and the conclusion of the proof
of this lemma follows from Theorem 3.1 �

The next step of our proof will be to show that:

Proposition 3.5. There exist an equivalent norm ρ on X, whose dual norm
will be denoted by σ, and a constant K > 0 so that: ∀x ∈ X ∀ε > 0 ∃k0 ∈ N
such that

∀y ∈ [xk, k ≥ k0] : ρ2(x+ y) ≤ ρ2(x) +Kρ2(y) + ε

and

∀y∗ ∈ [x∗k, k ≥ k0] : σ2(x+ y) ≤ σ2(x) +Kσ2(y) + ε

Proof. Consider the function F defined for x ∈ X by: F (x) is the infimum
of all λ > 0 so that for any weakly null haar tree (ya)a∈ω<ω in X, there is a
branch β of ω<ω such that:∫ 1

0

‖x+
∑
a∈β

yah|a|(t)‖2 dt− C
∑
a∈β

α|a|‖ya‖2 ≤ λ,

where C is the constant given by Lemma 3.4.
F is clearly continuous and 2-homogeneous.
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By a standard diagonal argument, one can show that for any λ > F (x) and
any weakly null haar tree (ya)a∈ω<ω in X, there is a full subtree (za)a∈ω<ω of
(ya)a∈ω<ω such that for any branch β of ω<ω:∫ 1

0

‖x+
∑
a∈β

zah|a|(t)‖2 dt− C
∑
a∈β

α|a|‖za‖2 ≤ λ.

Using this remark, it is then rather easy to check that F is a convex function.
It follows clearly from the definition of F and by considering a null tree that
for all x in X, F (x) ≥ ‖x‖2. On the other hand, let λ < F (x), and assume, as
we may that x has a finite support with respect to the basis (xk). Then using
an approximation argument, one can find a block basic sequence (yk)

∞
k=0, with

y0 = x and ∫ 1

0

‖x+
∑
k≥1

ykhk(t)‖2 dt− C
∑
k≥1

αk‖yk‖2 > λ.

It then follows from Lemma 3.4 that C‖x‖2 ≥ F (x).
Let now x ∈ X, that we will assume again as we may with a finite support

with respect to the basis (xk) and ε > 0, we now claim that there exists k1 ≥ 1
such that for any y ∈ [xk, k ≥ k1]:

1

2
(F (x+ y) + F (x− y)) ≤ F (x) + C‖y‖2 + ε.

Otherwise, we can pick a weakly null sequence (yn)n≥1 so that for all n ≥ 1:

1

2
(F (x+ yn) + F (x− yn)) > F (x) + C‖yn‖2 + ε. (∗)

Then, for any n ≥ 1 there are two weakly null haar trees (y+n,a)a∈ω<ω and
(y−n,a)a∈ω<ω so that for any branch β of ω<ω:∫ 1

0

‖x+ yn +
∑
b∈β

y+n,bh|b|(t)‖
2 dt− C

∑
b∈β

α|b|‖y+n,b‖
2 > F (x+ yn)− ε

and: ∫ 1

0

‖x− yn +
∑
b∈β

y−n,bh|b|(t)‖
2 dt− C

∑
b∈β

α|b|‖y−n,b‖
2 > F (x− yn)− ε.

Then we have, for any branch β of ω<ω:

1

2
(F (x+ yn)− F (x− yn))− ε <

∫ 1/2

0

‖x+ yn +
∑
b∈β

y+n,bh|b|(2t)‖
2 dt

+

∫ 1

1/2

‖x− yn +
∑
b∈β

y−n,bh|b|(2t− 1)‖2 dt− C
∑
b∈β

α|b|(‖y+n,b‖
2 + ‖y−n,b‖

2) =
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0

‖x+ynh1(t)+
∑
b∈β

y+n,bhϕ(|b|)(t)+y
−
n,bhψ(|b|)(t)‖

2 dt−C
2

∑
b∈β

α|b|(‖y+n,b‖
2+‖y−n,b‖

2)

Let us now build a new weakly null haar tree (za)a∈ω<ω as follows: for any
n ∈ N zn = yn. If |a| = ϕ(i) with a = (n, b1, ..., bk), we set za = y+(n,b1,..,bi) and

if |a| = ψ(i) with a = (n, b1, ..., bk), we set za = y−(n,b1,..,bi).

Using the fact that for any i ≥ 0, αϕ(i) = αψ(i) = 1
2
α(i), we get that for any

n ≥ 1 and any branch β of ω<ω:

1

2
(F (x+yn)−F (x−yn))−ε <

∫ 1

0

‖x+
∑
b∈β

zbh|b|)(t)‖2 dt−C
∑

b∈β, |b|≥2

α|b|‖zb‖2.

Then we can extract a branch β of ω<ω which is as close as wish to a block
basis sequence. Then Lemma 3.4 yields a contradiction with (*).

Now, Since F is convex continuous, we have that for any weakly null se-
quence (yn) in X:

F (x) ≤ lim inf F (x+ yn).

So, for any x ∈ X and any ε > 0, there exists k2 ≥ 1 such that for any
y ∈ [xk, k ≥ k2]:

F (x+ y) ≤ F (x) + ‖y‖2 + ε.

Setting ρ(x) = (F (x))1/2 concludes the proof of the first assertion of Propo-
sition 3.5.

Finally, by using the second inequality in Theorem 2.1 we can prove similarly
and simultaneously the second assertion of Proposition 3.5.

�

The end of the proof of Theorem 3.3 relies now on a “skipped blocking”
argument.

�
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E-mail address: glancien@math.univ-fcomte.fr


