LP—MAXIMAL REGULARITY ON BANACH SPACES WITH
A SCHAUDER BASIS

N. J. KALTON AND G. LANCIEN

ABSTRACT. We investigate the problem of LP-maximal regularity on Ba-
nach spaces having a Schauder basis. Our results improve those of a recent
paper. The results contained in this note will be detailled and included in
a forthcoming paper.

1. INTRODUCTION

We will only recall the basic facts and definitions on maximal regularity.
For further information, we refer the reader to [1], [3], [6] or [5].
We consider the following Cauchy problem:

{ w(t)+ B(u(t)) = f(t) for0<t<T
u(0) =0

where T € (0,400), —B is the infinitesimal generator of a bounded analytic
semigroup on a complex Banach space X and u and f are X-valued functions
on [0,7). Suppose 1 < p < co. B is said to satisfy LP—mazimal regularity if
whenever f € LP([0,7"); X) then the solution

u(t) :/0 e =IB f(s)ds

satisfies v’ € LP([0,T); X). Clearly, this property does not depend on T' €
(0,+00). Besides, it is known that B has LP-maximal regularity for some
1 < p < oo if and only if it has LP-maximal regularity for every 1 < p < oo
2], [3], [7]. We thus say simply that B satisfies mazimal regularity (MR).

As in [5], we define:

Definition 1.1. A complex Banach space X has the mazimal reqularity prop-
erty (MRP) if B satisfies (MR) whenever —B is the generator of a bounded
analytic semigroup.

Let us recall that De Simon [2] proved that any Hilbert space has (MRP),
and that the question whether L? for 1 < ¢ # 2 < oo has (MRP) remained
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open until recently. Indeed, in [5] it is shown that a Banach space with an
unconditional basis (or more generally a separable Banach lattice) has (MRP)
if and only if it is isomorphic to a Hilbert space.

In this paper we attempt to work without these unconditionality assump-
tions and study the (MRP) on Banach spaces with a Schauder basis. In partic-
ular, we show that a UMD Banach space with a Schauder basis and satisfying
(MRP) must be isomorphic to an ¢, sum of finite dimensional spaces.

This work was done during a visit of the second author to the Department of
Mathematics of the University of Missouri in Columbia in fall 1999; he would
like to thank the Department for its warm hospitality.

2. NOTATION AND BACKGROUND

We will follow the notation of [5]. Let us now introduce more precisely a
few notions.
If F is a subset of the Banach space X, we denote by [F] the closed linear
span of F.
We denote by (gx)52; the standard sequence of Rademacher functions on [0, 1].
We denote by (hy)r>o the Haar system on L*([0, 1] enumerated in its natural
order. More precisely: ho(t) = 1 on [0,1]; for k > 0 and 0 < m < 2F — 1
hoepm(t) = 1if 2t <t < B+ Lt and hgiy,, (t) = —1if B + A <t < 2
Let ap = Hthg
Let 1 < p < co. A Banach space X has type p if there is a constant C' > 0
such that for every finite sequence (z3)5_; in X:

1 K K
(/ 1Y er(al? dt) > < CO flawl?) 7.
0 k=1 k=1

Notice that every Banach space is of type 1.

A closed subspace E of a Banach space X is said to be c-complemented in X
if there is a continuous linear projection P from X onto E with || P| < c.
Two Banach spaces X and Y are c-isomorphic if there a continuous linear
isomorphism T from X onto Y such that || T |77} < c.

Two basic sequences (zx)r>1 and (yx)g>1 are c-equivalent if there is a linear
isomorphism 7' from [x}];>1 onto [yx|r>1 with ||T|| |T7!|] < ¢ and such that
for all &k > 1, T'(xy) = yi.

We denote by w<“ the set of all finite sequences of positive integers, including
the empty sequence denoted (). For a = (aj,..,a;x) € w<¥, |a| = k is the
length of a (|@] = 0). For a = (ay,..,a;) (respectively a = ), we denote
(a,n) = (a1, ..,ar,n) (respectively (a,n) = (n)). A subset 8 of w<“ is a branch
of w<¥ if there exists (0,,)22; C N such that g = {(01,..,0,); n > 1}.
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In this paper, for a Banach space X, we call tree in X any family (y,)aen<e C
X. A tree (Ya)acw<e is weakly null if for any a € w<, (Y(an))n>1 is a weakly
null sequence.

A tree (Yo)acw<w is a Haar tree if for any branch § of w<*, Z Yo ha converges

a€ep

in L2([0,1]; X).

Let (Ya)acw<e be a tree in the Banach space X. Let T' C w<%, (Ya)eer is a
full subtree of (Yq)acw<e if @ € T and for all a € T, there are infinitely many
n € N such that (a,n) € T. notice that if (y,)aer is a full subtree of a weakly
null Haar tree (y,)qcw<w, then it can be reindexed as a weakly null Haar tree

(za)a6w<“’

Let (E,)n>1 be a sequence of closed subspaces of X. Assume that (E,),>1 is
a Schauder decomposition of X and let (P,),>1 be the associated sequence of
projections from X onto FE,,. For convenience we will also denote this Schauder
decomposition by (E,, P,)n>1-

We now state a result of [5] that will be an essential tool for this paper:

Theorem 2.1. Let (E,, P,),>1 be a Schauder decomposition of the Banach
space X. Let Z, = PiX* and Z = U2, Z,). Assume X has (MRP). Then
there is a constant C > 0 so that whenever (u,)N_, are such that u, €
[Eop_1, Eayn) and (u?)N_, are such that v’ € [Za,_1, Zon| then

n=1

on N 1/2 o N
N ony o At
pnn22t2 <C/ n12t2
(/0 H;:l onUn€” | —27T> < ; HnE:lue | o

Pt 212 Y <C / * 12712 7 )
(/ I3 ™| %) <ol [ 1 wem e,

3. THE MAIN RESULTS

1/2

and

We begin with a general result on spaces with a Schauder basis:

Theorem 3.1. Let X be a Banach space of type p > 1 and with a Schauder
basis (x,)0 . If X has (MRP), then there is a constant C' > 0 so that for any
(ug)E_, block basic sequence with respect to the basis (z,,):

| K 1 K K
Sl < [ IS ettt <€ 3
k=1 0 k=1 k=1

Proof. We begin with the left hand side inequality. As usual we can replace

the e;’s by their complex valued counterparts: the functions t — et it is
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then equivalent to show that there exists C' > 0 so that for any block basic
sequence (ug)s_:
o K K
ok dt 1
1> e unl®o— =5 > llusll®. (%)
bR oy
Assume that (*) is false. In particular, we can find a block basic sequence

Uy, ..oy Up, With uy, = Z;’gf’“ ajz;, l=r <. <rp<rp+pp <rpp <. and

2T k1 k1
: dt
JRDIEEEES SR
0 k=1 (L —

Now [z;, j > ri, + pr,] is of type p > 1, so by [4] there exist 7, + pr, < 51 <
t1 < oo and a subspace Fi of [z, s; < j < t;] which is 2-complemented in X
and 2-isomorphic to 4.

Then, still assuming that (*) is false, we can construct by induction a block
basic sequence (u)72; such that
(i) For any k > 1, uj, = Z;’gfk a;r;withl =7 <. <rp <rp+pp < 1pp1 < ..
and
0=k <kl <ky<. <k, <. sothat

kn+1 o kn+1 dt
Vn ugl|* > 2" ety 12—
> = [ YD el
k=kn+1 k=kn+1
And, for all n
(i) 7, + P, < Sn <t < Tk,4+1 and a subspace F), of [z;, s, < j <t,] which
is 2-complemented in X and 2-isomorphic to Eg”_k"’l.
Denote now Gy, = |2y, .., Ty, 1] if & & {k1, .. kn, .}, Gr, = [T0y, s T —1]
and H, = [z, .., xrknﬂ,ﬂ We have blocked the basis (x,,) into the Schauder
decomposition:

Gi®.0GLOH ®. OGn®..0Cknp1 OH, ® ..

In order to create new Schauder decompositions of X, we will need the
following elementary lemma, that we state without a proof:

Lemma 3.2. Let (E,),>1 be a Schauder decomposition of a Banach space X .
Assume that for any n > 1 there exists a continuous projection P, from E,
onto a subspace Fy, of E, and denote by F5,_1 the kernel of this projection. If
the P,’s are uniformly bounded, then (F,),>1 is also a Schauder decomposition

of X.

By the Hahn-Banach Theorem, there is a norm 1 projection from G}, onto
[ug]. We denote by G, the kernel of this projection and will use the decompo-
sition Gy, = G, @ [uy].
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Now, there is a projection of norm at most 2 from H,, onto F,. Let H, be its
kernel and write H,, = F,, ® H,,.
Then, by Lemma 3.2,

Y O Crit ® g,y 1] @ . © G, © [un,] © F @ Hy)
n=1
is a Schauder decomposition of X.
Let us now denote by (ej)™, . a basis of F,, which is 2-equivalent to the

. . o —Fin
canonical basis of 5" "', Then

Y O(Gryirt © [,y ® e 1] © . G, © [, ] @ [en,] © Ho)
n=1

is also a Schauder decomposition of X.

And by Lemma 3.2, so is

Sl Y Geolut fucled @ o) & i)

n=1 k=kp_1+1

Finally we block this decomposition into a new decomposition (E,),>; in
such a way that for any k& > 1, F9, = [ex]. Since X has the (MRP), we can
apply Theorem 2.1 with vy, = uy = u + ||ug||ex — ||ukllex, for all & > 1. Then
we obtain that there exists K > 0 such that:

kn+41 o kn41 . dt
Vn>1: P<K 2l |1 —.
SRR SN T N SR

k=kn+1 k=kn+1

This is in contradiction with our construction.

If we assume now that the right hand side inequality claimed in Theorem 3.1 is
false, we construct similarly a block basic sequence (uy,) denying this inequality

in which we interlace some finite dimensional hilbertian spaces. But, with
similar notation, we will make use of the Schauder decompositon

n=1 k=knp—1+1

Then we block this decomposition into (F,),>1 in such a way that Eo, = [uy]
and apply Theorem 2.1 with v, = [Jug|lex = (ug + |Jur|ler) — ug.
OJ

As an application, we obtain the following result

Theorem 3.3. Let X be a UMD Banach space with a Schauder basis and
satisfying (MRP). Then X is isomorphic to an ly-sum of finite dimensional
spaces.
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Proof. Let || || be the norm of X, (zg)r>0 be a Schauder basis of X and
(2})k>0 the coordinate functionals associated with the basis (xj)g>0. Since X
is reflexive, (x})r>0 is a basis of X*. We will need the applications defined from
{keN; k> 1} into {k € N; k> 2} as follows: if k <0 and 0 <m <2F — 1,
we set (2% +m) = 28 4 m and (2% + m) = 2871 4 2% 4 m. We have the
following lemma:

Lemma 3.4. There exists a constant C' > 0 such that for any block basic
sequence (ug)k>o0 with respect to (zy), for any K > 0:

| K 1 K K
o alul < [ 13wk dt < €3 aulul
k=0 0 k=0 k=0

Proof. (3, urhi) k0 is a martingale on L2([0, 1]; X). Since X is UMD, there
is a constant C} > 0 such that for any block basic sequence (uy)g>o and any
K >0:

1 1 1 K 1 K
5/ / ||Zs(s)ukhk(t)\|2dsdt§/ 1Y unha (1) dt
tJo Jo T, U
1,1 K
< Cy / / 1Y e(s)uhi (2| ds dt.
0 J0 k=0

Moreover, since X is UMD, it has a type > 1 and the conclusion of the proof
of this lemma, follows from Theorem 3.1 [

The next step of our proof will be to show that:

Proposition 3.5. There exist an equivalent norm p on X, whose dual norm
will be denoted by o, and a constant K > 0 so that: Vo € X Ve > 0 dkg € N
such that

Vy € [zk, k> kol: p*(z+y) < p*(x) + Kp*(y) +¢
and
Yy € [z, k> kol : o*(x+y) <o’(2) + KoP(y) +¢

Proof. Consider the function F' defined for x € X by: F(z) is the infimum
of all A > 0 so that for any weakly null haar tree (y,)sew<e in X, there is a
branch 3 of w<“ such that:

1
/0 o+ 3 vahi 2 dt — O3 o llvall? < A

aep acp

where C' is the constant given by Lemma 3.4.
F' is clearly continuous and 2-homogeneous.
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By a standard diagonal argument, one can show that for any A > F(x) and
any weakly null haar tree (yq)ecw<w in X, there is a full subtree (2,)zew<e of
(Ya)acw<w such that for any branch § of w<:

1
/0 lo+ 3z @I dt— €'Y apallzall? < A

acp acp

Using this remark, it is then rather easy to check that F'is a convex function.
It follows clearly from the definition of F' and by considering a null tree that
for all z in X, F(z) > ||z/||*>. On the other hand, let A < F(x), and assume, as
we may that x has a finite support with respect to the basis (z;). Then using
an approximation argument, one can find a block basic sequence (yx)52,, with

Yo = = and
1
JREED SO G SN PACEDY
0

k>1 k>1

It then follows from Lemma 3.4 that C|z||* > F(x).

Let now x € X, that we will assume again as we may with a finite support
with respect to the basis (z) and € > 0, we now claim that there exists k1 > 1
such that for any y € [z, k > ki

LF@+y) + Fz—y) < Fa) + Clyll +<.

2
Otherwise, we can pick a weakly null sequence (y,),>1 so that for all n > 1:
1
5F@ +4a) + F@ = yn) > F(@) + Cllyal® + . (%)

Then, for any n > 1 there are two weakly null haar trees (yrta)a&@ and
(y;ﬁ>a€w<w so that for any branch S of w<“:

1
/0 lo+ g+ S gt @12t — C S a2 > Fla+ya) —¢
bep bep

and:
1
/ 2 =y + > v (DI dt = C Y~ aplly, I > Flo = yn) — &
0 beB bes

Then we have, for any branch 8 of w<¥:

1 1/2
S FG 4w~ Fa—w) =2 < [ oyt Yyl bu@] d
0 bes

1
T / lo =+ Sy — D2t — Y aylu

/2 bes bes

L yall®) =
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1
_ C _
/ +gnhin ()Y Yt ool (8)F 05 o (D)1 dt—> >yl l®)
0 bep bep
Let us now build a new weakly null haar tree (z,)qc,<v as follows: for any
n €N z, =y, If |a] = ¢(i) with a = (n, by, ..., bg), we set z, = y(Jvr@,bl,..,bi) and

if ‘a’ = w(@) with ¢ = (n, bla ---:bk>7 we set z, = (_ bi)

b )
Using the fact that for any ¢ > 0, a,4) = ayu = ;a(i), we get that for any

n > 1 and any branch g of w<“:

1 1
§(F(x+yn)—F(Jf—yn))—€</ lz+> " 2y P dt—C > apylla]*
0 bep bes, [b>2

Then we can extract a branch S of w<* which is as close as wish to a block

basis sequence. Then Lemma 3.4 yields a contradiction with (*).

Now, Since F' is convex continuous, we have that for any weakly null se-
quence (y,) in X:
F(z) < liminf F(x + y,).
So, for any x € X and any € > 0, there exists ks > 1 such that for any
(VRS [Ik, k > k’Q]Z
Flz+y) < F(x)+|ly||* +e.

Setting p(x) = (F(z))"/? concludes the proof of the first assertion of Propo-
sition 3.5.

Finally, by using the second inequality in Theorem 2.1 we can prove similarly
and simultaneously the second assertion of Proposition 3.5.

O

The end of the proof of Theorem 3.3 relies now on a “skipped blocking”
argument.

O
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