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Context and objectives

Reservoir computing is a recently introduced brain-inspired
machine learning paradigm. We focus on time-delay reservoir
(TDR) computers that have been physically implemented us-
ing optical and electronic systems and show excellent com-
putational performances at unprecedented information pro-
cessing speeds. TDRs are known for their easy-to-implement
training but also for their problematic sensitivity to architec-
ture parameters. We address the reservoir design problem,
which remains the biggest challenge at the time of applying
the reservoir computing techniques to sophisticated machine
learning tasks. More specifically, the information available
regarding the optimal operating regimes of a reservoir is used
to construct a functional link between its parameters and its
performance. This function is then used to explore various
properties of the device and to choose the optimal architec-
ture, thus replacing tedious and time consuming parameter
scannings by well-structured optimization problems.

Architecture of the time-delay reservoir
(TDR) computer

c c c

X1(1) X2(1) XN(1) X1(2) X2(2) XN(2) X1(T ) X2(T ) XN (T )

z1 z2 zT

I(1) I(2) I(T )

I1(1) I2(1) IN(1) I1(2) I2(2) IN(2) I1(T ) I2(T ) IN(T )

WoutWout Wout C

B

A

Figure 1. Neural diagram representing the architecture of the time-delay reservoir
(TDR) and the three modules of the reservoir computer (RC): A is the input layer, B
is the time-delay reservoir, and C is the readout layer.

Optimal performance: stability and
unimodality

Stability plays an essential role in the performance of the
time-delay reservoirs.
Stability of the TDR: the continuous time model
of the TDR is

ẋ(t) = −x(t) + f (x(t− τ ), I(t),θ), (1)
where f is the nonlinear kernel function, θ ∈ RK is the
reservoir parameters vector, τ > 0 is the delay, x(t) ∈ R,
and I(t) ∈ R is obtained via temporal multiplexing over τ of
the input signal z(t). We show using a Lyapunov-Krasovskiy
functional [2] that given an equilibrium x0 ∈ R of the con-
tinuous time model (1) in autonomous regime (I(t) = 0),
its asymptotic stability is guaranteed whenever there exist
ε > 0 and |kε| < 1 such that

(f (x + x0, 0,θ)− x0) /x ≤ kε for all x ∈ (−ε, ε) .
This relation implies that if f is differentiable at x0 then this
point is stable whenever

|∂xf (x0, 0,θ)| < 1
The discrete time approximation of the TDR is
xi(t) := e−ξxi−1(t) + (1− e−ξ)f (xi(t− 1), Ii(t),θ), (2)

with x0(t) := xN(t − 1), ξ := log(1 + d), i ∈ {1, . . . , N},
xi(t) is the ith neuron value of the tth layer of the
reservoir, and d is referred to as the separation be-
tween neurons. The recursions (2) uniquely determine
a reservoir map F : RN × RN × RK → RN such that

x(t) = F (x(t− 1), I(t),θ). (3)
The point x0 ∈ R is an equilibrium of (1) if and only if
x0 := (x0, . . . , x0)> ∈ RN is a fixed point of (3). The
asymptotic stability of this fixed point is ensured whenever
the connectivity matrix DxF (x0,0N ,θ) has a spectral
radius smaller than one, which is the case whenever

|∂xf (x0, 0,θ)| < 1. (4)
Conclusions: Optimal TDR performance is attained
when the TDR operates in a unimodal regime around
an asymptotically stable state. We find common stability
conditions for the continuous and discrete time systems.

Unimodality
Bimodality
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Figure 2. Behavior of the reservoir performance in a quadratic memory task as a
function of the mean and the variance of the input mask. The top panels show how
the performance degrades very quickly as soon as the mean and the variance of the
input mask separate from zero. The bottom panels depict the reservoir performance
as a function of the various output means and variances. We have indicated with red
markers the cases in which the reservoir visits the stability basin of a contiguous stable
equilibrium hence showing how unimodality is associated to optimal performance.

The approximating model and the
nonlinear memory capacity

(1)We construct an approximation of the TDR via its partial
linearization at the equilibrium point with respect to the
delayed self feedback term and respecting the nonlinearity
of the input injection.

Consider a stable equilibrium x0 ∈ R of the autonomous
system associated to (1) or, equivalently, a stable fixed point
x0 := (x0, . . . , x0)> ∈ RN of (3). We construct the approxi-
mation of (3) by using its linearization at x0 with respect to
the delayed self-feedback and its Rth-order Taylor expansion
with respect to its dependence on the signal injection:
x(t) = F (x0,0N ,θ) + A(x0,θ)(x(t− 1)− x0) + ε(t), (5)

where A(x0,θ) := DxF (x0,0N ,θ) and ε(t) is given by:
ε(t) = (1− e−ξ) (qR (z(t), c1) , . . . , qR (z(t), c1, . . . , cN))> ,
with

qR (z(t), c1, . . . , cr) :=
R∑
i=1

z(t)i

i!
(∂(i)
I f )(x0, 0,θ)

r∑
j=1

e−(r−j)ξcij,

and (∂(i)
I f )(x0, 0,θ) the ith order partial derivative of the

nonlinear kernel f with respect to I(t) evaluated at (x0, 0,θ).
(2) For statistically independent input signals the

approximation (5) allows us to visualize the TDR as a
N -dimensional vector autoregressive stochastic process of
order one (VAR(1), [3]).

Let the input signal be {z(t)}t∈Z ∼ IID(0, σ2
z), then

{I(t)}t∈Z ∼ IID(0N ,ΣI), with ΣI := σ2
zc>c, and

{ε(t)}t∈Z ∼ IID(µε,Σε) with
µε = (1− e−ξ) (qR (µz, c1) , . . . , qR (µz, c1, . . . , cN))> ,

where µiz := E
[
z(t)i

]
, for any i ∈ {1, . . . , R}, and with

Σε := E
[
(ε(t)− µε)(ε(t)− µε)>

]
with entries given by:

(Σε)ij =(1− e−ξ)2((qR(·, c1, . . . , ci) · qR(·, c1, . . . , cj))(µz)
− qR(µz, c1, . . . , ci)qR(µz, c1, . . . , cj)).

The process (5) is a VAR(1) model driven by the indepen-
dent noise {ε(t)}t∈Z with time-independent mean µx and an
autocovariance function Γ(k) recursively determined by the
Yule-Walker equations [3].

(3)The approximation (5) allows us to write the nonlinear
capacities of the TDR as the function of the intrinsic
architecture parameters θ and the input mask c.

A h-lag memory task is determined by a (in general non-
linear) function H : Rh+1 → R that is used to generate a
one-dimensional signal y(t) := H(z(t), z(t−1), . . . , z(t−h))
out of the reservoir input. Given a TDR computer, the op-
timal linear readout Wout adapted to the memory task H is
obtained as the solution of a ridge regression problem with
regularization parameter λ ∈ R in which the covariates are
the neuron values corresponding to the reservoir output and
the explained variables are the values {y(t)} of the memory
task function. The H-memory capacity CH(θ, c, λ) of the
TDR computer characterized by a nonlinear kernel f with
parameters θ, an input mask c, and a ridge parameter λ,
using a VAR(1) approximation, is given by
CH(θ, c,λ) = (Cov(y(t),x(t))>(Γ(0) + λIN)−1(Γ(0) + 2λIN)

× (Γ(0) + λIN)−1Cov(y(t),x(t)))/var (y(t)). (6)
Conclusions: The VAR(1) model (5) and its associated
moments provide an explicit approximation of the mem-
ory capacities of the RC.

Optimal nonlinear capacity

The h-lag quadratic memory task. Take a quadratic
task function of the form H(zh(t)) := zh(t)>Qzh(t), for
some symmetric h + 1-dimensional matrix Q. In this case
var(y(t)) = (µ4

z − σ4
z)

∑h+1
i=1 Q

2
ii + 4σ4

z

∑h+1
i=1

∑h+1
j>i Q

2
ij, and

Cov(y(t), xi(t)) = (1− e−ξ)
h+1∑
j=1

N∑
r=1

Qjj(Aj−1)ir

× (sR(µz, c1, . . . , cr)− σ2
zqR(µz, c1, . . . , cr)),

where the polynomial sR on the variable x is defined as
sR(x, c1, . . . , cr) := x2 · qR(x, c1, . . . , cr).
Conclusions: The quality of the approximation (5) at
the time of evaluating the memory capacities of the orig-
inal system is excellent and the resulting function can be
hence used for RC optimization purposes regarding the
intrinsic TDR architecture parameters θ and the input
mask c.

Figure 3. Error exhibited by a TDR computer with a Mackey-Glass kernel in a 6-
lag quadratic memory task (the upper figure) and a 3-lag quadratic memory task (the
lower figure) as a function of the separation between neurons d and the parameter η (the
upper figure), parameter γ (the lower figure), respectively. The points in the surfaces
of the middle and right panels are the result of Monte Carlo evaluations of the NMSE
exhibited by the discrete and continuous time TDRs, respectively. The left panel was
constructed using the formula (6) that is obtained as a result of modeling the reservoir
with an approximating VAR(1) model.

Perspectives

1 Modeling of the reservoir computing working principle
and the design of optimal architectures
• Extension to non-independent and multivariate signals
• Theoretical treatment of classification problems
• Modeling parallel reservoir computers [1] and their properties
• Use of the reservoir model to establish the reservoir computing
defining features

2 Technological implementation of optimal reservoir
architectures

3 Applications to biomedical signal classification and
forecasting
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