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Definition
Generalisation to spins in superposition of k states

Quantum system proposed by Heisenberg in 1928

The XXX 1
2

Heisenberg spin chain :

H =

L⊗
i=1

C2

(Hilbert space)

H = L− 2

L∑
i=1

Pi,i+1

(hamiltonian)

where :

Pi,i+1 (v1 ⊗ ...⊗ vL) = v1 ⊗ ...⊗ vi+1︸︷︷︸
ith factor

⊗ vi︸︷︷︸
(i+1)th factor

⊗ ...⊗ vL

PL,L+1 = P1,L
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Idea of the method

Aim : diagonalisation of H
Ideas :

→ Study the operators having the same eigenvalues than H.

→ Study the operators O commuting with H, i.e:

[O;H] ≡ O ◦H −H ◦ O = 0

We call them the conserved charges .

→ Build conserved charges .
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Building operators with auxiliary space and partial trace

A : finite dimensional C-vector space with a basis (ek)k∈[[1;d]]
A is called the auxiliary space.

O ∈ L

((
L⊗
i=1

Ck
)⊗

A

)
?−→ TrAO ∈ L

(
L⊗
i=1

Ck
)

Definition : (partial trace of O with respect to A) :

(TrAO)i1...iLj1...jL︸ ︷︷ ︸
(ei1⊗...⊗eiL )

∗(TrAO(ej1⊗...⊗ejL))

:=

d∑
k=1

Oi1...iLkj1...jLk

where (ei1 ⊗ ...⊗ eiL)(iu)u∈[[1:k]][[1:L]] canonical basis of
⊗L

i=1 Ck
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Looking for commutation relations
Choose for auxiliary space : Ha1

⊗
Ha2 with ∀i, Hai ' Ck

∀u ∈ C, ∀(i, j) ∈ ([[1;L]] ∪ {a1; a2})2 , Ri,j(u) := u + Pi,j

L(k)(u) := RL,ak
(u)...R1,ak

(u) In L

((
L⊗
i=1

Ck
)⊗

Ha1
⊗
Ha2

)

From Pi,jPj,k = Pj,kPk,i ⇐⇒ = , we get :

Ri,j(u− v)Ri,k(u)Rj,k(v) = Rj,k(v)Ri,k(u)Ri,j(u− v)

Yang-Baxter identity

Then by induction : ∀i ∈ [[0;L]],
Ra1,a2 (u− v)L(1)(u)L(2)(v) = L

(2)
L,i+1

(v)L
(1)
L,i+1

(u)Ra1,a2 (u− v)L(1)
i,1 (u)L

(2)
i,1 (v)

where L
(k)
p,q(w) = Rp,ak (w)...Rq,ak (w) for p ≥ q
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The first T-operators (commuting with each others)

Assume R(u− v) reversible. With last relation with i = 0 :

L(1)(u)L(2)(v) = (Ra1,a2(u− v))−1 L(2)(v)L(1)(u)Ra1,a2(u− v)

With a property on the partial trace :

TrHa1
⊗
Ha2

(
L(1)(u)L(2)(v)

)
= TrHa1

⊗
Ha2

(
L(2)(v)L(1)(u)

)
With identifications : L(l)(w) ∈ L

((⊗L
i=1Ck

)⊗
Hal
)

. Then :

T (u)T (v) = T (v)T (u)

Where T (w) := TrHal

(
L(l)(w)

)
(called T-operator)
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The first T-operators (commuting with the hamiltonian)

Definition : (right-action of SL on
⊗L

u=1Ck)

∀σ ∈ SL, Pσ.⊗Li=1 vi := ⊗Li=1vσ(i)

T (0) = P(1 2 ... L) ∂uT (u)|u=0 =
∑

i P(1 2 ... L)◦(i i+1)

∂uT (u)

T (u)

∣∣∣∣
u=0

=
∑
i

P(i i+1)

H =
2L

K
− 2

∂uT (u)

T (u)

∣∣∣∣
u=0

Hence :
[H;T (u)] = 0
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Twist
Auxiliary space 6' Ck

Twist
Generalization with a twist g, i.e. g ∈ GL(Ck):

Tg(u) := TrA
(
L(u) ◦

(
1
⊗L ⊗ g

))
As before (i.e. g = id|Ck), via similar proof : [Tg(u);Tg(v)] = 0

But now :
∂uTg(u)

Tg(u)

∣∣∣∣
u=0

=

(
L−1∑
i=1

Pi,i+1

)
+ P(1 L) ◦ gL ◦ g−11

denoting gi := 1⊗ ...⊗ 1⊗ g︸︷︷︸
ith factor

⊗ 1⊗ 1

Generalization of the hamiltonian depending on the twist g :

Hg :=
2L

K
− 2

(
L−1∑
i=1

Pi,i+1

)
− 2P1,L ◦ g−1L ◦ g1 then [Tg(u);Hg] = 0
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Twist
Auxiliary space 6' Ck

Auxiliary space non isomorphic to Ck

With A 6' Ck, we need to generalize the action of S[[1,L]]∪{a} :

∀i ∈ [[1, L]], Pi,a :=
∑

(α,β)∈[[1,k]]2
(eα,β)i ◦ (π (eβ,α))a

with GL(Ck) π

Lie group
// GL(A)

gl(Ck)

exp

OO

π

Lie algebra
// gl(A)

exp

OO
commuting.

Unfortunately : PiaPaj 6= PjiPia ∀(i, j) ∈ ([[1, L]] ∪ {a})2 | i 6= j

But : [π(ei,j);πλ(ek,l)] = π ([ei,j ; ek,l]) = δjkπ(eil)− δliπ(ejk)
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Twist
Auxiliary space 6' Ck

Auxiliary space non isomorphic to Ck

Consider
(⊗L

i=1 Ck
)⊗

A1︸︷︷︸
'Ck

⊗
A2︸︷︷︸
6'Ck

”labeling” via [[1, L]] ∪ {a1, a2}

πλ preserve the Lie bracket =⇒ [Pij + Pia2 ;Pja2 ] = 0

Yang-Baxter identity is then preserved :
Ria2(u− v)Rja2(u)Rij(v) = Rij(v)Rja2(u)Ria2(u− v)

Definition : (T-operator)

T πg (u) = TrA2 (RLa2(u)...R1a2(u)πλ(g)a2)

As before (i.e. with π = idGL(Ck)), we show :[
Tg(u);T

π
g (v)

]
= 0
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Definition
T-operators via co-derivative
Representations of GL

(
Ck
)

Other formulas obtained via the coderivative

Differentiation with respect to the twist

Definition : (Coderivative)

∀ V C-vector space, ∀f ∈ C∞
(
GL(Ck),L(V )

)
,

D̂ ⊗ f(g) :=
∑
α,β

eαβ ⊗ ∂t
[
f
(
eφ+teβαg

)]∣∣∣∣∣ t = 0
φ = 0

∈ L
(
Ck ⊗ V

)

Remark : It allows to build operator of the spin chain.

∀f ∈ C∞
(
GL(Ck),L(C)

)
,

(
L⊗
i=1

D̂

)
⊗f(g) ∈ L

(
L⊗
i=1

Ck

)
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(
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Representations of GL

(
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Irreducible representations of GL
(
Ck
)

Definition : (Tensor representations of GL(Ck))

πM : GL
(
Ck
)
→ GL

(⊗M
i=1 Ck

)
A 7→

(⊗M
i=1 vi 7→

⊗M
i=1 (A.vi)

)
Definition : A Young diagram is a 0-stationary non-increasing sequence of

integers λ = (λ1 ≥ λ2 ≥ ... ≥ λ|λ| 6= 0, λ|λ|+1 = 0, 0, 0, ...)

Seen as diagram : (5, 2, 2, 1, 0, ...) '

Young symmetrisors : (example)

s

12345
67
89

10
:=

 ∑
σ∈S{5,7,9,10}

ε(σ)Pσ


 ∑
σ∈S{4,6,8}

ε(σ)Pσ

(1 + P(8,9)

) (
1 + P(6,7)

) ∑
σ∈S[[1;5]]

Pσ



Theorem : Each irreducible representation of GL
(
Ck
)

is isomorphic to
an unique restriction of a tensor representation to an image of a Young
symmetrisor.

by Sylvain Labopin Integrating the XXX-Heisenberg spin chain while building conserved charges



The XXX Heisenberg spin chains
First commuting conserved charges

Generalizations of the first T-operators
Differentiation with respect to the twist

Recover the spectrum of the theory via the T-operators

Definition
T-operators via co-derivative
Representations of GL

(
Ck
)

Other formulas obtained via the coderivative

Irreducible representations of GL
(
Ck
)

Definition : (Tensor representations of GL(Ck))

πM : GL
(
Ck
)
→ GL

(⊗M
i=1 Ck

)
A 7→

(⊗M
i=1 vi 7→

⊗M
i=1 (A.vi)

)
Definition : A Young diagram is a 0-stationary non-increasing sequence of

integers λ = (λ1 ≥ λ2 ≥ ... ≥ λ|λ| 6= 0, λ|λ|+1 = 0, 0, 0, ...)

Seen as diagram : (5, 2, 2, 1, 0, ...) '
Young symmetrisors : (example)

s

12345
67
89

10
:=

 ∑
σ∈S{5,7,9,10}

ε(σ)Pσ


 ∑
σ∈S{4,6,8}

ε(σ)Pσ

(1 + P(8,9)

) (
1 + P(6,7)

) ∑
σ∈S[[1;5]]

Pσ



Theorem : Each irreducible representation of GL
(
Ck
)

is isomorphic to
an unique restriction of a tensor representation to an image of a Young
symmetrisor.

by Sylvain Labopin Integrating the XXX-Heisenberg spin chain while building conserved charges



The XXX Heisenberg spin chains
First commuting conserved charges

Generalizations of the first T-operators
Differentiation with respect to the twist

Recover the spectrum of the theory via the T-operators

Definition
T-operators via co-derivative
Representations of GL

(
Ck
)

Other formulas obtained via the coderivative

Irreducible representations of GL
(
Ck
)

Definition : (Tensor representations of GL(Ck))

πM : GL
(
Ck
)
→ GL

(⊗M
i=1 Ck

)
A 7→

(⊗M
i=1 vi 7→

⊗M
i=1 (A.vi)

)
Definition : A Young diagram is a 0-stationary non-increasing sequence of

integers λ = (λ1 ≥ λ2 ≥ ... ≥ λ|λ| 6= 0, λ|λ|+1 = 0, 0, 0, ...)

Seen as diagram : (5, 2, 2, 1, 0, ...) '
Young symmetrisors : (example)

s

12345
67
89

10
:=

 ∑
σ∈S{5,7,9,10}

ε(σ)Pσ


 ∑
σ∈S{4,6,8}

ε(σ)Pσ

(1 + P(8,9)

) (
1 + P(6,7)

) ∑
σ∈S[[1;5]]

Pσ



Theorem : Each irreducible representation of GL
(
Ck
)

is isomorphic to
an unique restriction of a tensor representation to an image of a Young
symmetrisor.

by Sylvain Labopin Integrating the XXX-Heisenberg spin chain while building conserved charges



The XXX Heisenberg spin chains
First commuting conserved charges

Generalizations of the first T-operators
Differentiation with respect to the twist

Recover the spectrum of the theory via the T-operators

Definition
T-operators via co-derivative
Representations of GL

(
Ck
)

Other formulas obtained via the coderivative

Irreducible representations of GL
(
Ck
)

Definition : (Tensor representations of GL(Ck))

πM : GL
(
Ck
)
→ GL

(⊗M
i=1 Ck

)
A 7→

(⊗M
i=1 vi 7→

⊗M
i=1 (A.vi)

)
Definition : A Young diagram is a 0-stationary non-increasing sequence of

integers λ = (λ1 ≥ λ2 ≥ ... ≥ λ|λ| 6= 0, λ|λ|+1 = 0, 0, 0, ...)

Seen as diagram : (5, 2, 2, 1, 0, ...) '
Young symmetrisors : (example)

s

12345
67
89

10
:=

 ∑
σ∈S{5,7,9,10}

ε(σ)Pσ


 ∑
σ∈S{4,6,8}

ε(σ)Pσ

(1 + P(8,9)

) (
1 + P(6,7)

) ∑
σ∈S[[1;5]]

Pσ



Theorem : Each irreducible representation of GL
(
Ck
)

is isomorphic to
an unique restriction of a tensor representation to an image of a Young
symmetrisor.

by Sylvain Labopin Integrating the XXX-Heisenberg spin chain while building conserved charges



The XXX Heisenberg spin chains
First commuting conserved charges

Generalizations of the first T-operators
Differentiation with respect to the twist

Recover the spectrum of the theory via the T-operators

Definition
T-operators via co-derivative
Representations of GL

(
Ck
)

Other formulas obtained via the coderivative

Irreducible representations of GL
(
Ck
)

Notations : πλ ≡
GL

(
Ck
)
→ GL

(
sλ

(⊗M
i=1Ck

))
g 7→ (x 7→ πM (x))

where M
number
of boxes

(a, s) ≡ a, s ≡ as ≡ a

s

About the symmetric representations : (i.e: (1, s) = ︸︷︷︸
s boxes

)

•
[
T 1,s′
g (u);T 1,s

g (v)
]

= 0

• Studing
∑

s T
1,szs =

[⊗L
i=1

(
u+ D̂

)]
⊗
∑

s∈N χ
1s(g)zs leads

to a combinatorics and allows to show...
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Other formulas obtained via the coderivative

T λg (u) =

∣∣∣T 1,λj+i−j
g (u+ 1− i)

∣∣∣
1≤i,j≤|λ|∏|λ|−1

k=1 T 0,0
g (u− k)

Cherednik-Bazhanov-Reshetikhin determinant formula (CBR)

Corollary :
[
T λg (u);Hg

]
= 0

[
T λg (u);Tµg (v)

]
= 0

Corollary :

T a,s(u+ 1)T a,s(u)=T a+1,s(u+ 1)T a−1,s(u) + T a,s−1(u+ 1)T a,s+1(u)

Hirota equation (HE)

Remark :
HE ⇐⇒ CBR

for rectangular representations

up to initial conditions
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The XXX Heisenberg spin chains
First commuting conserved charges

Generalizations of the first T-operators
Differentiation with respect to the twist

Recover the spectrum of the theory via the T-operators

Idea
”Undressing procedure” for a spin chain with no length
Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas
Recover the Bethe equations forXXX 1

2
Heisenberg spin chain

Idea

Motivation :

Sp
(
T 1,1
g (u)

)
Sp (Hg)

Sp (H)

diagonalisation of H

integration of the system

Hg := 2L
K
− 2∂v

[
log

(
T1,1
g (v)

)]∣∣∣∣
v=0

lim
g→id

C
k
Hg = H

if enough
eigenvalues

Remarks :

• T asg (u)
∣∣
V
'

called T-function still denoted Ta,sg︷ ︸︸ ︷(
an eigensvalue of T asg (u)

)
where V eigenspace

•
[
T λg (u);Tµg (v)

]
= 0 =⇒ T-functions satisfy CBR and HE

From now on : V fixed eigenspace, g = diag (x1, ..., xk), (xi)i injective

Idea : Extend (T a,s)a,s to a family (T a,sI )a,s,I∈P([[1;k]]) such that
T as = T as[[1;k]] and (T a,sI )a,s,I∈P([[1;k]]) satisfy ”some relations”.
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T λg (u);Tµg (v)

]
= 0 =⇒ T-functions satisfy CBR and HE

From now on : V fixed eigenspace, g = diag (x1, ..., xk), (xi)i injective

Idea : Extend (T a,s)a,s to a family (T a,sI )a,s,I∈P([[1;k]]) such that
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”Undressing procedure” for a spin chain with no length

For L = 0 : T asg (u) = χas(g)

Consider :

∀ σ︸︷︷︸
nesting path

∈ Sk,

{
∀n ∈ [[1; k]], gσn := diag(xσ(1), ..., xσ(n))

gσ0 = idC

χλ(gσn)
Weil formula

=

∣∣∣∣∣(xλi+k−iσ(j)

)
1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣∣∣∣∣∣(xk−iσ(j)

)
1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣
λ=(a s)

=

∣∣∣∣∣∣∣
(
xs+k−iσ(j)

)
1 ≤ i ≤ a
1 ≤ j ≤ n(

xk−iσ(j)

)
a + 1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣∣∣∣∣∣∣∣(xk−iσ(j)

)
1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣
Via Plücker identities :

(χa,s(gσn))σ,a,s,n satisfy (what we call) the Bäcklund flow system :

χa+1,s(gσn+1)χa,s(gσn) = χa,s(gσn+1)χa+1,s(gσn) + xjn+1

χa+1,s−1(gσn+1)χa,s+1(gσn)

χa,s+1(gσn+1)χa,s(gσn) = χa,s(gσn+1)χa,s+1(gσn) + xjn+1
χa+1,s(gσn+1)χa−1,s+1(gσn)

by Sylvain Labopin Integrating the XXX-Heisenberg spin chain while building conserved charges



The XXX Heisenberg spin chains
First commuting conserved charges

Generalizations of the first T-operators
Differentiation with respect to the twist

Recover the spectrum of the theory via the T-operators

Idea
”Undressing procedure” for a spin chain with no length
Generalization to spin chains with non zero length
Bethe equations as conditions satisfied by the initial datas
Recover the Bethe equations forXXX 1

2
Heisenberg spin chain

”Undressing procedure” for a spin chain with no length

For L = 0 : T asg (u) = χas(g)

Consider :

∀ σ︸︷︷︸
nesting path

∈ Sk,

{
∀n ∈ [[1; k]], gσn := diag(xσ(1), ..., xσ(n))

gσ0 = idC

χλ(gσn)
Weil formula

=

∣∣∣∣∣(xλi+k−iσ(j)

)
1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣∣∣∣∣∣(xk−iσ(j)

)
1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣
λ=(a s)

=

∣∣∣∣∣∣∣
(
xs+k−iσ(j)

)
1 ≤ i ≤ a
1 ≤ j ≤ n(

xk−iσ(j)

)
a + 1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣∣∣∣∣∣∣∣(xk−iσ(j)

)
1 ≤ i ≤ n
1 ≤ j ≤ n

∣∣∣∣∣
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Generalization to spin chains with non zero length

For L > 0, we generalize the Bäcklund flow system by : T
a+1,s
I∪{j}(u)T

a,s
I

(u) = T
a,s
I∪{j}(u)T

a+1,s
I

(u) + xjT
a+1,s−1
I∪{j} (u + 1)T

a,s+1
I

(u− 1)

T
a,s+1
I∪{j}(u)T

a,s
I

(u) = T
a,s
I∪{j}(u)T

a,s+1
I

(u) + xjT
a+1,s
I∪{j}(u + 1)T

a−1,s+1
I

(u− 1)

∀I ∈ P([[1, k]]), ∀j ∈ [[1, k]] \ I, ∀(a, s) ∈ N2, ∀u ∈ C
with Tas = Tas[[1;k]]

Theorem/Definition/Notation :

• There exists a polynomial solution
(
T a,sI

)
a,s

to that system,
called the Bäcklund flow , such that :

∀I ∈ P ([[1, k]]) ,∀s > 0, ∀a > card (I) , T a,sI = 0

•
(
T a,sI

)
a,s

is called a Bäcklund transform (BT) of
(
T a,sI∪{j}

)
a,s
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Bethe equations as conditions satisfied by the initial datas

Definition/Notation : We define the family of the Q-functions :

(QI )I∈P([[1,k]]) ≡
(
T

00
I

)
I∈P([[1,k]])

≡

αI dI∏
n=1

(
u− u(n)

I

)
I∈P([[1,k]])

Properties :
• T0,s

g = Ts,0g = T0,0
g = T∅g

BT preserve
=⇒ ∀I, T0,s

I
= T

s,0
I

= T
0,0
I

• Ta,1g (u) = det(g)T0,0
g (u + 1)

BT preserve
=⇒ ∀I, T |I|,1

I
(u) = T

0,0
I

(u + 1) det (diag (xi, i ∈ I))

Corollary : Q∅ ≡ 1

Ideas :
• T-functions can be expressed in term of Q-functions (TQ relation) by studing generating series.

• These expressions are independant of the nesting path =⇒ Q-function must satisfy a consistency condition
called QQ-relation.

Corollary : Bethe equations
For σ ∈ Sk ”nesting path”, denoting Im = {σ(1), ..., σ(m)} ∀m ∈ [[0, k]] :

QIm

(
u
(n)
Im

+ 1
)
QIm+1

(
u
(n)
Im

)
QIm−1

(
u
(n)
Im
− 1

)
QIm

(
u
(n)
Im
− 1

)
QIm+1

(
u
(n)
Im

+ 1
)
QIm−1

(
u
(n)
Im

) = −
xσ(m+1)

xσ(m)
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Recover the Bethe equations for XXX 1
2

Heisenberg spin

chain

For k = 2, g = diag(x1, x2) :

Q{1;2} = uL, Q{1} = α1

∏
n

(
u− u(n)

)
, Q∅ = 1

Bethe equations ⇐⇒
Q{1}

(
u(n) + 1

)
Q{1}

(
u(n) − 1

) ( u(n)

u(n) + 1

)L
= −x2

x1

⇐⇒

(
u(n)

u(n) + 1

)L
=
x2
x1

∏
m 6=n

u(n) − u(m) − 1

u(n) − u(m) + 1

u(n) ≡ eipn

1−eipn , g → idC2 =⇒ Bethe equation Hans Bethe
discovered in 1931
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Integration of the Heisenberg XXX 1
2

spin chain in 1931

In 1931, Hans Bethe found the eigenstates in the form :∣∣p1, p2, ..., pM ; (Aσ)σ∈SM
〉
≡

∑
1≤j1<...<jM≤M

Ψ (j1, ..., jM ) |{j1, ..., jM}〉

Where
Ψ (j1, ..., jM ) ≡

∑
σ∈SM

Aσ exp
(
i
∑M

k=1 pσ(k)jk

)
Aσ ≡ ε(σ)

∏
j<k

(
1 + ei(pσ(j)+pσ(k)) − 2eipσ(k)

)
and denoting (↑; ↓) the canonical basis of C2,

|{j1, ..., jM}〉 ≡↓ ⊗...⊗ ↓ ⊗ ↑︸︷︷︸
jth1 factor

⊗ ↓ ⊗...⊗ ↓ ⊗ ↑︸︷︷︸
jth2 factor

⊗ ↓ ⊗...

The momenta pj must satisfy the Bethe equations of 1931 :

∀j ∈ [[1;M ]], eiLpj =
∏
k 6=j

1 + ei(pj+pk) − 2eipj

1 + ei(pj+pk) − 2eipk
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