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The XXX Heisenberg spin chains

Generalisation to spins in superposition of k states

Quantum system proposed by Heisenberg in 1928

The XXX% Heisenberg spin chain :

L
n=@QcC
=1

(Hilbert space)
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The XXX Heisenberg spin chains

Generalisation to spins in superposition of k states

Quantum system proposed by Heisenberg in 1928

The XXX% Heisenberg spin chain :

L L
H:®C2 H:L—2E Piiv1
i=1 =1
(Hilbert space) (hamiltonian)

where :

Pi,i—i—l (Ul®...®’l)L) =1 ®..Q0 vy & Vs X ...V
v S~~~
ith factor  (i+1)th factor

Pr.r+1="PiL
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The XXX Heisenberg spin chains
Definition
Generalisation to spins in superposition of k states

Generalisation to spins in superposition of k states

L
H=@Q)C
i=1

(Hilbert space)
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The XXX Heisenberg spin chains
Definition
Generalisation to spins in superposition of k states

Generalisation to spins in superposition of k states

L o L
H:(%(C’LC H:k—2Z;Pi,i+l

(Hilbert space) (hamiltonian)
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Idea of the method

pace, partial trac
Commutation relations
The first T-operators

First commuting conserved charges

Idea of the method

Aim : diagonalisation of H
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First commuting conserved charges

Idea of the method

Aim : diagonalisation of H
Ideas :

— Study the operators having the same eigenvalues than H.
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Idea of the method

Auxili ace, partial trace
Commuta relations

The first T-operators

First commuting conserved charges

Idea of the method

Aim : diagonalisation of H
Ideas :

— Study the operators having the same eigenvalues than H.

— Study the operators O commuting with H, i.e:
[O;H|=0OoH—-HoO=0

We call them the conserved charges .
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Idea of the method

Auxili ace, partial trace
Commuta relations

The first T-operators

First commuting conserved charges

Idea of the method

Aim : diagonalisation of H
Ideas :

— Study the operators having the same eigenvalues than H.

— Study the operators O commuting with H, i.e:
[O;H|=0OoH—-HoO=0

We call them the conserved charges .

— Build conserved charges .
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Idea of the method
Auxiliary space, partial trace
Commutation relations

The first T-operators

First commuting conserved charges

Building operators with auxiliary space and partial trace

A : finite dimensional C-vector space with a basis (ex)re[i;q]
A is called the auxiliary space.

L ‘) L
OcL|(QC"|QRA| = TraoeccL |t
i=1 =1
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Idea of the method
Auxiliary space, partial trace
Commutation relations

The first T-operators

First commuting conserved charges

Building operators with auxiliary space and partial trace

A : finite dimensional C-vector space with a basis (ex)re[i;q]
A is called the auxiliary space.

L ‘) L
OcL|(QC"|QRA| = TraoeccL |t
i=1 =1

Definition : (partial trace of O with respect to A) :

Oi1...iLk

Ji--jrk

i
M=~

(Tra0);; 75,
—_——

i

1
(eiy ®...®e;, )* (TTAO(ejl ®...®ejL))

where (e;;, ® ... ® eiL)(iu)ue[[lzk]][[l:L]] canonical basis of ®Z_L:1 Ck
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First commuting conserved charges

The first T-operators

Looking for commutation relations
Choose for auxiliary space : Hq, @ Ha, with Vi, H,, ~ CF

Yu e C, V(i,j) € ([1; L] U {(11;(12})2, Rij(u) :=u+ P

LY (u) := Ry, o, (1)...R1 4, ()

by Sylvain Labopin
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he method
space, partial trace
n relations
The first T-operators

First commuting conserved charges

Looking for commutation relations
Choose for auxiliary space : Hq, @ Ha, with Vi, H,, ~ CF

Yu e C, V(i,j) € ([1; L] U {(11;(12})2, Rij(u) :=u+ P

L

LY (u) := Ry o, (0)..Ria (u)| InL ((@ ck) &) Ha, ®%a2>
=1
= 1=

S 4
From P; jP; ;. = P; 1 Pr; < T = f\'), we get :

R j(u—v)R; i (u)R;1(v) = Rjp(v)Ri k(u)R; j(u — v)

Yang-Baxter identity

by Sylvain Labopin Integrating the XXX-Heisenberg spin chain while building conser



Idea of the method

space, partial trace
Commutation relations
The first T-operators

First commuting conserved charges

Looking for commutation relations
Choose for auxiliary space : Hq, @ Ha, with Vi, H,, ~ CF

Yu e C, V(i,j) € ([1; L] U {(11;(12})2, Rij(u) :=u+ P

L
LY (1) == Rp o, (W) Ria ()| InL|[RC") X Ha X)Ha,
=1

Ao
From P; jP;j ;. = P;j 1P <:>T A=/ 1, we get :

R j(u—v)R; i (u)R;1(v) = Rjp(v)Ri k(u)R; j(u — v)
Yang-Baxter identity

Then by induction : Vi € [0; L],

Ray.a(u =) LD L@ @) = L | ()L, ) (W) Ray ag (u = )L )L (v)

k
where L;’)I(w) = Rp,a;, (w)...Rq,a;, (w) for p > ¢
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method

ace, partial trace
Commutation relations
The first T-operators

First commuting conserved charges

The first T-operators (commuting with each others)

Assume R(u — v) reversible. With last relation with i =0 :

LY (u) L' (0) = (Ray a5 (u = v)) ™ L (0) LY (1) Ry 0 (u = v)
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Idea of the method

ce, partial trace
Commutation relations
The first T-operators

First commuting conserved charges

The first T-operators (commuting with each others)

Assume R(u — v) reversible. With last relation with i =0 :

LY (u) L' (0) = (Ray a5 (u = v)) ™ L (0) LY (1) Ry 0 (u = v)

With a property on the partial trace :
Try, @Ha, (L(l)(u)L(Q)(v)) = Try, @, (L(Q)(U)L(l)(u)>

With identifications : L) (w) € £ ((@ZLZI (Ck) ®Haz)- Then :

| T(u)T(v) = T(0)T(u)]

Where | T'(w) := T'ry, (L(Z)(w)> (called T-operator)
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First commuting conserved charges e o
, partial trace

The first T-operators

The first T-operators (commuting with the hamiltonian)

Definition : (right-action of &1, on ®%_, C¥)

Yo € GL, Po—. ®l'L:1 V; = ®iL:100'(i)
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method
, partial trace
Commutation relations
The first T-operators

First commuting conserved charges

The first T-operators (commuting with the hamiltonian)

Definition : (right-action of &1, on ®L (Ck)
VUEGL,P ® 1Ul‘_®l 1U()

T(O) = P(l 2 ... L) 8uT( )|u 0o~ Z P ... L)o(i i+1)

T (u
T(i)) = ZZ: P i+1)
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Ide: of the method

partial trace
Commutation relations
The first T-operators

First commuting conserved charges

The first T-operators (commuting with the hamiltonian)

Definition : (right-action of &1, on ®L (Ck)

Yo € GL, Po—. ®l'L:1 V; = ®iL:100'(i)

T0)=Pu2 .. 1 T (W) yeo = 22i P12 ... Lyo(i i+1)
OuT (u)
el LT
2L OuT (u)
=K 7270w |
Hence :
[H;T(u)] =0
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Generalizations of the first T-operators

Generalization with a twist g, i.e. g € GL(CF):

Ty(u) :=Try (L(u) o (]1®L ® g))
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Twist )
Auxiliary space ¢ C"

Generalizations of the first T-operators

Generalization with a twist g, i.e. g € GL(CF):
Ty(uw) :==Tra (L(u)o (1%* @ g))

As before (i.e. g = id|cx), via similar proof : | [T,(u); Ty(v)] =0

But now : O (a0 1
utg(U _ B -1

denoting g, =1 ®..01® ¢ 11
<~

4th factor
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Twist )
Auxiliary space ¢ C"

Generalizations of the first T-operators

Generalization with a twist g, i.e. g € GL(CF):
Ty(uw) :==Tra (L(u)o (1%* @ g))

As before (i.e. g = id|cx), via similar proof : | [T,(u); Ty(v)] =0

But now : O (a0 1
utg(U _ B -1

denoting g, =1 ®..01® ¢ 11
<~

4th factor

Generalization of the hamiltonian depending on the twist ¢ :

K

L-1
2L _
Hy:=—— ( E Pi,i+l> — 2Py pogy ! o g1 | then | [Ty(u); Hy] = 0
i=1
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Twist

Generalizations of the first T-operators Ay Seeee 5 ck

Auxiliary space non isomorphic to C*

With A % CF, we need to generalize the action of S, zju{a)

\V//L 6 [[17 L]], Pi,a = Z (eO/,B)Z o (ﬁ (661a>)a
(a,B)€[Lk]?

with GL(CF) "= GL(A) commuting.

Lie group
exp T

k _—
g[((c ) Lie algebra
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Twist

Generalizations of the first T-operators Ay Seeee 5 ck

Auxiliary space non isomorphic to C*

With A % CF, we need to generalize the action of S, zju{a)

\V//L 6 [[17 L]], Pi,a = Z (eO/,B)Z o (ﬁ (661a>)a
(a,B)€[Lk]?

with GL(CF) "= GL(A) commuting.

Lie group
expT
gl(C*) | — >
Lie algebra

Unfortunately : PioPaj # PjiPia V(3. 4) € ([1, L] U{a})® | i # j
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Twist

Generalizations of the first T-operators Ay Seeee 5 ck

Auxiliary space non isomorphic to C*

With A % CF, we need to generalize the action of S, zju{a)

\V//L 6 [[17 L]], Pi,a = Z (eO/,B)Z o (ﬁ (661a>)a
(a,B)€[Lk]?

with GL(CF) "= GL(A) commuting.

Lie group
exp T

k _—
g[((c ) Lie algebra

Unfortunately : PioPaj # PjiPia V(3. 4) € ([1, L] U{a})® | i # j
But : [T(ei;);ma(ent)] =7 ([eiy; ert]) = 07 (ea) — 0uT(ejn)
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Twist

Generalizations of the first T-operators Ay Seeee 5 ck

Auxiliary space non isomorphic to C*

Consider (@le <c’f) ® AL ® Ay "labeling” via [1, L] U {ax, a2}

~Ck %CH
T preserve the Lie bracket = ‘ [Pij + Pias; Pjas) = O‘

Yang-Baxter identity is then preserved :
| Rias (1= ©) Ry () Rij (v) = Rig (v) Ryas (1) Rias (1w —v) |
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Twist

Generalizations of the first T-operators Ay Seeee 5 ck

Auxiliary space non isomorphic to C*

Consider (@le <c’f) ® AL ® Ay "labeling” via [1, L] U {ax, a2}

~Ck %CH
T preserve the Lie bracket = ‘ [Pij + Pias; Pjas) = O‘

Yang-Baxter identity is then preserved :
| Rias (1= ©) Ry () Rij (v) = Rig (v) Ryas (1) Rias (1w —v) |

Definition : (T-operator)

T;(u) = TTAQ (RLag (u)-~-R1a2 (u)ﬂ-)\(g)cu)
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Twist

Generalizations of the first T-operators Ay Seeee 5 ck

Auxiliary space non isomorphic to C*

Consider (@le <c’f) ® AL ® Ay "labeling” via [1, L] U {ax, a2}

~Ck %CH
T preserve the Lie bracket = ‘ [Pij + Pias; Pjas) = O‘

Yang-Baxter identity is then preserved :
| Rias (1= ©) Ry () Rij (v) = Rig (v) Ryas (1) Rias (1w —v) |

Definition : (T-operator)

T;(u) = TTAQ (RLag (u)-~-R1a2 (u)ﬂ-)\(g)cu)

As before (i.e. with 7 = idGL(Ck))' we show :

[T5(w); Ty (v)] =0
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Differentiation with respect to the twist Other formulas obt nngd via the coderivative

Differentiation with respect to the twist

Definition : (Coderivative)

V V C-vector space, Vf € C™ (GL(C"), L(V)),

ﬁ ® f(g) = Zeaﬂ ® O, [f (€¢+t66a

o eL(CraV)
a,B d)

Remark : It allows to build operator of the spin chain.

Vfe ™ (GL(CY), L <® D) yeLl (él) ck>
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Definition
T-operators via co-derivative
s o y . Re entations of G L [
Differentiation with respect to the twist Other formulas obtained via the coderivative

T-operators in terms of co-derivative

Considering (u,g) € C x GL (CF) fixed,

T (u) can be built only from the character x of 7 :

L

Ty (u) = ®<u+f)) ® xx(9)

=1
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Representations of GL (

Differentiation with respect to the twist Other formulas obtained via 2!7\? coderivative

Irreducible representations of G'L (C"')

Definition : (Tensor representations of GL(C*))

mu: GL(CF) = GL(®M, c*)
A = <®f\i1 Vi ®zj\i1 (A'Ui))
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Differentiation with respect to the twist

Irreducible representations of G'L (C"')

Definition : (Tensor representations of GL(C*))

mu: GL(CF) = GL(®M, c*)
A = <®f\i1 Vi ®zj\i1 (A'Ui))

Definition : A Young diagram is a O-stationary non-increasing sequence of
integers A = (A1 > A2 > ... > Ay # 0, A5 41 = 0,0,0,...)

Seen as diagram : | (5,2,2,1,0,...) ~ %m
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Differentiation with respect to the twist Other formulas obtaine

Irreducible representations of G'L (C"')

Definition : (Tensor representations of GL(C*))

ma: GL(CY) = GL(®M, c*)
A = <®f\i1 Vi ®zj\i1 (A'Ui))

Definition : A Young diagram is a O-stationary non-increasing sequence of
integers A = (A1 > A2 > ... > Ay # 0, A5 41 = 0,0,0,...)

Seen as diagram : | (5,2,2,1,0,...) ~ %m
Young symmetrisors : (example)

5 = ( S e(a)m) ( b 6(0)770) (1+Ps0)) (1+Pem) ( S Pa)

€6 (5,7,9,10} €S (4,6,8} 7€S1;5]

NEHS
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Differentiation with respect to the twist

Irreducible representations of G'L (C"')

Definition : (Tensor representations of GL(C*))

mu: GL(CF) = GL(®M, c*)
A = <®f\i1 Vi ®zj\i1 (A'Ui))

Definition : A Young diagram is a O-stationary non-increasing sequence of
integers A = (A1 > A2 > ... > Ay # 0, A5 41 = 0,0,0,...)

Seen as diagram : | (5,2,2,1,0,...) ~ %m
Young symmetrisors : (example)

5 = ( S e(a)m) ( b 6(0)770) (1+Ps0)) (1+Pem) ( S Pa)

€6 (5,7,9,10} €S (4,6,8} 7€S1;5]

NEHS

5
Theorem : Each irreducible representation of GL (C*) is isomorphic to
an unique restriction of a tensor representation to an image of a Young
symmetrisor.
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Definition

Representations of GL

Differentiation with respect to the twist Other formulas obtained via 2!7\? coderivative

Irreducible representations of G'L (C"')

L(E) -+ ar (s (@) e

Notations : ) =
g = (z = T (7)) of boxes
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Definition

" o N . R f GL
Differentiation with respect to the twist epfe‘sg?'tat Vnrs? G “ 2 R
Other formulas obtained via the coderivative

Irreducible representations of G'L (C"')

k M ~k where M
Notations : ) = GL (C ) - GL <8)‘ <®i:1 C )) number
g = (z = 7 (z)) of boxes
H H
(a,8) =a,s=as = alEB
S

Integrating the XXX-Heisenberg spin chain while building conser
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Differentiation with respect to the twist

Other formulas obtained via 2!7\? coderivative

Irreducible representations of G'L (C"')

GL (Ck) - GL <s>\ (@lﬂil Ck)) where M

Notations : ) = number
g = (z = () of boxes
lEB tH
( pr— = prm— a
a,s) =a,s =as = Y
S
About the symmetric representations : (i.e: (1,5) = =g )
s boxes
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Differentiation with respect to the twist

Irreducible representations of G'L (C"')

L(E) -+ ar (s (@) e

Notations : ) =
g = (z = T (7)) of boxes

H H
(a,8) =a,s=as = alEB

S

About the symmetric representations : (i.e: (1,5) = =g )

s boxes

° Tgl’sl(u);Tl’S(U) =0
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Definition
T-operators via co-de
" o h . R i f GL
Differentiation with respect to the twist epre‘sgp' 'ornrsf’ G a 2 R
Other formulas obtained via the coderivative

Irreducible representations of G'L (C"')

GL (Ck) - GL <s>\ (@lﬂil Ck)) where M

number

Notations : ) =
g = (z = T (7)) of boxes

B8 23]

(a,8) =a,s=as = alEB

S

About the symmetric representations : (i.e: (1,5) = =g )

s boxes

o | [T i Ty )] = 0

e Studing >, T1%2% = [@le (u + ﬁ)} ® Y een X'¥(9)2° leads
to a combinatorics and allows to show...
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Definition

Differentiation with respect to the twist

1L\ j+i—j .
T, (w41 —4)
1<i,j<[A|
[A|—1 10,0
he1 Lo (u—k)
Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)
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Differentiation with respect to the twist

epresent. muns of GL
Other formulas obtained via the coderivative

Other formulas obtained via the coderivative

‘ﬁwﬂﬂ(

u+1—ﬂ

1<i,j<|A|

(u) = I
k=1

T (w— k)

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)

Corollary :

(7w Hy| =0

by Sylvain Labopin

T () Ty ()| = 0
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€ )msmtmuns of GL

Differentiation with respect to the twist Other formulas obtained via the coderivative

Other formulas obtained via the coderivative

‘Tglv/\j“ri*j (u + 1— Z‘)’1<' '<‘>\|
_Z7j_

A—1 10,0
T (u — k)

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)

Corollary : [Té\(u);Hg] =0 [Tg’\(u);T;(v)} =0

Corollary :

T (u+ )T (u) =T 5 (u + )T (u) + T (u 4+ )T (u)
Hirota equation (HE)
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€ )msmtmuns of GL

Differentiation with respect to the twist Other formulas obtained via the coderivative

Other formulas obtained via the coderivative

‘Tglv/\j“ri*j (u + 1— Z‘)’1<' '<‘>\|
_Z7j_

A—1 10,0
T (u — k)

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)

Corollary : [Té\(u);Hg] =0 [Tg’\(u);T;(v)} =0

Corollary :

T (u+ )T (u) =T 5 (u + )T (u) + T (u 4+ )T (u)
Hirota equation (HE)

Remark :
HE <— CBR

for rectangular representations
up to initial conditions
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ith no le
th non zero length
Bethe equations c iti atisfied by the initial datas

Recover the spectrum of the theory via the T-operators Recover the Bethe equations X X X 1 Heisenberg spin chain

Idea

Motivation :

— 28y [log (T.;’1 (u))}

o Sp (Hy)

lim Hg=H
g—idg

diagonalisation of H ‘

if enough
eigenvalues

Sp(H)
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1 by the H‘HT datas

Recover the spectrum of the theory via the T-operators 3 er the Bethe e S ¢ eisenberg spin chain

Idea

Motivation :

200 [log (T.;’l(’u)ﬂ

o Sp (Hy)

lim Hg=H
g—idg

diagonalisation of H ‘

if enough
eigenvalues

Sp(H)

Remarks : called T-function still denoted T,"*

o T9%(u)|,, = (an eigensvalue of T;S(u)) where V' eigenspace
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dressing procedure” for a spin chain v

th

datas
Recover the spectrum of the theory via the T-operators

Idea

Motivation :

spin chain

200 [log (T.;’l(’u)ﬂ

o Sp (Hy)

lim Hg=H
g—idg

diagonalisation of H ‘

if enough
eigenvalues

Sp(H)

Remarks : called T-function still denoted T,"*

o T25(u)|,, ~ (an eigensvalue of T;*(u)) where V eigenspace

v
o [T)u);T) (v)] =0 = T-functions satisfy CBR and HE
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1 by the

Recover the spectrum of the theory via the T-operators Recov 3ethe equations X X 1 Heis

Motivation :

200 [log (T.;’l(’u)ﬂ

o Sp (Hy)

lim Hg=H
g—idg

diagonalisation of H ‘

if enough
eigenvalues

Remarks : called T-function still denoted T,"*

o Tys(u)|,, =~ (an eigensvalue of T;*(u)) where V eigenspace
o [T)u);T) (v)] =0 = T-functions satisfy CBR and HE
From now on : V fixed eigenspace, g = diag (z1, ..., x), (z;); injective

Idea : Extend (T**)q,s to a family (77"%)a s, rep([1;1]) Such that
T =Ty, and (T7"%)a,s,1eP([1;k]) Satisfy "some relations” .
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Idea

" Undressing procedure” for a spin chain with no length

Generalization to spin chains with non zero length

Bethe equations as conditions i d by the initial d
Recover the spectrum of the theory via the T-operators Recover the Bethe equations fo { 1 Heisenberg

"Undressing procedure” for a spin chain with no length
For L =0:|T7%(u) = Xas(9)
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Recover the spectrum of the theory via the T-operators

"Undressing procedure” for a

Idea

" Undressing procedure” for a spin chain with no length
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Bethe equations as conditions isfied by the initial datas
Recover the Bethe equations for X X X 1 Heisenberg spin chain

spin chain with no length

For L =0:

T;s (u) = Xas(9)

Consider :

v Vn € [1; k],

S 5
<€ Ok, gg = idc

g

nesting path

by Sylvain Labopin
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" Undressing procedure for a spin chain with no length
Generalization to spin chains

Bethe eq
Recover the spectrum of the theory via the T-operators

ith non zero length

Recover the Bethe equations for X 1 Heisenberg spin chain

Undressing procedure” for a spin chain with no length

For L=0:|T5°(u) = Xas(9)
Consider : P
v o c Gk, Vn € IIlak]]7 9n = dzag(fﬂ (1) (n))
o~ 9g = idc st+k—i
nesting path (xg(j) )1 <i<a
1<j<n

Ni+k
X ;.
a(j) )1
Weil formula 1

(=55,

IAIN
(SRS

xx(gn)

INIA

33

/N
8

Q =

S

N—

I/\I/\
[
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" Undressing procedure” for a spin chain with no length

Generalization to spin chain h non zero length

Bethe equations as conditions satisfied by the initial datas
Recover the spectrum of the theory via the T-operators Recover the Bethe equations X X X 1 Heisenberg spin chain

'Undressing procedure” for a spin chain with no length

For L =0:|T7%(u) = Xas(9)

Consider : - ,
v o € Gy, Vn e ”:17 k]]7 9 = dzag(xo(1)7 '"7:1:0'(n))

9§ = idc iy
nesting path 0 (xs—i-k Z)

o) Jisisa

1<j<n
Ait+k—i k—i

xo—(]) >1SiS" (xa(]) a+1<i<n

o Weil formula 1<j<n|A=(a s) i<
X/\(gn) - -

k xkfi

0’(]) 1<i<n o’(]) 1<i<n

1<j<n 1<j<n

Via Pliicker identities :
(X**(92))s,a,5,n satisfy (what we call) the Backlund flow system :

x”+1’5(95+1)x“’5(95{) = x“’s(gf’LJrl)x“*l’s(g%) + zjn+1Xa+1’571(.qz+l)xa’s+1(g%)

x“’5+1(95+1)x”’5(9§{) = x“’s(gﬁ+1)xa’5+l(9${) + m]‘“JrlX“*l’s(g?ﬁl)x“*l’ﬁ'*l(gﬁ)
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"Undressing procedure” for a spin chain with no length

Generalization to spin chains W|th non zero length

Bethe equations as conditions sa J by ths initial d
Recover the spectrum of the theory via the T-operators Recover the Bethe equations for

Generalization to spin chains with non zero len

For L > 0, we generalize the Backlund flow system by :

{ TGO ) = TR (OTE T )+ T G T )

T S*?(U)T“ S(u)=T T8 () + T St TP (- 1)

10(; oW 1U{j

vI € P([1,k]), Vi € [1, k] \ I, V(a s)eN2 Vu € C
with T¢ [[lk]]

by Sylvain Labopin Integrating the XXX-Heisenberg spin chain while building conser



Idea
"Undressing procedure” for a spin chain with no leng
on to spin chains with non zero length
ations as conditions satisfied by the initial datas
Recover the spectrum of the theory via the T-operators Recover the Bethe equations for X X X ; Heisenberg spin chain

Generalization to spin chains with non zero length

For L > 0, we generalize the Backlund flow system by :

{ TEE T (w) = T, TP () + 2 TR T e + DT T (w — 1)

TR TP (W) = TRy T T ) + oy TR (e + DT 8 (= 1)
vI € P([LK]), ¥j € [L K]\ I, ¥(a,s) €N, Vu€C
with 7% = T{%,

Theorem /Definition/Notation :

e There exists a polynomial solution (T%° to that system,
poly 7 s y

called the Backlund flow , such that :
VI e P([1,k]),VYs >0, Ya > card (I), T{"° =0

. (T}Z’S)aﬁs is called a Bicklund transform (BT) of <T;L’ﬁ{j})as
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Recover the spectrum of the theory via the T-operators

Idea

"Und ng procedure” for
Generalization to spin chain h non zero length

Bethe equations as conditions satisfied by the initial datas
Recover the Bethe equations for X X X 1 Heisenberg spin chain

in chain with no length

Bethe equations as conditions satisfied by the initial datas

Definition /Notation : We define the family of the Q-functions :

dr
@QDrerq s = (T?O)zep([[l,k]]) - (M 1:[1 (v ,u(;”))

by Sylvain Labopin
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"Und ng procedure” for a spin chain with no length

Gener tion to spin chains with non zero length

Bethe equations as conditions satisfied by the initial datas

ver the Bethe equations for X X X ; Heisenberg spin chain

Bethe equations as conditions satisfied by the initial datas

Recover the spectrum of the theory via the T-operators Re

Definition /Notation : We define the family of the Q-functions :

dr
_ 00 _ (n)
@nrepquen = (71 )Iemulvku) - (aI 11 (vl )>

. n= IeP([1,k
Properties : ePLED

0,s _ ms,0 _ 10,0 _ 40 BT preserve
. Tg = Tg = Tg = Tg =

0,5 _ 78,0 _ 7:0,0
vI, T;° =177 =17

BT preserve I|,1 0,0 . R
o TON(u) = det()TO0(w+1) 0 BEET vr, o (u) = T (u + 1) det (diag (z;,i € 1))

Corollary : Qp =1
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ng procedure” for a spin chain with no length
Generalization to spin chains with non zero length
Bethe equations as conditions satlsfled by the initial datas

Recover the spectrum of the theory via the T-operators Recover the Bethe equations for X X

1 Heisenberg spin chain

Bethe equations as conditions satisfied by the initial datas

Definition /Notation : We define the family of the Q-functions :
dr
_ 00 =|a w — ul™
(7 )IGP(“"““) - ( Ingl( ! )>1e7>([[1 kD)

BT preserve . )
o 7O =730 = 700 = 70 BT RESEONe o 0. _ o0 _ 10,0

(@Drem(r1.r1
Properties :

BT preserve I|,1 0,0 . R
o TON(u) = det()TO0(w+1) 0 BEET vr, o (u) = T (u + 1) det (diag (z;,i € 1))

Corollary : Qp =1
Ideas :

e T-functions can be expressed in term of Q-functions (TQ relation) by studing generating series.

e These expressions are independant of the nesting path == Q-function must satisfy a consistency condition
called QQ-relation.
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"Undressing procedure” for a spin chain with no length
Generalization to spin chains h non zero length

Bethe equations as conditions satisfied by the initial datas

Recover the spectrum of the theory via the T-operators Recover the Bethe equations for X X X 1 Heisenberg spin chain

Bethe equations as conditions satisfied by the initial datas

Definition /Notation : We define the family of the Q-functions :

dr
— (700 — (n)
@D repurn = (TI )zep([[l,k]]) - (aI Ul (uiu’ )>
. = IeP([1,k
Properties : ePLED

0,s _ 7s,0 _ 20,0 _ 10
° Tg = Tg = Tg = Tg

BT preserve ;- T?,s _ T;,o _ T;J,o

BT preserve I|,1 0,0 . R
o TON(u) = det()TO0(w+1) 0 BEET vr, o (u) = T (u + 1) det (diag (z;,i € 1))

Corollary : Qp =1

Ideas :

e T-functions can be expressed in term of Q-functions (TQ relation) by studing generating series.

e These expressions are independant of the nesting path = Q-function must satisfy a consistency condition
called QQ-relation.

Corollary : Bethe equations

For 0 € &}, "nesting path”, denoting I, = {o(1),...,0(m)}Vm € [0,k] :

Qr,p, (“Er: + 1) Qs (“g:ln)) Rrpy,_q (“Ylm) B 1) _ ZTo(m+1)
QIm (ug: - 1) Q1m+1 (“’Ylm) + 1) lefl (“gtln)) - To(m)
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5

Recover the Bethe equations for XXX% Heisenberg spin

chain

For k =2, g = diag(xy,x2) :

Qqu2y = u, Quy = H (u — u(")> , Qp=1

L

() 41 (n)
Bethe equations <= Qi (u - ) Y __22
0 I S (3 W (20 B
<~ _— = = —
w4+ 1 zl i u® —q(m) 11
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spin chain with no length
on to spin chains with non zero length
ions as conditic ied by the initial datas
Recover the spectrum of the theory via the T-operators Recover the Bethe equations for X X X 1 Heisenberg spin chain

Recover the Bethe equations for XX/X% Heisenberg spin

chain

For k =2, g = diag(xy,x2) :

Qqu2y = u, Quy = H (u — u(”)> , Qp=1

M 41 m \*
Bethe equations <= Qi (u - ) Y __22
0 I S (3 W (20 B
i —_— = — -
w4+ 1 zl i u® —q(m) 11

Bethe equation Hans Bethe
discovered in 1931

u™ = lilzir;n’ g —idez =
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5

Integration of the Heisenberg X X X

spin chain in 1931

1
2

In 1931, Hans Bethe found the eigenstates in the form :

|p17p27"'7p1w;("40)g—eGM> = Z \Il(jla"'a.jlw) |{j17~"7j]ﬂ}>
1<j1< <ju<M
Where
\I’(jlv' 7.]M)E Z A €xp (nZk; lpa' jk)
oceG s

As = €(0) [T, (1 + ei(Potrom) Qeﬁpa(k>>
and denoting (13 ) the canonical basis of C?,
i1, -im}) =l @0l ® T VIR.Q1LI® T ®l&.

”‘ factor Jh factor

The momenta p; must satlsfy the Bethe equations of 1931 :

. 1 4+ i Pitpr) — 9eip;
VjG[[l;Mﬂ, eanj:H + e\ ety
k]

1 +e (p)+pk) — 2€1pk
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