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If (X, d) and (Y, %) are metric spaces, α ∈ (0, 1] and K > 0 , we say that a map f : X → Y is

α-Hölder with constant K (or in short (K,α)-Hölder) if

∀x, y ∈ X, %(f(x), f(y)) ≤ Kd(x, y)α.

We refer to [2] for background and more information about Hölder maps.

In [12] and [9] the following notation was introduced: for C ≥ 1, BC(X,Y ) denotes the set of

all α ∈ (0, 1] such that any (K,α)-Hölder function f from a subset of X into Y can be extended

to a (CK,α)-Hölder function from X into Y . If C = 1, such an extension is called an isometric

extension. When C > 1, it is called an isomorphic extension. If a (CK,α)-Hölder extension exists

for all C > 1, we say that f can be almost isometrically extended. Thus the following sets are

defined:

A(X,Y ) = B1(X,Y ), B(X,Y ) =
⋃
C≥1

BC(X,Y ), and Ã(X,Y ) =
⋂
C>1

BC(X,Y ).

The study of these sets goes back to a classical result of Kirszbraun [8] asserting that if H is

a Hilbert space, then 1 ∈ A(H,H). This was extended by Grünbaum and Zarantonello [4] who

showed that A(H,H) = (0, 1]. Then the complete description of A(Lp, Lq) for 1 < p, q < ∞
relies on works by Minty [11] and Hayden, Wells and Williams [5] (see also the book of Wells and

Williams [13] for a very nice exposition of the subject). More recently, K. Ball [1] introduced a very

important notion of non linear type or cotype and used it to prove a general extension theorem for

Lipschitz maps. Building on this work, Naor ([12] and a forthcoming preprint) described completely

the sets B(Lp, Lq) for 1 < p, q <∞.

In [9] we studied A(X,Y ) and Ã(X,Y ), when X is a Banach space and Y is a space of continuous

functions on a compact space equipped with the supremum norm. (This can also be viewed as a

non linear generalization of the results of Lindenstrauss and Pe lczyński [10] and of Johnson and

Zippin [6, 7] on the extension of linear operators with values in C(K) spaces.) We showed that

for any finite dimensional space X, Ã(X,C(K)) = (0, 1] and A(X,C(K)) is either (0, 1] or (0, 1)

and we gave examples of both occurrences. To our knowledge, this is the first example of Banach

spaces X and Y such that A(X,Y ) is not closed in (0, 1] and also such that A(X,Y ) 6= Ã(X,Y ).

This leads us to a number of questions concerning the above defined sets:

Question 1. Is Ã(X,Y ) always closed? If yes, is Ã(X,Y ) = A(X,Y )?

Question 2. Is B(X,Y ) always closed? Is B̃C(X,Y )
def
=

⋂
ε>0 BC+ε(X,Y ) always closed? If yes,

is B̃C(X,Y ) = BC(X,Y )? Or, more generally, is B̃C(X,Y ) ⊆ BC(X,Y )?

Question 3. Is the collection of sets BC(X,Y ) continuous with respect to C?
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Question 4. Does there always exist C > 0 so that B(X,Y ) = BC(X,Y )? (It is so in the examples

that we know.)

Brudnyi and Shvartsman [3] proved that if Y is a Banach space then the set B(X,Y ) is always

a subinterval of (0, 1] with the left endpoint equal to 0 (see also Naor [12]). Naor asked whether

the same is true for the set A(X,Y ). It is also natural to ask

Question 5. Do the sets BC(X,Y ) or B̃C(X,Y ) have to be intervals? If yes, does the left endpoint

have to be 0?

We note that all the above questions make sense in the setting when X and Y are assumed to

be either metric spaces or Banach spaces, and the answers may differ in these two settings.
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