
Estimation and validation of weak FARIMA models

Youssef ESSTAFA

University of Burgundy - Franche-Comté
Joint work: Yacouba BOUBACAR MAINASSARA

Bruno SAUSSEREAU

25 June 2018



Introduction Recalls Results References Conclusion

Introduction

Some definitions

Long memory processes.

Weak FARIMA models.

Asymptotic results of the least-squares estimator (LSE)

Strong consistency and asymptotic normality.

Asymptotic variance matrix estimation and some simulations.

Diagnostic checking in weak FARIMA models

Asymptotic joint distribution of the LSE and the noise empirical
autocovariances.

Asymptotic distribution of the residual autocorrelations.

Limiting distribution of the test statistics.

Numerical illustrations.

2 Youssef ESSTAFA 5th Probability/Statistics day Besançon-Dijon



Introduction Recalls Results References Conclusion

Defining long memory

Let X = (Xt)t∈Z be a second order stationary stochastic process,
and let γX(.) be its autocovariance function.

Definition A
X is a long memory process if :

+∞∑
h=−∞

|γX(h)| = +∞.

Definition B
X is a long memory process if :

γX(h) ∼ h2d−1`(h), as h→ +∞,

where d is the so-called long-memory parameter and `(.) is a slowly
varying function.
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FARIMA processes

Let X = (Xt)t∈Z be a second order stationary process.

Definition 1
X is called a weak FARIMA(p, d0, q) process if there exists 0 < d0 < 1/2,
a1, ..., ap, b1, ..., bq ∈ R such that the polynomials a(z) = 1 +

∑p
i=1 aiz

i

and b(z) = 1 +
∑q
i=1 biz

i have all their roots outside of the unit disk
with no common factors, and (εt)t∈Z a sequence of uncorrelated variables
defined on some probability space (Ω,F ,P) with zero mean and common
variance σ2

ε > 0 such that, for all t ∈ Z,

a(L)(1− L)d0Xt = b(L)εt, (1)

where L is the back-shift operator.

The fractional difference operator (1− L)d0 is given by :

(1−L)d0 =

+∞∑
j=0

αj(d0)Lj , where αj(d0) =
d0(d0 − 1) · · · (d0 − j + 1)

j!
(−1)j .
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Least-squares estimator (LSE)

Framework : Let Θ̃ be the compact space

Θ̃ :={θ̃ = (θ1, θ2, . . . , θp+q)
′
; aθ̃(z) = 1 + θ1z + · · ·+ θpz

p

and bθ̃(z) = 1 + θp+1z + · · ·+ θp+qz
q have all their

roots outside the unit disk and have no common zero}.

Denote by Θ the cartesian product Θ̃× [d1, d2], where
[d1, d2] ⊂ ]0, 1/2[ and containing d0.

The parameter θ0 := (a1, a2, . . . , ap, b1, b2, . . . , bq, d0)
′
belongs to

the parameter space Θ.

For all θ =
(
θ̃
′
, d
)′
∈ Θ, let (εt(θ))t∈Z be the second order

stationary process defined as the solution of

εt(θ) =
∑
j≥0

αj(d)Xt−j +

p∑
i=1

θi
∑
j≥0

αj(d)Xt−i−j −
q∑
j=1

θp+jεt−j(θ).
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Least-squares estimator (LSE)

Given a realization of length n, X1, X2, ..., Xn, εt(θ) can be
approximated, for 0 < t ≤ n, by ε̃t(θ) defined recursively by

ε̃t(θ) =

t−1∑
j=0

αj(d)Xt−j+

p∑
i=1

θi

t−i−1∑
j=0

αj(d)Xt−i−j−
q∑
j=1

θp+j ε̃t−j(θ),

with ε̃t(θ) = Xt = 0 if t ≤ 0.

The random variable θ̂n is called least-squares estimator if it
satisfies, almost surely,

θ̂n = argmin
θ∈Θ

Qn(θ), where Qn(θ) =
1

n

n∑
t=1

ε̃2t (θ).
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Strong consistency

Our first two main results concern the strong consistency and the
asymptotic normality of the least-squares estimator (LSE) of the
weak FARIMA model parameter

θ0 = (a1, . . . , ap, b1, . . . , bq, d0)
′
.

The strong consistency of the LSE is proven under the following
assumption :
A1. The process (εt)t∈Z is strictly stationary and ergodic.

Theorem I (strong consistency)

Assume that (εt)t∈Z satisfies (1) and belonging to L2. Let (θ̂n)n∈N∗

be a sequence of least-squares estimators. We have, under
Assumption A1,

θ̂n
a.s.−→

n→+∞
θ0.
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Asymptotic normality

Suppose that (εt)t∈Z satisfies the following two additional
conditions :
A2. We have E|εt|4+2ν <∞ and

∑∞
h=0 {αε(h)}

ν
2+ν <∞ for some

ν > 0.
A3. Assume

∑
i,j,k∈Z |cum(ε0, εi, εj , εk)| <∞ .

Theorem II (asymptotic normality)

Under the hypotheses of Theorem I and Assumptions A2 and A3, the
sequence of random variables(√

n
(
θ̂n − θ0

))
n∈N∗

has a limiting centred normal distribution with covariance matrix
Ω := J−1IJ−1, where

I = lim
n→∞

Var

{√
n
∂

∂θ
Qn(θ0)

}
and J = lim

n→∞

{
∂2

∂θ∂θ′
Qn(θ0)

}
a.s.
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Asymptotic variance matrix estimation

It would be necessary to estimate the variance matrix
Ω = J−1IJ−1 to obtain confidence intervals or to test significance
of FARIMA model coefficients.

The matrix J can easily be estimated empirically by :

Ĵ =
2

n

n∑
t=1

{
∂ε̃t(θ)

∂θ

∂ε̃t(θ)

∂θ′

}
θ=θ̂n

.

The matrix I can be rewritten in the form :

I = lim
n→∞

V ar

{
1√
n

n∑
t=1

Υt

}
, where Υt = 2

{
εt(θ)

∂εt(θ)

∂θ

}
θ=θ0

.

We use the parametric estimation of the spectral density introduced
by Berk [1974]. Let Φ̂r(z) = Ip+q+1 +

∑r
i=1 Φ̂r,iz

i, where
Φ̂r,1, ..., Φ̂r,r be the least-squares regression coefficients of Υ̂t on
Υ̂t−1, ..., Υ̂t−r and Σ̂ûr be the empirical variance of these residues.
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Asymptotic result

The third main result is given by :

Theorem III (estimating the asymptotic variance matrix I)

In addition to the assumptions of Theorem II, assume that the
process (Υt)t admits an AR(∞) representation of the form
Φ(L)Υt := Υt −

∑∞
k=1 ΦkΥt−k = ut in which the roots of

det(Φ(z)) = 0 are outside the unit disk, ‖Φk‖ = o(k−2), and
Σu = Var(ut) is non-singular. Moreover we assume that
E
[
|εt|8

]
<∞ and that∑+∞

k1=−∞ · · ·
∑+∞

k7=−∞ |cum(ε0, εk1 , ..., εk7)| <∞. Then, the
spectral estimator of I

ÎSP
n := Φ̂−1

r (1)Σ̂ur Φ̂
′−1
r (1)→ I

in probability when r = r(n)→∞ and r3/n→ 0 as n→∞.
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Some simulations

We first study numerically the behavior of the LSE for strong and
weak FARIMA models of the form

(1− L)d (Xt + aXt−1) = εt + bεt−1, (2)

where (a, b, d) = (0.7, 0.2, 0.4).
The process (εt)t is an iid centered Gaussian process with
common variance 1 in the strong case.
In the weak case,

εt =
ηt

|ηt−1|+ 1
, for all t ∈ Z, (3)

with (ηt)t is an iid centered Gaussian process with variance 1.
We simulated N = 1, 000 independent trajectories of size
n = 1, 000 of Model (2), first with the strong Gaussian noise,
second with the weak noise (3).
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â 0

Weak case: Normal Q−Q Plot of 

−3 −1 1 3

−0
.2

0.
0

0.
1

0.
2

Normal quantiles

b 0
−

b^ 0

Weak case: Normal Q−Q Plot of 

−3 −1 1 3

−0
.1

0
0.

00
0.

05
0.

10
Normal quantiles

d 0
−

d^ 0

Weak case: Normal Q−Q Plot of 

13 Youssef ESSTAFA 5th Probability/Statistics day Besançon-Dijon



Introduction Recalls Results References Conclusion

Strong case

Distribution of a0 − â0
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Let, for t ≥ 1, êt = ε̃t(θ̂n) be the least-squares residuals. Using the
expression of ε̃t(.) we have êt = 0 for t ≤ 0 and t > n. By (1), it
holds that

êt =

t−1∑
j=0

αj(d̂n)X̂t−j+

p∑
i=1

θ̂n,i

t−i−1∑
j=0

αj(d̂n)X̂t−i−j−
p+q∑
j=p+1

θ̂n,j êt−j ,

for t = 1, ..., n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.
Let, for h ≥ 0,

γ(h) =
1

n

n∑
t=h+1

εtεt−h and ρ(h) =
γ(h)

γ(0)

denote the white noise "empirical" autocovariances and
autocorrelations.
The residual autocovariances and autocorrelations are defined by

γ̂(h) =
1

n

n∑
t=h+1

êtêt−h and ρ̂(h) =
γ̂(h)

γ̂(0)
.
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For a fixed integer m ≥ 1, let

γm = (γ(1), ..., γ(m))
′

and γ̂m = (γ̂(1), ..., γ̂(m))
′
.

Denote also by
ρ̂m = (ρ̂(1), ..., ρ̂(m))

′

the first m sample autocorrelations.
Based on the residual empirical autocorrelation ρ̂(h), Box-Pierce
and Ljung-Box have proposed the following respective statistics for
the validation of strong univariate ARMA models :

QBP
m = n

m∑
h=1

ρ̂2(h) and QLB
m = n(n+ 2)

m∑
h=1

ρ̂2(h)

n− h
.

Test hypotheses
(H0) : (Xt)t∈Z satisfies a FARIMA(p, d0, q) representation ;
against the alternative
(H1) : (Xt)t∈Z does not admit a FARIMA representation or
admits a FARIMA(p

′
, d0, q

′
) representation with p

′
> p or q

′
> q.
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Joint distribution of θ̂n and the noise empirical
autocovariances

Under the assumptions of Theorem II, the random vector

√
n

((
θ̂n − θ0

)′
, γ
′
m

)′
has a limiting centred normal distribution with covariance matrix Ξ,
where

Ξ =

 Σθ̂ Σθ̂,γm

Σ
′

θ̂,γm
Σγm

 =

∞∑
h=−∞

E
[
gtg
′
t−h

]
,

with

gt =

(
g1t

g2t

)
=

(
−2J−1εt

∂
∂θ εt(θ0)

(εt−1, . . . , εt−m)
′
εt

)
.
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Asymptotic distribution of the residual autocorrelations

Let Ψm be the m× (p+ q + 1) matrix defined by

Ψm = E
{(
εt−1, . . . , εt−m

)′ ∂εt(θ0)

∂θ′

}
.

The following proposition provides the limit distribution of the
residual autocovariances and autocorrelations of weak FARIMA
models.

Proposition
Under the assumptions of Theorem II, we have

√
nγ̂m

D−→
n→+∞

N (0,Σγ̂m) and
√
nρ̂m

D−→
n→+∞

N (0,Σρ̂m) ,

where

Σγ̂m = Σγm + ΨmΣθ̂Ψ
′

m + ΨmΣθ̂,γm + Σ
′

θ̂,γm
Ψ
′

m and Σρ̂m =
1

σ4
ε

Σγ̂m .
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→ The matrices Σγ̂m and Σρ̂m depend on the unknown matrices Ξ,
Ψm and the scalar σε.
→ The matrix Ψm and the noise variance σ2

ε can be estimated by
its empirical counterpart :

Ψ̂m =
1

n

n∑
t=1

{
(êt−1, ..., êt−m)

′ ∂êt
∂θ′

}
and σ̂2

ε =
1

n

n∑
t=1

ê2t .

→ By interpreting (2π)−1Ξ as the spectral density of the
stationary process (gt)t evaluated at frequency 0, we use Berk’s
approach to estimate the spectral density of (gt)t by fitting a
parametric autoregressive model. This estimation technique is
based on the following expression

Ξ = ∆−1(1)Σv∆
′−1(1)

when (gt)t satisfies an AR(∞) representation of the form
∆(L)gt := gt −

∑
k≥1

∆kgt−k = vt, (4)

where (vt)t is a (p+ q + 1 +m)-variate weak white noise with
variance matrix Σv.
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Let ĝt be the vector obtained by replacing εt by êt in gt. Let
∆̂r(z) = Ip+q+1+m −

∑r
k=1 ∆̂r,kz

k, where ∆̂r,1, ..., ∆̂r,r denote the
coefficients of the least squares regression of ĝt on ĝt−1, ..., ĝt−r.
Let v̂r,t be the residuals of this regression, and let Σ̂v̂r be the
empirical variance of v̂r,1, ..., v̂r,n.

Theorem IV (estimating the asymptotic variance matrix Ξ)

In addition to the assumptions of Theorem II, assume that the
process (gt)t admits the AR(∞) representation (4) in which the
roots of det(∆(z)) = 0 are outside the unit disk, ‖∆k‖ = o(k−2),
and Σv = Var(vt) is non-singular. Moreover we assume that
E
[
|εt|8

]
<∞ and that∑+∞

k1=−∞ · · ·
∑+∞

k7=−∞ |cum(ε0, εk1 , ..., εk7)| <∞. Then, the
spectral estimator of Ξ

Ξ̂SP
n := ∆̂−1

r (1)Σ̂v̂r∆̂
′−1
r (1)→ Ξ

in probability when r = r(n)→∞ and r3/n→ 0 as n→∞.
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The exact limiting distribution of Box-Pierce and Ljung-Box
statistics is given in the following theorem :

Theorem V (exact asymptotic distribution of the standard
portmanteau statistics)

Under the assumptions of Theorem II and (H0), the statistics
QBP
m and QLB

m converge in distribution, as n→∞, to

Zm(ξm) =

m∑
k=1

ξk,mZ
2
k ,

where ξm = (ξ1,m, ..., ξm,m)
′
is the vector of the eigenvalues of the

matrix Σρ̂m = σ−4
ε Σγ̂m and Z1, ..., Zm are independent and

identically distributed (i.i.d.) random variables of the same
distribution N (0, 1).
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→ Let Σ̂ρ̂m be the matrix obtained by replacing Ξ by Ξ̂ and σ2
ε by

σ̂2
ε in Σρ̂m .

→ Denote by ξ̂m = (ξ̂1,m, ..., ξ̂m,m)
′
the vector of the eigenvalues

of Σ̂ρ̂m .

→ At the asymptotic level α, the LB test (respectively the BP
test) consists in rejecting the null hypothesis of the weak
FARIMA(p, d0, q) model (the adequacy of the weak
FARIMA(p, d0, q) model) when

QLB
m > Sm(1− α) (resp. QBP

m > Sm(1− α)),

where Sm(1− α) is such that P(Zm(ξ̂m) > Sm(1− α)) = α.

→ The proposed modified versions of the BP and LB statistics are
more difficult to implement because their critical values have to be
computed from the data.
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Numerical illustrations
Table – Empirical size (in %) of the modified and standard versions of
the LB and BP tests in the case of FARIMA(1, d, 1) model with
independent noise. The nominal asymptotic level of the tests is α = 5%.
The number of replications is N = 1, 000. (ar = 0.9 and ma = 0.2)

d0 Length n Lag m LBw BPw LBs BPs

1 7.4 7.4 n.a. n.a.
2 5.5 5.5 n.a. n.a.

0.20 n = 1, 000 3 4.7 4.7 n.a. n.a.
6 4.4 4.3 6.5 6.4
12 4.6 4.6 5.1 5.1
15 5.0 4.7 5.7 5.2
1 5.6 5.6 n.a. n.a.
2 5.1 5.2 n.a. n.a.

0.20 n = 5, 000 3 5.2 5.2 n.a. n.a.
6 4.9 4.9 6.6 6.6
12 5.0 5.0 5.7 5.6
15 5.6 5.5 5.9 5.8
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Table – Empirical size (in %) of the modified and standard versions of
the LB and BP tests in the case of FARIMA(1, d, 1) with an ARCH(1)
noise (α1 = 0.45). The nominal asymptotic level of the tests is α = 5%.
The number of replications is N = 1, 000. (ar = 0.9 and ma = 0.2)

d0 Length n Lag m LBw BPw LBs BPs

1 6.4 6.4 n.a. n.a.
2 5.2 5.2 n.a. n.a.

0.20 n = 1, 000 3 3.9 3.9 n.a. n.a.
6 3.8 3.7 10.0 9.8
12 1.9 1.8 7.3 6.7
15 1.0 0.9 6.4 6.3
1 6.3 6.3 n.a. n.a.
2 4.3 4.3 n.a. n.a.

0.20 n = 5, 000 3 5.5 5.4 n.a. n.a.
6 3.8 3.8 11.6 11.6
12 2.3 2.3 8.3 8.2
15 1.5 1.5 8.5 8.5
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I Some perspectives :

Estimation and validation of AR models with fractional noise.
Generalization to fractional ARMA models.
Comparison with weak FARIMA models.
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Thank you for your attention

28 Youssef ESSTAFA 5th Probability/Statistics day Besançon-Dijon


	Introduction
	Recalls
	Results
	References
	Conclusion

