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Recent technological progresses and physical knowledges allow to go toward the use
of complex systems :

o Highly nonlinear.
* Involving numerous physical domains and possible heterogeneity.
o With distributed parameters or organized in network.
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Recent technological progresses and physical knowledges allow to go toward the use
of complex systems :

o Highly nonlinear.
* Involving numerous physical domains and possible heterogeneity.
o With distributed parameters or organized in network.

New issue for system control theory

Modelling step is important — the physical properties can be advantageously used for
analysis, control or simulation purposes
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Example 1 : lonic Polymer Metal Composite

LTI

0 e omom oW WO W W

ol alacwada = | %“

ra-2
Tosie condcsive 24
pelvmergel ~ [P
°
FAS
Qe
O Casien

H
Wates melecsle [[# 2

o Electromechanical system.

o 3 scales : Polymer-electrode interface, diffusion in the polymer, beam bending.
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Example 2 : Adsorption process
Extra granular 5 50 5@
phase /©0000-0 o O
L¥%25 cm OO (95) S OOOO o858 (900\;
‘ o$ 8588 89808088 ooof
Rin 41 cm o o 00 Lo 0 090
o ‘ z
Macropore scale Bidisperse
Rp%1,24mm pellet
Ic
Micropore scale Microporous crystal
R %1 um
e Multiscale heterogeneous system.
e Dynamic behavior driven by irreversible thermodynamic laws
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Example 2 : Adsorption process y
Extra granular 5 O s=o OO
[¢) O_ 00
phase / OOOO 80000 OOOSSOOOOOL
L%25 cm o)
‘ o$ §08 é30808 %ooo
Rin 41 cm [©) Q0 [eXfelele]
—
o ) Z
Macropore scale Bidisperse
Rp%1,24mm pellet
Ic
Micropore scale Microporous crystal
R V1 um
e Multiscale heterogeneous system.
e Considered phenomena :
o Fluid scale : convection, dispersion.
o Pellet scale : diffusion (Stephan-Maxwell).
* Microscopic scale : Knudsen law.
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Example 3 : Nanotweezer for DNA manipulation
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Example 3 : Nanotweezer for DNA manipulation
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Port Hamiltonian framework

Port Hamiltonian systems

Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized
(2001) to distributed parameter systems.

X(t):{ x = (J(x) — R(x)) 2

M s, X = (T (x) - R(x)) X
y = B(x)T 240 e

fa ) LLIGTR

Z) X

o Central role of the energy.
» Additional information coming from the geometric structure.
o Multi-physic framework.
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A simple example ...
Let consider the mass spring damper system :

f

u(t t F(
¢ System —Y()
k

x(t)

From the second Newton’s law :

Mx = —kx — fx + F
which is usually treated using the canonical state space representation :

(=% ) )-(5)r
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A simple example ...
Let consider the mass spring damper system :

f

F(t)
e System _y(t)
k

>

x(t)

From the second Newton’s law :
Mx = —kx — fx + F

An alternative representation consist in choosing the energy variables (extensives
variables) as state variables i.e (x,p = Mx)

(3)-(5 )0

with H(x, p) = kx? + & p?
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A simple example ...
Let consider the mass spring damper system :

f

F(t)
e System _y(t)
k

x(t)

From the second Newton’s law :

Mx = —kx — fx + F

Definingy s.t. :
(5) = (5 %) (o )-(%)r
ro= o (R

dH OHTdx oHT OH oHT
— =" Z="_ (J-R =—+=— Bu<
gt —ox dt —ox YT Mat usyTu

ox  0x
'.é!'ntO'St p~b Seminar
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A second example ....

Vibrating string :

u(t,z)

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)

QPu(z,ty 1 0 (T(Z)Bu(z,t))

or w(z) 0z

0z

The structure of the model is not apparent. How to choose the boundary
conditions ?? ?
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A second example ....
Vibrating string :

u(t,z)

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)
2
0°u(z,t) _ 1.9 (T(z)c’)u(z, t))
or? u(z) 0z 0z

The structure of the model is not apparent. How to choose the boundary
conditions ? ? ?

Usually : x = [ u } — [ u } = 1 9 0.,. 5. 1 [ u ] first order diff
u u ﬁ&( (2)5) 0 u

equation-intime
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A second example ...

Let choose as state variables the energy variables :

o the straine = 3“(;;”)

o the elastic momentum p = p(z)v(z,t)

The total energy is given by : H(e, p) = U(e) + K(p)
o U(e) is the elastic potential energy :

ou(z, t)\? /b1 5
—T(2) [ —=2) = Te
U(e) = / (2) ( 57 ) 2 (z,t)
where T(z) denotes the elastic modulus.

o K(v) is the kinetic energy :

b
K(p) = /*u(z vizpt= | %Ep( f)

where 1(z) denotes the string mass.
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A second example ...

From the conservation laws :

1o} € 19} v
il il =0
ot ( P ) + 0z ( o )
where v(z, t) is the velocity and o(z, t) = T(z)e(z, t) the stress.
The vector of fluxes 3 may be expressed in term of the generating forces :

v 0 1 o
o )= 10 §£’
————r Hf_/
canonical generating
inerdomain coupling forces

Consequently

SH
gﬁ)
op

2(a)-2 (0 0)(
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A second example ...

From the conservation laws :

o € 19} v
J— _— = 0
ot ( P ) + 0z ( o )
where v(z, t) is the velocity and o(z, t) = T(z)e(z, t) the stress.
The vector of fluxes 3 may be expressed in term of the generating forces :

0 1 of
CORNNCRINE )
op
canonical generating

inerdomain coupling forces

1 il 22u(z,t) 1 d2u(z,t) .

ne
TDOU
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Port Hamiltonian structure
Underlying structure :

2(o)= (% ) (7 805

f J = matrix e = driving
differential operator force

Hamiltonian operator 7 is skew-symmetric only for function with compact domain
strictly in Z :

b e{ / ’ €1 / /1b
/(61 ez)J(eé>+(e1 e )T o = —[e16; + e267];
a
Power balance equation :

b
H(e,p) = [, (ﬂ:%Jrﬁ%)dz
H

b
b(sH 8 §H Jé) SH SH
— (R + L) o= [TEWL
If driving forces are zero at the boundary, the total energy is conserved, else there is a
flow of power at the boundary. Define two port boundary variables as follows :

(&)=l )

o
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Port Hamiltonian structure

The linear space D > (fy, o, €1, €2, 5, €5)
)
(5)-(% ¢)(8)
2 ~ 3z 0 [=2)
fo \_( e
: ( e )_( e )'a’b
defines a Dirac structure :D = D~ with respect to the pairing :

b b
/ eifidz + / e fhdz — faTea
a a

Port Hamiltonian system

o0 O6H
—a, —, f; D
(ataz S’ 0788) S
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Port Hamiltonian structure
The linear space D > (fi, o, €1, €2, 5, €5)
o f1 _ 0 *% €4

L) \-Z 0 €
° fa _ (] |
ey - & a,b

defines a Dirac structure :D = D~ with respect to the pairing :

b b
/ eifidz + / e fhdz — fgea
a

a

Port Hamiltonian system

0 6H
—a, —,f D
(ataz S’ Oze('?) €
aH .
— =138
at 070
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

ox(t,z)
ot

= J dxH(x(t,z)), with J skew sym. diff. operator

?{nto-s‘; p~d Seminar 15/46



Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

o = P2 (L1, 2) + (Py=Go)£(2)x(4,2)

Py =P, Po=—P),Gy>0,xcR" zc (ab), L(z) = L(z)" > 0. State space
X = Ly(a, b; R") with (x1, X2) 2 = (x1, LX2) and the norm ||x{[|% = (x1,X1) .
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

ox 1o}

— = Pi— (L(2)x)(t, z Po—Go)L(2)x(t, z

51 = Praz (L@N(1.2) + (P=Go)£(2)x(t,2)
Py =P, Po=—P),Gy>0,xcR" zc (ab), L(z) = L(z)" > 0. State space
X = Ly(a, b; R") with (x1, X2) 2 = (x1, LX2) and the norm ||x{[|% = (x1,X1) .

The norm || - ||% is equivalent to the energy of the system

Applications

o Mechanical systems, magneto-electro-mechanical, chemical, etc...

e Some beam and wave equations, Maxwell equations, transmission lines, vibrating
strings, Saint-Venant equations, ...

o But also by using appropriate extension + closure relations : heat transmission,
diffusion systems, tubular reactors, etc...

f‘emto-st = Seminar
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

% = Py (L@)X)(1,2)) + (Po—=Go) £(2)x(, 2)

|

Py =P, Po=—P),Gy>0,xcR" zc (ab), L(z) = L(z)" > 0. State space
X = Ly(a, b; R") with (x1, X2) 2 = (x1, LX2) and the norm ||x{[|% = (x1,X1) .

Boundary port variables

Let £x € H'(a, b; R"). Then the boundary port variables are the vectors
€a,cx; fo,cx € R7,

200 ~Pllise)-~liesl

Where

U'sU=%, ¥= {‘,’ é] ¥ € Mon(R)

f‘e{nto-st p~-d Seminar 15/46



Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems [Le Gorrec et al., 2005]

Let W be a n x 2n real matrix. If W has full rank and satisfies WEWT > 0, then the
system 2 = P; 2 (L(2)x)(t, 2)) + (Po — Go)L(2)x(t, z)with input

)= w [ o)

is a BCS on X. The operator Ax = P;(9/0z)(Lx) + (Py — Gp)Lx with domain
{fa’“(t)} € kerW}

D(A) = {Ex € H'(a, b;R") oy ()

generates a contraction semigroup on X.

'.éfntO'St p~-d Seminar 16 /46



Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems [Le Gorrec et al., 2005]

Let W be a full rank matrix of size n x 2n with [%] invertible and let P, ; be given by

b _ (W m" T wswT wEwT)
ww =\ (W]~ W s WwEwT o wEwT]

Define the output of the system as the linear mapping C : £~ "H(a, b;R") — R”,

_ fa, Lx(t)]
y=Cx() = [ea cx(t)]
Then for u € C2(0, 00; R¥), £x(0) € H'(a, b;R"), and u(0) = [’8 e ))] the

following balance equation is satisfied :

19 oz = [%;]T Puvi [ ~(Gox(8), LX) < 3 [;ggf P i)

f‘ep'lto-st p-d Seminar 17/ 46



Closed loop control

Impedance passive case

As it has been pointed out in [Villegas, 2007], if the matrices W and W are selected
such that P, 7, = [9 /] = £, then the BCS fulfills

Ly
2t

r Ul i=ge y
O e)

X% < uT(B)y ().

+ X = JLX

B r= (W+ aW) fo
= o

~ f5

v=w( )
Ye Uc eo
a
fé[nto-st 11-® Seminar 18/46



Closed loop control

Impedance passive case

As it has been pointed out in [Villegas, 2007], if the matrices W and W are selected
such that P, 7, = [9 /] = £, then the BCS fulfills

1d

5 2 XN < uT (OO

r U i=g0 y
—>O— u:W( e ).y:w< 5 ) Static controller
- o Asymptotic stability :
a > 0+(compacness condition)
o Exponential stability : sufficient
Ye Uc condition on the choice of the
closed loop BC

p~b Seminar 18/46



Closed loop control

Impedance passive case

As it has been pointed out in [Villegas, 2007], if the matrices W and W are selected
such that P, 7, = [9 /] = £, then the BCS fulfills

1d -
5 X% < uT Oy ().
x] _[gc o0][x
Nl R y V| T B Al v
_>O_ u=l1"(f"> y= u(f'>
+ 1. with D(Ae) = { m c m xe
fo,cx .
Ye Uc HN(arb;Rn), €0,Lx ekerWD s
(Ac,Bc,Ce,Dc) v

where Wp = [(W + D:W  Cc)]
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Closed loop control

Impedance passive case

As it has been pointed out in [Villegas, 2007], if the matrices W and W are selected
such that P, 7, = [9 /] = £, then the BCS fulfills

1d

5 2 XN < uT (OO

r Ul i=ge ) y
O () (2) .
+ } Dynamic controller

o Asymptotic stability : G(s) strictly
positive real +(compactness

Ve Uc condition)

(ACch,Cc;Dc)
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Dynamic boundary feedback
Consider a strictly passive linear finite dimensiorgsygm

V:AOV+BcUc, Ye = CcV-‘r DcUc.

with storage function Ec(t) = 1(v()Qev(t))rm, Qc = Q] >0 € R™ x R™.

Theorem [Villegas, 2007]

Let the open-loop BCS satisfy £ & |x(#)[|% = u(t)y(t). Consider a LTl strictly passive finite
dimensional system with storage function Ec(t) = 3 (v(t), Qov(t))zm. Then the power preserving
feedback interconnection

u=r-—ye, Yy = Uc,

with r € R” the new input of the system is a BCS on the extended state space X & X = X x V with
inner product (X1, X2)x = (X1, X2) £ + (v1, Qcv2) v. Furthermore, the operator A, defined by

fa,cx
- L X . ~
Ak = [gcc XC] m , D(Ae) = { m € [V] ‘Lx € H"(a, b;R"), {ea‘,/m} € ker WD}

Wp = [(W+D:W  C.)]

generates a contraction semigroup on X.

f‘e{nto-st p~-d Seminar 20/46



Asymptotic stability

Finite dimensional port Hamiltonian controller
V= (Je— Re)QeV + Belle, Ye=BJ Qov, Eo(t)= v(t)" Qev(t)

where we assume that Q- = Qf >0, Jo = —JJ , Rc = R} > 0 and B; are real
constant matrices of proper dimensions. Furthermore, the controller is assumed to be
exponentially stable, i.e., Ac := (Jo — Rc)Qc is Hurwitz.

Theorem

Consider the above controller connected to the impedance passive system through
u=r—yeUc =y. Then the operator .A¢ described in the previous theorem has
compact resolvant.

Theorem

Consider the feedback system u = r — y¢, uc = y where the controller is chosen
satisfying the condition above. Then the closed loop system such that r = 0 is globally
asymptotically stable.

f‘ep'lto-st p-d Seminar 21/46



Sketch of proof

e Let first consider that w(0) € D (Ae). By the aforementioned Theorem
[Villegas, 2007], .Ae generates a contraction semigroup.

o Let now consider the energy as Lyapunov function E¢(t) = %(w(t), w(t)) ¢- Since
w(0) € D(Ae) and :
dEc(t)

at

= (@(t), w(t)) g = (Aew(t), w(t)) g = —v Qqv (1)

where Qg > 0. Since (M — Ae) ™' is compact and the semigroup is a contraction
it follows from LaSalle’s invariance principle that all solutions asymptotically tend

to the maximal invariant set O = {7( e X|E: = 0}.

o Let £ be the largest invariant subset of O¢. We can prove that £ = {0}. From
E(t) = 0 and (1) we have v(t) = 0 and then ¥(t) = 0. Let < n be the rank of
ker(B¢). Form the controller structure yc = 0 and n — > 0 components of uc
equal 0. It follows that O, reduces to the solution of a first order PDE of dimension
n with 2n — n boundary variables set to zero. It follows from Holmgren’s Theorem
that X(t) = 0, hence the asymptotic stability. The same hold for w(0) € X by using
denseness argument John78.

‘.éfnto'st - Seminar 22/46



Energy shaping

From the power preserving interconnexion :
E(x,v) = E(x) + Ec(v)
We are looking for Casimirs on the form :
C(x,v) =v+ F(x)

then
v+ F(x) =k

And . ~
E(x,v) = E(x) = E(x) + Ec(—F(x) + k)

It remains to choose E¢ s.t. .
OE
—(x*)=0
ox x7)

f-emto-s‘: p~b Seminar
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Casimirs

Let consider the structural invariants of the closed loop system i.e. Casimirs, of the
form :

Cix(t), v(t)) = TTv(t) + / "W (2)x(t, 2)dz @)
with T € R™, W(z) € R" and W7 (2)x(t,2) € H'(a, b;R").

Casimirs

Consider the previously defined BCS with r = 0, where the controller is a dissipative
port Hamiltonian controller. Then (2) is a Casimir function for the extended system if :

P2 w(2) + (Po + Go)¥(2) = 0, 3
(Jo + Re)T + BoWR mgﬂ -0, @)
BIT + WR wg] —o. (5)
f‘e{nto-st p-d Seminar 24/46
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Example : DNA manipulation

Example : DNA manipulation
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®ed
83
. . 3 &as
Example : DNA manipulation %
DNA bundle
o PDE+ODE, BCS
o Casimirs
Szg;tfel:;on * Asymptotically stable,
H—/
fa
ka
-St p=-d Seminar 27/46
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Example : DNA manipulation

Timoshenko beam

o055 @0 = o K@) (Sr@n-sz0)].  ze@b) t>0

QJ‘Q) QJ‘

—(Z) )= (El(z)—(z t)) + K(2) < (z, 1) — 9(z, f)) )

| Port-Hamiltonian model ‘

Xy 0 1 0 0 Kx 0 0 0 —17 [Kxa
d x| |1 0o 0 of 8 |4x 00 0 0f]|gx
ilal =10 0 o 137 |Ex|Tlo 0 0 o |Em
Xa 0 0 1 0 Lxy 10 0 0] |ftx
N , o P
Py Po

1 b 2 15 o, 12 1 2
E=—- Kx: — X, Elx. —X; ) dz = —||x
2/5< 1+p2+ 3+Ip4> 2|| Iz

f‘e{nto-st p-d Seminar 28/46



Example : DNA manipulation

Boundary port variables :

(0~ x)(0) — (0~ ' xp)(@)
(k54)(0) — (Koxy)(@) ; L
(15 T xg)(b) — (17 1 xg)() = 9,Lx = 9,Lx
[fa,/;x] (Eng)(b) — (B u=Ww [ea,ﬁx]‘y w [ea, x] where
ea,cx] | (07 x)(B) + (07 x0)(@)
(:(X1)(b)+(KX11)(a) i 0 0 0 © 1 0 0
(15 T xg)(0) + (15 T x4)(a) w=|0 0 1t 0o o 0o 0 i
(Elxg)(b) + (Elxg)(a) :] g ? g g *0‘ g 31
Interconnexion with DNA bundle at point S O
b and full actuation at point a W=1o -1+ 0o o 1 0o o of-
0 0 0 —1 0 0 1 0
u=[v(b) w(b) -v(a) -—w(a)],
y=[r(b) T(b) F(a) T(a)],
{emto's‘: u-® Seminar 29/46



Finite dimensional system

o At point b: Vp = (Xb7 mb)'(b, Op, mbwb)T, up = [F(b) T(b)} T and
Yo = [v(b) w(b)]:

dE, + dEp
vp = (Jp — Rp) — Up, =gy, —
b = (Jb — Rp) v, + gbUp Yo =0p vy
. . . K
with Ep(xp, My, O, Jpwp) = X + 5 (Mke)? + 202 + 217[7(JbWb)2 and
0100 8?8 8
Jb_[o188? ,Ro=10000 |9 =1[850%]"
00-10 0007,

e Atpointa:

femto-st

= Seminar
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Casimirs

b
Cx,v)=k=TTv +/ W(z, 1) x(z, t)dz
a

satisfy :
« from condition (3) :

vy = Gy

Wy = Cyz+ Co
V3 =—-Ciz+ C3
Vy=Cy

where C;j,i € [1,--- ,4] are constants.
o from condition (4) :

Fa=T4=Tg=0

M =—V(b)
M3 = W3(b)
s = —Vy(a)

femto-st
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Casimirs

o from condition (5) :

My = —Wy(b)
M4 = —Wy(b)
Me = —W(a)

V3(a) =0

Then the Casimir functions are defined as :

b
K= —C1xb—C1(a+b)®b+C1xa+/ Cy (X1 —(z+a)x3)dz
a

(14)

femto-st
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Control design

The goal of the control law is to shape the total energy Eq4(vp, X, Va) such that it
presents a minimum in the desired position of the tip of the arm, i.e. :

X5 = x50 andky =0,6," = 0,03 = 0,45 = 0.

The degrees of freedom we use for control design are the programmable "stiffness"
and "damping" k; and fc.
From the equilibrium conditions and Casimirs we compute

ke(xp)

and then :
Fo = —ke(Xp)Xa — foXa

émto-st - Seminar 33/46
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Exponential stability : assumptions

i=Jrx

uzw(fg),yzﬁ(

2)

(Je-Re, B,
BTQc, Sc)

Uc

p~b Seminar
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Exponential stability : assumptions

Finite dimensional port Hamiltonian controller
V= (Jo — Re)QoV + Bois, Yo =BJ Qov + Sclie, Eo(t) = Sv(t)T Qov(1)

where we assume that Q- = Q] >0, Jo = —J] , Re=R; >0,S:=S] >0and B,
are real constant matrices of proper dimensions. Furthermore, the controller is
assumed to be exponentially stable, i.e., Ac := (Jc — Rc)Qc is Hurwitz.

The system is a strictly input passive port-Hamiltonian system, i.e. there exists a o > 0
such that

Ec(t) < ue(t) T ye(t) — olluc(t)|%.

Input and output of the BCS
We also assume that the BCS satisfies

lu(®)I? + Iy > ell£x(t, b)]2 (15)

for some e > 0.

p~b Seminar 35/46
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Exponential stability [Ramirez and Le Gorrec, 2013]

The proof follows the same steps as in [Villegas et al., 2009] including the energy
contribution of the finite dimensional controller :

p~b Seminar

fmto-st

36/46



Exponential stability [Ramirez and Le Gorrec, 2013]

The proof follows the same steps as in [Villegas et al., 2009] including the energy
contribution of the finite dimensional controller :

Lemma
Consider the controlled BCS with r(t) = 0, for all t > 0. Due to the contraction property
the energy of the system E(t) = %||X(f)||25 4F %V(f)TOcV(t) satisfies for  large enough

E(r) < o) [ e byPar+ 22 [T et
E T T ’ A M ’ C
E(r) < olr) [ Ien(t.a)itat+ 22 [ o,

where c is a positive constant that only depends on = and ¢; a positive constant.
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Exponential stability [Ramirez and Le Gorrec, 2013]

The proof follows the same steps as in [Villegas et al., 2009] including the energy
contribution of the finite dimensional controller :

Lemma

Consider the controlled BCS with r(t) = 0, for all t > 0. Due to the contraction property
the energy of the system E(t) = %||X(t)||25 4F %V(f)TOcV(t) satisfies for  large enough

E(r) < o) [ e byPar+ 22 [T et
E(r) < olr) [ Ien(t.a)itat+ 22 [ o,

where c is a positive constant that only depends on = and ¢; a positive constant.

Theorem

Consider the BCS previously defined with r(t) = 0, for all t > 0. It is exponentially
stable as soon as the finite dimensional boundary controller is exponentially stable and
strictly input passive and ||u(t)||? + [ly()|? > €| £x(t, b)||?, € > 0 < we used the
Lemma, the total energy as Lyapunov function, and the properties of the controller
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Proof (1)

In order to prove the exponential stability we need the following lemmas

Lemma

There exist strictly positive constants k., g and r4 such that for all = > 0 the energy of the PH controller satisfies :
T
Eol(r) < w1 (Ee(0) + wg [ 7 lluc(t)| et (18)

where 11 () = nge” 27,

Lemma

There exists positive constants €1 , £o and T such for all T > T the energy of the PH controller satisfies

. - . )
IE} < R,
/0 o(at < 51/0 vT(hac chV(f)di+£2/0 lluo(t)|at

Lemma

Forevery 614 > 0 there exists a 65 > 0 such that for all = > 0 the energy of the PH controller satisfies the relation

/OT S1E6(t) + lye(n)1Pat < 6, /OT Ec(t) + l|uc(t)| . (17)
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Proof (2)

Let o > 0 be such that S; > o/. The time derivative of the total energy satisfies

E=—vTQ:R:Qcv — u] Scuc
< —vT QcR:Qev — ouy ug, since S > o/
= v QcRcQeV — oeq U] Us — oepli] U
= —vT QR Qev — et el ? — ez (Il + [lull?) +
oep|ull?
with €1 + e = 1 and where we have used that uc = —y.
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@
Proof (3)
Using our main Assumption we have
E < —VvTQRQev  — oelu]? — ceelfx(t, b + oellyel?.

Integrating this equation on t € [0, 7] we have

E(r) - E(0) < — /OT v (£)QeReQev(t)at

+ / — oer||us(t)? — oezel| £X(t, b) || + oeallys(1)|*dt.
0

Next choose 7 sufficiently large such that Lemmas 2 and 3 hold. Using the latter lemma we have

E(r) — E(0) < — /T VT QuRoQuv + ores || Ue| 2t

0
L e (20(7) /OT E(t)at — E(T)) + oer /OT llyel®at.

c(r) C1

Grouping terms we have that

E(r) <1 +

geze

c(r)
7/7 V(1) T QeReQuv(t)dt — oeq /T llue(0)|[2clt
0 0

)-EO <

T 2€
voeo ([T ZEt) + ye(t)Pt )
\Jo ©1 /
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Proof (4)

Using Lemma 3 with 1 = %15 we have

oexe

c(7)

E(r) (1 + ) ~E@0) < - /0 " V()T QeReQuv(t)cl

+aQ@/"Eanw+a@ﬁ2—ﬂ)/ lue(D)l2ct.  (18)
0 0

Now, using Lemma 2 we obtain

gEE

c(r)

(0eaday — 1)/ v(t) T QeR:Qev(t)dt+
0

Hﬂo+ )famg

o(e2bs(1+ &) — €1) /0 " Jlue(t) et

Since e, may be chosen to be arbitrarily small, i.e, e; < 1 and since e1 = 1 — e, we finally have

that E(r) < cE(0) with ¢, =

) < 1 which proves the theorem.
o(7)

1t
(H“ge
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@
Example : DNA manipulation - extension
o Discretization scheme in order to preserve the structure of the model.
* Measurement and control at point a (static feedback on the velocity).
2. 1.4
{\ 1.2]
2 f \/ {\
1
15 1 /\/
f \/\/ 0.8|
0.5 4 (
j \ W 0.4 /
0 ] 02| /
0% 20 40 60 80 100 % 20 40 60 80

100

.E'e!-nto-sEGURE: Open loop simulation FIGURE: Closed IOB%%'Q%‘.JJE,UO“
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. . . 50 N
Example : DNA manipulation - extension e

DNA bundle
A

Fu, Ty
Shuttle +
Suspension
— L FiGuRE: Control diagram
o PDE+ODE
k(xa)
Non linear spring ° Bcs
« Exponentially stable,
FIGURE: Simplified model
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Conclusion and future work

* A large class of boundary control system are exponentially stable if they are
interconnected in a power preserving manner with an input strictly passive and
exponentially stable finite dimensional linear controller.

o We have extended the exponential stability proof of [Villegas et al., 2009] for static
control of BCS for the case of dynamic boundary control.

o The approach has been illustrated on the physical example of a partially actuated
micro-gripper for DNA manipulation.
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Conclusion and future work

* A large class of boundary control system are exponentially stable if they are
interconnected in a power preserving manner with an input strictly passive and
exponentially stable finite dimensional linear controller.

o We have extended the exponential stability proof of [Villegas et al., 2009] for static
control of BCS for the case of dynamic boundary control.

o The approach has been illustrated on the physical example of a partially actuated
micro-gripper for DNA manipulation.

Ongoing and future work

o Extend the results to the use of non-linear boundary controllers.

o Include the interaction with the liquid medium and liquid meniscus.
e Perform Energy Shaping methods.

o Generalization to 2D and 3D cases.
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Thank you for your attention !
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