MULTIPLICITY RESULTS IN THE NON-COERCIVE CASE
FOR AN ELLIPTIC PROBLEM WITH CRITICAL GROWTH IN
THE GRADIENT

COLETTE DE COSTER AND LOUIS JEANJEAN

ABSTRACT. We consider the boundary value problem
(Py) —Au = Ae(2)u + p(x)|Vul® + h(z), u € Hg(Q)NL>®(Q),

where 2 ¢ RV, N > 3 is a bounded domain with smooth boundary. It is
assumed that ¢, h belong to LP(Q) for some p > N with ¢ =2 0 as well as
p € L>®(Q) and p > pg > 0 for some g € R. Tt is known that when A < 0,
problem (Py) has at most one solution. In this paper we study, under various
assumptions, the structure of the set of solutions of (Py) assuming that A > 0.
Our study unveils the rich structure of this problem. We show, in particular,
that what happen for A = 0 influences the set of solutions in all the half-space
10, +00[x (HL(Q) N L>(Q)). Most of our results are valid without assuming
that h has a sign. If we require h to have a sign, we observe that the set of
solutions differs completely for A = 0 and h < 0. We also show when h has a
sign that solutions not having this sign may exists. Some uniqueness results of
signed solutions are also derived. The paper ends with a list of open problems.

1. INTRODUCTION

We consider the boundary value problem
(Py) —Au = Ae(z)u + p(z)|Vul* + h(z), u € Hy(2) N L>2(Q),
under the assumption

QCRY, N >3 isabounded domain with 92 of class O,
(A) c and h belong to LP(€2) for some p > N and satisfy ¢ 2 0,
e L>(Q) satisfies 0 < py < p(x) < po.
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Depending on the parameter A € R we study the existence and multiplicity of
solutions of (Py). By solutions we mean functions v € HJ(2) N L>(Q) satisfying

/ VuVudr = /\/ c(z)uv dx + / w(z)|Vul*v dz + / h(x)vdz,
Q Q ) Q
for any v € H}(2) N L>(Q).
First observe that, by the change of variable v = —u, problem (P)) reduces to

—Av = Ae(x)v — p(x)|Vol]* — h(z), v € Hy()NLX(NQ).

Hence, since we make no assumptions on the sign of h, we actually also consider
the case where |Vu|? has a negative coefficient.

The study of quasilinear elliptic equations with a gradient dependence up to
the critical growth |Vu|* was essentially initiated by Boccardo, Murat and Puel
in the 80’s and it has been an active field of research until now. Under the
condition A¢(z) < —ap < 0 a.e. in Q for some oy > 0, which is usually referred
to as the coercive case, the existence of a unique solution of (Py) is guaranteed
by assumption (A). This is a special case of the results of [§, 9] for the existence
and of [0, [7] for the uniqueness. Let us point out that the requirement to deal
with bounded solutions in (P)) is essential to the uniqueness results. Indeed if
one admits more general solutions, the existence of infinitely many solutions is
known in several cases, see for example [ 2].

The limit case where one just require that Ac(z) < 0 a.e. in €2 is more complex.
There had been a lot of contributions [2, [13] 19, 21] when A\ = 0 (or equivalently
when ¢ = 0) but the general case where Ac < 0 may vanish only on some parts of
Q2 was left open until the paper [4]. It appears in [4] that under assumption (A)
the existence of solutions is not guaranteed, additional conditions are necessary.
When A = 0 this was already observed in [I3]. By [4], the uniqueness itself holds
as soon as Ac(x) < 0 a.e. in Q. See also [5] for a related uniqueness result in a
more general frame.

The case A¢ = 0 remained unexplored until very recently. Following the paper
[23] which consider a particular case, Jeanjean and Sirakov [18] study a problem
directly connected to (Py). In [I8, Theorem 2|, assuming that u is a positive
constant and h is small (in an appropriate sense) but without sign condition, a
Ao > 0 is given under which (P)) has two solutions whenever A\ €]0, Ao[. This
result have been complemented in [I7] where two solutions are obtained, allowing
the function ¢ to change sign but assuming that h > 0 and that max{0, Ac} = 0.
The restriction that p is a constant was subsequently removed in [4] under the
price of the assumption h > 0.

If multiplicity results can be observed in case Ac 2 0, the existence of solution
itself may fail. In [4, Lemma 6.1], letting 71 > 0 be the first eigenvalue of

(1.1) — Ap1 =vc(z)p1, @1 € Hy(),
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it is proved when h > 0 that problem (P)) has no solution when A = v; and no
non-negative solutions when A\ > ~;. This contrasts to what was observed in [3]
Theorem 3.3], namely that if ¢ > 0 is a constant and h < 0, then there exists a
negative solution of (P)) as soon as A > 0. In addition this negative solution is
unique [3 Theorem 3.12]. Considered together, the results of [3, 4] show that the
sign of h has definitely an influence on the set of solutions of (Py) when A > 0.

Despite the works [3, 4, 17, (18], having a clear picture of the set of solutions of
(Py) in the half-space |0, +oo[x (Hg (2) N L>(Q)) is still widely open. The present
paper aims to be a contribution in that direction. Note that both in [3] and [4],
the main results (under this assumption) are obtained assuming that h has a sign,
positive in [4], negative in [3], and then these papers look for solutions having the
same sign as h. In our paper, we remove in particular the assumption that h has
a sign. Also we show that even when h has a sign, solutions not having this sign
may exist.

We point out that with respect to [3, 4] we have strengthened our regularity
assumptions by requiring ¢ and h in LP(Q2) for some p > N while in [4], ¢ and
h are in LP(Q) for some p > & and in [3], the regularity assumptions are even
weaker. Under our assumptions all solutions of (Py) lies in W (Q) € CL(Q) (see
Theorem . This permits to use lower and upper solutions arguments together
with degree theory. Now, for future reference, we recall,

Definition 1.1. Let u,v € C(2). We say that
o u < if forall z € Q, u(x) <v(z);

o u S vif, for all z € Q, u(x) < wv(x) and u # v;
o u < v if forall x € Q, u(z) < v(z).

Let o1 be the first eigenfunction of (1.1)). We know that, for all z € Q, ¢;(z) >
0 and, for z € 09, %(m) < 0 where v denotes the exterior unit normal.

Definition 1.2. Let u,v € C(Q2). We say that B
e u < v in case there exists ¢ > 0 such that, for all z € Q, v(z) —u(z) > ep1(x).

Remark 1.1. Observe that, in case u,v € C'(Q), the definition of u < v is
equivalent to: for all z € , u(x) < v(x) and, for z € 9, either u(z) < v(x) or

u(z) = v(x) and %(a:) > %(x).

Recall that by [4, Theorems 1.2 and 1.3], we have the following result relying
on [22, Theorem 3.2].

Theorem 1.1. Under assumption (A), for X < 0 the problem (P\) has at most
one solution uy. Denote

Y ={(\u) €RxC(Q) ] (\u) solves (Py)}.
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In case (Fy) has a solution ug, then there exists a continuum C C X such that
C N ([0,400[xC(R)) is unbounded in R x C(2) and CN ({0} x C(2)) = {up}.
In case h = 0, this continuum C consists of non-negative functions and its

projection ProjgC on the A-azis is an interval | — oo, A\] C | — 0o, 1| containing
A =0 and C bifurcates from infinity to the right of the axis A = 0.

Remark 1.2. From [4, Corollary 3.2], we know that (Fp) has a solution if

(1.2) inf / (|Vul* = poh™ (z)u?) dz > 0,
Q

{ucHy ()] llull g1 () =1}
where h™ = max{0, h}.

Our first main result gives informations on the behaviour of this continuum
without assuming that h 2 0.

Theorem 1.2. Under assumption (A), in case (Fy) has a solution, the continuum
C of Theorem[1.1] satisfies one of the two cases :

(1) it bifurcates from infinity to the right of the axis A = 0 with the correspond-
ing solutions having a positive part blowing up to infinity as X\ — 0T ;
(ii) 4t is such that its projection ProjgC on the A-axis is R.

In Corollary [4.1] below, we show that we are in situation (i) of Theorem [1.2] if
(Py) has a solution and

/Qh(x) ¢1(x) dz > 0.

In [I8, Theorem 2| under conditions insuring that (F) has a solution it was
proved, assuming that p is a constant, that (Py) has two solutions for A > 0
small. Here we remove this restriction on pu.

Theorem 1.3. Under assumption (A) and assuming that (Py) has a solution uo,
there exists a A €10, +00] such that

(i) for every A €]0, \[, the problem (Py) has at least two solutions with
o uy1 K Uy2;

e maxuy, — +00 and ux; — uy in C¢(Q) as A — 0;
Q

(ii) if A < +o0, the problem (P5) has exactly one solution u.

Next we show that having a sign information on the solution wug of (Fp) allows
us to give more precise informations on the set of solutions of (Py) when A > 0.

Theorem 1.4. Under assumption (A) and assuming that (Py) has a solution
up > 0 with cuy = 0, every non- negative solution of (P\) with A > 0 satisfies
u > ug. Moreover, there exists A €0, +o00[ such that
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FiGURE 1. Illustration of Theorem [L.4]

(i) for every A €]0, \[, the problem (Py) has at least two solutions with
o0 S Uy K U1 < UN2;
o if \i < Ag, we have uy, 1 <K Uy, 1;
e maxuyy — +00 and uy; — ug in CH(Q) as A — 0;

9)
ii) the problem (Px) has exactly one non-negative solution u;
p X Y g
(iii) for every A > A, the problem (Py) has no non-negative solution.

Remark 1.3. Since —Aug = pu(z)|Vug|*+h(x), we deduce by the strong maximum
principle that, in case h = 0, we have uy > 0 thus cuy = 0.

In comparison to Theorem [1.4] we have

Theorem 1.5. Under assumption (A) and assuming that (Fy) has a solution
up < 0 with cug < 0, for every A > 0, problem (Py) has two solutions with

uy1 K Uy 2, uy1 < ug, and maxuyp > 0.
Q

Moreover we have

o if \i < Ao, then uy, 1 > Ux,1;

e maxuyy — +00 and uy; — ug in CH(Q) as A — 0.
Q

Remark 1.4. Observe that in case (Py) has a solution uy with cug = 0, then wg is
solution for all A € R.

Remark 1.5. In Proposition , we prove also that, if (Fy) has a solution uy < 0
with cup < 0, then (P)) has at most one solution u < 0.

Corollary 1.6. Under assumption (A) and assuming that h < 0, for every A > 0,
problem (Py) has two solutions uy 1, uy 2 satisfying the conclusions of Theorem.

Corollary should be compared with [3, Theorem 3.3] where the authors

prove the existence only of u); under however weaker regularity assumptions.
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Ficurg 3. Illustration of Theorem

Our Theorems - require (Fp) to have a solution and thus we are in a
situation where a branch of solutions starts from (0, up). In our next results we
consider the situation for A > 0 “large”.

Theorem 1.7. Under assumption (A) and assuming that

(a) (Fy) does not have a solution ug < 0;
(b) there exists \g > 0 and By an upper solution of (Py,) with By < 0.
Then there exists 0 < A < \g such that

(i) for every A €]\, +oo[, the problem (Py) has at least two solutions with
urg K 0 and uy; < uyz.
Moreover, if \i < Ao, we have uy, 1 >> Ux,1;
(ii) the problem (Py) has a unique solution uy < 0;
(iii) for A < A, the problem (Py) has no solution u < 0.

In our last results we change our point of view and consider no more the
dependence in A but in [|AT||. In proving Theorem we shall also obtain, in
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case ||hT]| is small enough, the existence of a negative upper solution of (Py,) for
some g > 0 as needed in the assumptions of Theorem [1.7]

Theorem 1.8. Under assumption (A), let h € LP(Q) and consider h* and h~

respectively its positive and its negative part. Assume that bt #=0. Let vy >0 be
the first eigenvalue of

(1.3) — Au+ poh™ (2)u = ve(z)u, ue HHQ).
Then, for all X > vy, there exists k = k(\) €]0, +oo| such that:
(i) for all k €10, k[, the problem
(Qar)  —Au=Ae(x)u+ p(z)|Vul® + kht(z) — h~(x), w e HL(Q)NL>(Q)
has at least two solutions uy; <K uy2;

(ii) for all k > k, the problem (Qxx) has no solution;
(iii) for k = k, the problem (Qx) has evactly one solution.

We deduce from Theorems [I.4] and the following Corollary that concerns
the case h 2 0.

Corollary 1.9. Under assumption (A) and assuming that h 2 0, for all A>m
where v, > 0 is the first eigenvalue , there exists k > 0 such that, for all
k€0, k],
(i) there exists Ay €10, 71| such that:
e for all A €]0, \], the problem

(1.4) — Au = Me(x)u + p(2)|Vul® + kh(z), w € Hy(Q) N LX(Q)

has at least two positive solutions;
e for A = A1, the problem (1.4) has exactly one positive solution;
e for A > Ay, the problem (1.4) has no non-negative solution;
(ii) for A =1 the problem (1.4) has no solution;
(iii) there exists Ay €]y, N such that:
e for A\ > )y, the problem has at least two solutions with uy, < 0
and minuy o < 0;
o for A = \o, the problem (1.4) has a unique non-positive solution;
o for A < )Xo, the problem (1.4) has no non-positive solution.

Remark 1.6. Observe that, as h > 0, we have 7, = vy, where v; is the first
eigenvalue of (1.3) and 7 is the first eigenvalue of (1.1).

We conclude this paper considering the case h = 0 which can be seen as
intermediate between the case h 2 0 considered in Corollary and the case
h < 0 considered in Corollary [1.6 Observe also that if we consider the problem
(1.4) with k£ €] — o0, %], then, it is easy to see that the lower of the two solutions
tends to 0 and that Ay — v, Aa — 71 as k — 0.
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FIGURE 4. Illustration of Corollary
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FiGURE 5. Illustration of Theorem [L.10]

Theorem 1.10. Under assumption (A) with h = 0 and recalling that ~ > 0
denotes the first eigenvalue (1.1)), we have

(i) for all X €]0,71[, the problem

(1.5) — Au = Ae(z)u + p(@)|Vul>, w € Hy(2) N L®(Q)
has at least two solutions uyy =0 and uy2 = 0 with maxuys — 400 as
Q
A—0;

(ii) for A = the problem (1.5)) has only the trivial solution;

(iii) for A > 71, the problem (1.5) has at least two solutions uxy = 0 and
ux2 < 0.

Remark 1.7. Considering the solutions of (P)) as stationary solutions for the
corresponding parabolic problem, assuming (A) together with 9 is of class C?
and ¢, h € LP(Q) with p > N + 2, and applying [12, Corollary 2.34 and Propo-
sition 2.41], we can prove that, in the above results, the first solution wy; is
L-asymptotically stable from below and u) s is L£-unstable from below. In the
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particular case of Theorem as (Py) has a unique negative solution wu, ; < uo,
we have also uy; is L-asymptotically stable. Fore more informations, see [12].

Our existence results relies on the obtention of a priori bounds on the solutions,
see Lemma [3.1] and Theorem [3.3] These results, which are valid for arbitrary
solutions, use in a central way the assumption p(z) > gy > 0 for some u; > 0.
Removing this condition seems delicate and in that direction some results are
obtained in [24] for non-negative solutions. In [24] it is also shown that some
conditions are necessary to obtain a priori bounds for non-negative solutions.

In the case p > 0 constant it is possible to precise the blow-up rate, as A — 0T,

of our solutions u,  obtained in Theorems[1.3} [I.4} [I.5land [1.10] As a by-product,
we also obtain that the a priori estimates obtained in Theorem are sharp.

The paper is organized as follows. In Section [2| we present some preliminary
results. Section [3] is devoted to our a priori bounds results. In Section [] we
prove our main results. Section [5]is devoted to the special case p constant and
in Section [6] the reader can find a list of open problems.

Acknowledgments The authors thank D. Mercier and C. Troestler for fruitful
discussions on the interpretation of the results and for providing them the figures
of the paper. The authors also thank warmly B. Sirakov for pointing to them a
mistake in an earlier version of this work.

Notations For v € Hj(Q2) we set v = max{0,v} and v~ = max{0, —v}.

2. PRELIMINARY RESULTS

In our proofs we shall need some results on lower and upper solutions that we
present here adapted to our setting. We consider the problem

—Au = f(x,u,Vu), in Q,

(2.1) u =0, on 0f2,

where f is an LP-Carathéodory function with p > N and solutions are sought in

WP (Q).

Definition 2.1. A reqular lower solution (respectively a regular upper solution)

of (2.1) is a function a (resp. () in W*P(Q) such that

—Aa(z) < f(z,a(z), Va(z)), forae z e,
a(zr) <0, for all z € 09,

(respectively

_Aﬁ(w) > f(l‘,ﬁ(l’),Vﬁ(l’)), for a.e. = € Qa
B(x) >0, for all x € 0Q).
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Definition 2.2. We define as a lower solution « of a function of the form
o = max{q; | 1 <i < k} where ay,..., o are regular lower solutions of (2.1)).
Similarly, an upper solution, 3 of is a function of the form f = min{f; | 1 <
Jj <1} where f3y,..., 3 are regular upper solutions of .

Remark 2.1. The set of functions w such that u < w < v is open in Cj(€?) (the
space of the C''-functions in Q which vanish on the boundary of ).

Problem ([2.1)) can be transformed into a fixed point problem. The operator
(2.2) L:WP(Q) = LP(Q); u— —Au

is a linear homeomorphism.
Since f is an LP-Carathéodory function, the operator

(2.3) N CH@Q) = LP(Q); u s f(ull), Vu(.)

is well defined, continuous and maps bounded sets to bounded sets. Since p > N,
as WP (Q) is compactly embedded in C2(Q), the operator M : CL(Q) — CL(Q)
defined by

M(u) = L7 N,
where £ and NV are given respectively by and , is completely continuous
and the problem is equivalent to

u = Mu.

To be able to associate a degree to a pair of lower and upper solutions we also
need to reinforce the definition.

Definition 2.3. A lower solution « of is said to be strict if every solution
u of such that o < u on (2 satisfies o < w.

In the same way a strict upper solution [ of is an upper solution such
that every solution u with v < 8 is such that u < .

Our main tool regarding the existence and characterizations of solutions of
problem by a lower and upper solutions approach is the following theorem.
This result, which can be obtained adapting some ideas from [11, [12], will be
proved in the Appendix.

Theorem 2.1. Let Q is a bounded domain in RN with boundary 0Q of class
CY and f be an LP-Carathéodory function with p > N. Assume that there
exists a lower solution o and an upper solution B of such that a < (3.
Denote o := max{e; | 1 < i < k} where aq,...,q are reqular lower solutions of
(2.1) and B = min{B; | 1 < j < I} where By,..., [ are regular upper solutions
of . If there exists K > 0 and h € LP(Q) such that for a.e. x € Q, all
w € [min{o; | 1 <i<k},max{G; |1 <j<I}] and all £ € RY,

(2.4) |f(z,u,8)| < h(z) + K[,
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then the problem (2.1)) has at least one solution u satisfying
a<u<f.

Moreover, problem (2.1)) has a minimal solution uyy, and a maximal solution Umax
in the sense that, Umi, and Umax are solutions of (2.1)) with o < Umin < Umax < B

and every solution u of (2.1) with a < u < (8 satisfies Umin < u < um;(
If moreover v and B are strict and satisfy o < [, then, there exists R > 0

such that
deg(I — M,S) =1,
where
S={ueC;Q) |a<xu<ys, ullc <R}

Remark 2.2. If o and 8 are respectively strict lower and upper solutions of
with o < 8 then a@ < . Indeed, from the first part of Theorem [2.1] we deduce
the existence of a solution u with a < u < . By definition of strict lower and
upper solutions, we obtain o < u < [ and hence o < .

Remark 2.3. We shall apply Theorem 2.1 with N (u) = Ac(z)u+pu(z)|Vul|*+h(z).
Hence, as we are concerned with the A-dependance, we will denote the fixed point
operator M instead of M.

Our assumption (A) implies that the following regularity result applies to prob-
lem (P )\).

Theorem 2.2. Let Q) is a bounded domain in RN with boundary 0 of class C11,
ce LP(Q), h e LP(Q) with p > N and p € L>®(Q). Let u be a solution of

(2.5) — Au = c(z)u + p(2)|Vul> + h(x), u € Hy(Q)NLX(Q).

Then u € WiP(Q) C CH(Q).

Remark 2.4. This result is not a simple consequence of classical bootstrap argu-

ments as, for u € Hi(2) N L>®(Q), u|Vul*> € L () which does not allow to start
a bootstrap process.

Remark 2.5. Observe that any solution u € C1(Q) of (2.5) belongs to W27 (€).

Proof. Let uw € Hg(2) N L*>(Q) and define the function g = cu + u + h. Observe
that g € LP(Q2) with p > N and u is solution of

(2.6) — Av = —v+ p(z)|Vo]* + g(z), v e Hy() N LX(Q).

From [5, Theorem 1.1] we know that admits at most one solution in H} ()N
L*>(Q). Thus, if we prove that has a solution v € Wg?(Q), we obtain
u=ve W;P(Q). To prove that has a solution v € W (), we shall use
Theorem 2.1, Thus, we need to prove that has a lower o and an upper
solution 8 with a < j.
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We set 11 = ||pt||oo. Clearly any solution of

—Au = —u+pu|Vul* + g*(z), inQ,

(2.7) u =0, on 0f),

is an upper solution of (2.6) and any solution of

—Au = —u—7|Vul* — g (z), in €,

(2.8) u =0, on 0f2,

is a lower solution of (2.6). Now, observe that, if w € VVO2 () is a solution of

—Aw = —w+a|Vw* + g~ (z), inQ,

(2.9) w =0, on 0f,

then u = —w satisfies (2.8). Thus, if we find a non-negative solution u; € W;*(Q)
of and a non-negative solution uy € Wg’p(Q) of then, setting 8 = u;
and o = —uy, we have the couple of lower and upper solutions required to apply
Theorem 2.11

Let us construct u;, the construction of us being similar. Our construction
makes use of the classical Hopf-Cole change of variable. Let wy; € Hg(2) be the
non-negative solution of

—Awy = fig* (z)wy —m(wi) +g"(z), L,

wy =0, on OS2
where
L1 +ms)In(1+ms), if s>0,
_ I =
(2.10) m(s) = { —%(1 —ps)In(l —@ms), if s<0,

given by [4, Lemma 3.3]. By [25, Lemma 3.22] and a bootstrap argument, it is
easy to prove that w; € W?P(Q). Hence

In (7 1
Uy = M € W2P(Q),
and one readily shows that u; > 0 is a solution of (2.7)). U

Proposition 2.3. Under assumption (A) if a is a lower solution of (Py) and [
an upper solution of (Py) then o < 3.

Proof. By Definition we have that o = max{a; | 1 <7 <k}, f = min{p; |
1 < j <} with o; and ; being respectively regular lower and upper solutions
of (Py). Since oy and f3; are in W2?(£) they belong to H(Q) N WY (Q)nC(Q)
and we deduce using [0, Lemma 2.2] that o; < ;. By using again the definition
of a and [ it follows that o < f5. O

The following estimates will also be useful.
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Lemma 2.4 (Nagumo Lemma). Let p > N, h € L*(Q), K >0, R > 0. Then
there exists C > 0 such that, for all u € W?P(Q) satisfying

Aul < h(z) + K|Vul|?, a.e. in
|Aul : ,

u =0, on 052,
and
[ulle < R,
we have
[ullw=r < C.
Proof. see [25] Lemma 5.10]. O

Lemma 2.5. Assume that c,h € LY(Q) for some ¢ > &. Then if u € Hj() is
solution of

—Au < ¢(z)u + h(x), (resp. — Au > c(x)u + h(x))
in a weak sense, then wu is bounded above (resp. below) and

Sup ut < O(Jutll2+ [IAllg), — (resp. supu < Cllu™ll2 +112llq)),

where C' > 0 depends on N, q, |Q| and ||c||,-

Proof. This is a consequence of [26] Theorem 1] combined with Remark 1 on p.
289 in that paper. It can also be obtained by adapting the proof of [15, Theorem
8.15] (which implies the result in the case where ¢ € L>(2)), as remarked at the
end of p. 293 of that book. Il

We also need the following formulation of the anti-maximum principle. Under
slightly more smooth data, this result was established in [16]. Nevertheless, the
proof given in [I6] directly extend to our regularity assumptions.

Proposition 2.6. Let ¢,h,d € LP(Q)) with p > N and assume that h = 0. We
denote by vy, > 0 the first eigenvalue of

(2.11) — Au+d(x)u = me(x)u, ue Hy(Q).
Then there exists g > 0 such that, for all X € |y, n + &), the solution w of
(2.12) — Aw +d(z)w = Mé(x)w + h(z), u € HI(Q)

satisfies w < 0.
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3. A PRIORI BOUND

This section is devoted to the derivation of some a priori bounds results for the
solutions of (Py). Most of our results hold under more general assumptions than

(A).

First, using ideas of [3], we obtain the following lower bound on the upper
solutions of (Py).

Lemma 3.1. Under conditions (A), for any Ay > 0, there exists a constant
M = M (A, pi, |[c]|ny2, [|R7 | vj2) > 0 such that, for any A € [0, As], any function
u € HI(Q) N L>®(Q) verifying u > 0 on 0Q and such that, for all v € H}(Q) N
L>(Q) with v > 0 a.e. in §2,

(3.1) /Q VuVudr > /Q[)\c(x)u + ()| Vul* + h(z)]v dx

satisfies
mﬂin u>—M.

Remark 3.1. This result is valid under less regularity conditions than (A) and
without sign conditions on ¢ and h. More precisely, it holds under the conditions:
Q c RN, N > 2is a bounded domain with 9Q of class C!, ¢ and h belong to
LP(Q2) for some p > N/2, u € L>®(Q) satisfies 0 < py < p(z) < po.

Moreover, the lower bound does not depend on A" and depends only on an
upper bound on A > 0.

Proof. Let us take v = u~ as test function in (3.1)). We obtain

—/ Vu~|*dr > —A/c*(u_)de—i—ul/|Vu_]2u_da:—/h_u_ dx
Q 0 iz 0
> —A2/0+(u_)2dx+,u1—/|V(u_)3/2|2da7—/h_u_ dx
Q 9 Ja Q
and hence
4
ul—/ ]V(u)S/Q\zdx+/ |Vu|2dx§/hu d:c+A2/c+(u)2da:.
9 Ja Q 0 0
For every € > 0 we have

AQ/QC+(U)2dx = /Q(A2c+)1/2(u)1/2(Azc+)1/2(u)3/2dx

1
< —Ag/c+u d:l:—i—EAg/ch ((u’)?’/z)2 dz.
2e Q 2 Q

Also, for some constant Cy, by Sobolev’s embedding, we get

_ 2 _ 1 B
/QC+ (@ )*2)" do < || Inpall (u )23 < C—NHCWN/zW(u )¥213.
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We then obtain

4
ul—/\V(u)?’/z]Qd:c—i—/\Vu|2dx
< / B de s A, / et da + S22 et gl V()P
Q 2e Q

2Cy
Cn :
U1=, 1t comes

Hence, by choosing ¢ = ———
Aollet g9

2
Mlg/ |V(u‘)3/2|2dx+/|Vu_|2dx
Q

Q
9AZ||ct
§/h‘u‘dx+M/c+u_dx
Q 811C'y Q

< (I yellVu e + 221 Byl 9l )
from which we deduce that
o Ny < O+ 2 )
By Lemma [2.5| we obtain that
u> =M= —M(Ay, pur, |lell sz, (177 [|ny2),
which allows to conclude. |

As a simple corollary, we have the following result.

Corollary 3.2. Under conditions (A), for any Ay > 0, there exists a constant
M = M (A, pa, ||c]|nj2, [[R7 | nj2) > 0 such that, for any A € [0,As], any upper
solution 8 of (Py) satisfies

ms%nﬁ > —M.

Proof. As f = min{f; | 1 < j < [} where (; are regular upper solutions, they
belong to H'(Q2) N L=(Q) and satisfy (3.1). We conclude by Lemma [3.1] O

Let 7; > 0 denotes the first eigenvalue of
(3.2) — Au+ b (2)u = ve(z)u, u € Hy(S2),

with corresponding eigenfunction ; > 0.

Theorem 3.3. Under condition (A), for any Ay > Ay > 0, any A > 0, there
exists a constant M > 0 such that, for any A € [A1, N3], a € [0, A], any solution

u of
(3.3) — Au = Ae(z)u + p(@)|Vul> + h(z) + ac(z), w € Hy(Q)N LX(Q),
satisfies

|| < M.
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Moreover, viewed as a function of Ay, M = Og+(1/Ay).

In the above theorem, the notation M = Og+(g(A;)) means the existence of
C > 0 such that

<C, as Ay — 0.

‘M(Al)
g9(A1)

Remark 3.2. The above theorem is valid under less restrictive conditions. In fact
it is valid if we replace the regularity ¢ and h € LP(Q2) with p > N by ¢ and
h € LP(Q2) with p > N/2 and h~ € L%(2) for some ¢ > N. This last condition
is used to prove that the first eigenfunction ; > 0 of satisfies ¢; > do(x)
for some constant d > 0 where d(z) denotes the distance from x to 9. This is
needed to insure that the conclusion of Lemma holds. Following the proof of
[4, Lemma 6.3] it is possible to prove that this condition on ; holds under this
stronger regularity.

In the proof of the Theorem the following technical lemmas will be used.

Lemma 3.4. Let p > & and 6 €]0,1[. There exist r €]0,1[ and o €]0, 21;;_11[
such that if we define

1+ 0o 1 «
4 =1 I
(3.4) g=ltrt oo T
then it holds
1 2N(p —1
(3.5) Loy 2Ne=l)
D p(N — 2+ 27)
and
(3.6) 1 < 2
) —a < —.
q
Proof. See [4, Lemma 6.2]. O

Lemma 3.5. Let b € LP(Q) with p > 5. For any p, ¢ > 1 and 7 € [0,1]

satisfying (3.9), there exists C' > 0 such that, for all w € Hg (),

b/ aw
ol S CllbllpVawllz,
L llg
where 11 > 0 denotes the first eigenfunction (3.2]).
Proof. See [4, Lemma 6.3] or [10]. O

Proof of Theorem[3.3. Let A € [A1,As], a € [0, A] and u be a solution of (3.3)).
Assume without loss of generality that Ay < 1 < Ay;. We define

1 1
w;(r) = ;(e’““(m) —1) and g;(s) = m In(1+ us) i=1,2.
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Then we have
(3.7) u = gi(wi) = ga(w2),
(3.8) et = 1+ pww;, =12
Direct calculations give us
—Aw; = e""(Ae(z)u+ h(z) + ac(x)) + " (u(z) — ;)| Vul?
= (14 ) (@) gi(w) + hlx) + ac(z)) + (1 + o) () — )|Vl
Since 1 < p(x) < pg, we have
(3.9) —Aw; > (14 pwy)[Ae(x)gr(wy) + h(x) + ac(z)],
(3.10) —Awy < (14 pows)[Ae(x)ga(ws) + h(z) + ac(x)],

in a weak sense.

From the inequalities and , we shall deduce that ws, is uniformly
bounded in HE($2). This will lead to the proof of the theorem by Lemma[2.5 We
shall denote by C' a generic constant independent of A; and by C'(A;), a generic
constant depending on A;. We then precise its dependence on A;.

We divide the proof into three steps.
Step 1. Let 0 = (us — p1)/pn2 €10,1[. Then there exists D = D(A;y) > 0
independent of A € [A1, As] and of a € [0, A] such that

(3.11) /Q(l + pw)egr (w) + b + aclyy de < D(Ay),

(3.12) /Q(l + prow ) " ega(wy) + BT 4 acjyy de < D(A,).

Moreover D(A;) = Ogy+ (e'/M1).
Indeed, using 1; > 0 (defined in (3.2))) as a test function in (3.9)) and integrating

we have

/[ch — ,ulh_}wﬂbl dx Z /(1 + ulwl)[/\cgl(wl) + h + (lC]@/)l dzx.
Q Q

Recording that A < A, and then, by Lemma , that ¢ (w; ) = u~ is uniformly
bounded we then obtain

7 / cwi)y do > /(1 + pwy)[Aegr (wy) + b+ aclypy de + 1y / h~ w1y dx
Q ) Q
_ /(1 + pwn) i (wn) + A + aclibr de — / Wy da
Q Q

> /(1 + prw)[Aegi (wi) + A + acjyy do — C.
0
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Then, since A > Ay and A; < 1, we deduce that

(313) ﬂl / Cw1¢1 dx Z A1 /(]. + ,ulwf)[cgl(wf) + h+ + CLC]Q/Jl dx — C.
Q Q

Note that for any € > 0 there exists C. > 0 such that, for all ¢ > 0,
(3.14) t<e(l+ put)gi(t) + Ce.

A direct calculation shows that we can assume that C. = Og+ (c€'/?). Using (3.14))

A
with € = —}, we get that
2V1

Iz / cunty dr < 1y / cwfzﬁl dx
Q Q

A
(3.15) < 71 / (1 + pw)[egr(wy) + bt + aclpy dx + Cy,.
Q

We then obtain (3.11)) from (3.13)) and (3.15)). Now observe that by (3.8)),

1+ pw, = eh1v — (€M2u) (1 + N2w2) -0

Thus from (3.7) we see that (3.12)) is nothing but (3.11)).

Step 2. There exists a constant D = D(Ay) > 0 independent of a € [0, A] and
A € [A1, As] such that

(3.16) IVwi |l < D(Ay).
Moreover D(A;) = Og+ (e®/M) with B = g
First we use Lemma 3 to choose r E 10,1] and a € ]0 [ such that ¢ and 7

defined by ((3.4) satisfy 3.5)) and
Using wy as a test functlon in D it follows that

mmm@s/u+uwbumm@wwﬁ+wmam
Q
Setting H = h™ + Ac, we have

Vbl < Ae [ (4 pauf)ega(ws) + Hju da.
Q



MULTIPLICITY RESULT 19

Now, using Hélder’s inequality and since wy < (1+ ppwy)/u; "', we obtain, using
(3.12)) of Step 1 and for a D(A1) = Og+ (e/A1),

A2 wa (1 _{_#2w+)1+9a
Vw+2<—/1+ wi)[ege(wy) + H ! 2
[Vwy [|5 < 12 Q( powy ) [cga(wy ) )](1 ¥ ppwy )0 e

< 22 ([0 et + Hl )
p2 \Jo (1 + pawy)
o 11—«
1+ + 114;90‘
X (/(1+M2w2+)[092(w2+)+[ﬂ( MQE) dx
Q

11—«

1

dx

1+6a l-a

A 1+ ppwy ) e

gipmm</0+m@mew+Hﬁ 1) T )
Q

/‘LQ 11—«
1
We note that, for » > 0 given by Lemma there exists C' > 0 such that
g2(t) <t"+C forallt>0.

Thus, direct calculations shows that
1+0a

(1 + powy)[ega(wd ) + HI(1 + pgwy ) =2 < (c+ H)(wi’ + O),
where ¢ is given in (3.4]). Therefore for some D(A;) = OO+(61/ Ay,

/a a l—a
ngﬁsmmwkﬁ(giaiﬁydg 1

with ¢ and 7 given in (3.4). Applying Lemma , we then obtain
IVws |5 < D(Ay)* [Hc+ HHZ“_“)HV@U;”g“*a) + 1] _

By (3.6]), we have ¢(1 — «) < 2 and this concludes the proof of Step 2.
Step 3. Conclusion.

Y

By Lemma [3.1] we already know that u > —M for some M > 0. Hence we just
have to show that the estimate (3.16]) derived in Step 2 gives an estimate in the
L>=(92) norm of wy . Since wy satisfies (3.10)) we can use Lemma 2.5 with

ln(l + ILLQ'LUQ)

d = (14 pawy)Ac
H2Ws2

4 (h+ Ac)

and
f=h+Ac

Observe that, for any r €]0, 1], there exists C' > 0 such that, for all x € Q and
all A < As,
In(1 + pow,)

Ac| (1 + pows)
HaW2

< Ce(Jws|" + 1),
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where C' depends on Ag, 7, us.

Thus, since c(z) € LP(Q2) with p > & and w, is bounded in L%(Q), taking
r > 0 sufficiently small we see, using Holder’s inequality, that c(x)|wq(z)|” €
LP1(Q) for some p; > &. Now as h € LP(Q) for some p > & clearly all the
assumptions of Lemma are satisfied. From (3.16|) we then deduce that there
exists a constant D(A;) > 0 with D(A;) = Og+(e?/*1) and 8 given by Step 2,
such that
oo < D(AL).

Now since u™ = go(w; ) we deduce that
[u o < M(Ay),
for some M (A1) = Og+(1/Ay). O

Lemma 3.6. For every Ay > 0, there exists Ay > 0, independent of A € [0, Ay],
such that the problem (3.3)) has no solution for a > Aj.

Proof. Let ¢ € C§°(Q) such that [, ¢(x)¢® dz > 0 and use ¢* as test function in
(3.3). Then we obtain

1 2 2 42
d dr — d
/Q|u(x)||V¢| x> 2/Q<quV¢ x /Q\u(x)HVM ¢”dx
— 2 2 2
= /\/chgb d$+/9hgb dx+a/ﬂc¢ dx

> /\minu/c¢2dx+/hqb2dx+a/c¢2dx.
Q Q

Q
Since, by Lemma [3.1] there exists M > 0 such that, for all @ > 0, any solution u
satisfies u > — M, this gives a contradiction for a > 0 large enough. U
4. RESULTS

This section is devoted to the proof of our main results.

Proof of Theorem[1.2 Let C C X be the continuum obtained in Theorem [I.1]
Either its projection ProjiC on the A-axis is R or its projection on the A-axis is
] — 00, A] with 0 < A < +o0. In the first case, the result is proved. In the second
case, as by Theorem we know that C N ([0, +00[xC(Q)) is unbounded, its

projection on C(£2) has to be unbounded.

By Theorem we know that for every 0 < A; < A,, there is an a priori
bound on the solutions for A € [Aj,As]. This means that the projection of
C N ([A1, ] x C(Q)) on C(Q) is bounded. Now by Lemma [3.1] there is a lower
bound on the solutions for A < A;. Thus C must emanate from infinity to the
right of A\ = 0 with the positive part of the corresponding solution blowing up to
infinity. U
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Corollary 4.1. Under assumption (A) and assuming that (Fy) has a solution,
let 1 > 0 the first eigenfunction of (1.1)). If

/Q W) (z) dz > 0,

then we are in case (i) of Theorem[1.4 and maxProjpC < 7;.

Proof. Let u be a solution of (Py). Multiplying by ¢; > 0 and integrating we
have

(1~ ) / o(z)upr da = / () [Vl di + / h(x)pr de > 0,

which is a contradiction for A = 7;. Hence (P)) has no solution for A = +; which
proves that we are in the first situation in Theorem [I.2] O

In order to consider the situation where (F) has a solution with minu < 0, we
need the following lemmas.

Lemma 4.2. Under assumption (A), for every A > 0, there exists a strict lower
solution vy of (Py) such that, every upper solution 3 of (Py) satisfies vy < 3.

Proof. Let M > 0 be given by Corollary such that, for every upper solution
5 of
(4.1) —Au = Ae(x)u+ p(x)|Vul> —h~(z) — 1, in Q,

’ u =0, on 0f),
we have § > —M.

Let kK > M and consider «; the solution of

—Av = —=Xke(z) —h™(x) — 1, in Q,
v =0, on Of).

As —Xke(z) — h™ () — 1 < 0, we have oy, < 0 by the strong maximum principle
(see |25, Theorem 3.27]).

Claim 1: Every upper solution [ of (Py) satisfies B > ay. In fact, § = min{p; |
1 < j <1} where f,...,[ are regular upper solutions of (Py). Setting w =
Bj — ay, for some 1 < j <[ we have

—Aw > Ae(x)(B; + k) >0, in €,
w =0, on Of).
By the maximum principle w > 0 i.e. 8; > aj. This proves the Claim.

Consider then the problem

—Av = Ae(x)Ti(v) + p(x)|Vo|*> = h~(z) — 1, in Q,

(4.2) v=0, on 0f,
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where
Tk(’U) = —k', if v S —k‘,
= v, ifv>—k.
It is easy to prove that oy and [ are lower and upper solutions of (4.2)) and hence,
by Theorem [2.1] this problem has a minimal solution vy with ay < v, < .

Claim 2: FEvery upper solution B of (Py) satisfies f > vj. Observe that, by
construction of (4.2]), every upper solution 5 of (Py) is also an upper solution of
(4.2). As, by Claim 1, we have > oy, the minimality of vy implies that v, < f.

Claim 3: vy is a lower solution of (Py). Observe that vy is an upper solution
of (4.1). Hence vy, > —M > —Fk and vy, satisfies

—Av = Xe(z)v + p(x)|Vol2 —h™(x) — 1, in Q,
v =0, on 0f).

This implies that vy, is a lower solution of (Py).

Claim 4: vy, is a strict lower solution of (Py). Let u be a solution of (Py) with
u > v;. Then w = u — vy, satisfies
—Aw — p(x)(Vu + Vo | Vw) > Ae(z)w +ht(z) +1>1, in Q,
w =0, on 0.

By the strong maximum principle (see [25, Theorem 3.27]), we deduce that w > 0
Le. u > v ]

Remark 4.1. Lemma [4.2] shows that, for (B), to have an upper solution is equiv-
alent to have a solution.

Proof of Theorem [1.5. We proceed in several steps.
Step 1: For all € > 0, there exists R > 0 such that deg(I — My, S) = 1 with
S={uecC;(Q)|u—e<u<<ug+e, ||lufcr < R}.

It is easy to prove that ug — e and wuy + € are lower and upper solutions of (FP,).
Moreover, as g is the unique solution of (Fp), we deduce that ug — ¢ and ug + ¢
are strict lower and upper solutions of (Py). The result then follows by Theorem

21

Step 2: There exists a Ao > 0 such that deg(I — My, S) =1 for A €10, \o| with
S defined in Step 1.

Let us prove first the existence of \g > 0 such that, for A €]0, \[, (Py) has
no solution on 9S. Otherwise, there exist a sequence {\,} with A\, — 0 and
a corresponding sequence of solution {u,} C W?2P(Q) of (Py) with u, € 9S.
Increasing R if necessary, this means that ug — ¢ < wu, < wug + € and either
max(u, — up) = & or min(u, — up) = —¢. By Lemma [2.4] there exists a R > 0
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such that, for all n € N, [Ju,[lw2, < R. Hence, up to a subsequence, u,, — u in
C;(2). From this strong convergence we easily observe that
—Au = p(z)|Vul* + h(z), inQ,
u =0, on 0f),
and either max(u — ug) = € or min(u — uy) = —¢ i.e. u is a solution of (F) with
u € S which contradicts Step 1.
We conclude by the invariance by homotopy of the degree that

deg([ — M)\,S) = deg([ - Mo,S) =1.

Step 3: (Py) has two solutions when X € ]0, \o[. By Step 2, the existence of a first
solution uy — e K uy 1 <K up + € is proved.

Also, using Lemma, , there exists A; > 0 large enough such that has no
solution for a > A;. By Theorem and Lemma there exists a Ry > R > 0
such that, for all a € [0, A;], every solution of satisfies ||u|lcr < Ro. Hence,
by homotopy invariance of the degree, we have

deg(I — My, B(0, Ry)) = deg(I — My — L' (Asc), B(0, Ry)).
As for a = Ay, the problem has no solution, we have
deg(l — My — L7 (Asc), B(0, Ry)) = 0.
We then conclude that
deg(I — My, B(0, Ry) \ S) = deg(I — My, B(0, Ry)) — deg(I — M,,S) = —1.
This proves the existence of a second solution uy 5 of (Py) with uy 2 € B(0, Ry)\S.

Step 4: Existence of X such that, for all X €]0,\[, the problem (Py) has at least
two solutions with uy 1 < uy 2. Define

A =sup{p | VA €]0, u[, (Py) has at least two solutions}.

For A €]0, [, (Py) has at least two solutions uyy1 and uyo. Let us consider the
strict lower solution « given by Lemma As a < wu for all u solution of
(Py), we can choose uy as the minimal solution with uy; > a. Hence we have
ux1 S ux2 as otherwise there exists a solution u with o < w < min(uy 1, uyz2)
which contradicts the minimality of uy ;.

Now observe that, by convexity of y — |y|?, the function 8 = %(u,\l +uyz) is
an upper solution of (Py) which is not a solution. Let us prove that f is a strict
upper solution of (Py). Let u be a solution of (Py) with w < 5. Then v:=f —u
satisfies

—Av — u(x)(VB + Vu | Vu) > Ae(x)v >0, in €,

v >0, in .
By the strong maximum principle, we deduce that either v > 0 or v = 0. If
v = 0, then § = wu is solution which contradicts the construction of 5. As
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uy1 S B S uyg, we deduce from the fact that § is strict that uy; < f S up2
and hence we have proved the step.

Step 5: In case X\ < —+o0, the problem (P5) has at least one solution u. Let
{\.} €]0, A be a sequence such that A, — A and {u,} C W??(Q) be a sequence
of corresponding solutions. By Theorem there exists a constant M > 0 such
that, for all n € N, |Ju,||sc < M and, by Lemmal[2.4] we have R > 0 such that, for
all n € N, ||u,||w2r < R. Hence, up to a subsequence, u,, — u in C3(Q). From
this strong convergence we easily observe that

—Au = Ae()u + p(z)|Vul|® + h(z), inQ,
u=0, on 0,

namely u € W*P(Q) is a solution of (Py).

Step 6: Uniqueness of the solution of (Px) in case A < +00. Otherwise, if we
have two distincts solutions u; and uy of (Py), then, as in Step 4, we prove that
B = 1(u1 + ug) is a strict upper solution of (Py). Let us consider the strict lower
solution o < 8 of (F5) given by Lemma . By Theorem we then have
R > 0 such that

deg(I — M5, 8) =1,
where
S={ueCQ)|a<u<p, |ulc <R}

Arguing as in Step 2, we prove the existence of ¢ > 0 such that, for all A €
(A —e,A+¢], deg(I — M,,8) =1 and, as in Step 3, we prove that (Fy) has at
least two solutions for A € [\, A + ¢] which contradicts the definition of A.

Step 7: Behaviour of the solutions for A — 0. Let {\,} C]0,\[ be a decreasing
sequence such that A\, — 0. Without loss of generality, we suppose A, €]0, \o|.
Then, by Steps 2 and 4, the corresponding solutions wy,, 1 satisfy uy, 1 < up +e€.
Recall that, by Corollary , there exists M > 0 such that, for all n, uy,1 > —M.
This implies that the sequence {u,, 1} is bounded in C(Q2). We argue then as in
Step 5 to prove that uy, 1 — u in C}(Q) with u solution of (F). By uniqueness

of the solution of (Fp), we deduce that u = wy.

Now let us consider the sequence {uy,2}. If {uy,2} is bounded, then as in
Step 5, we have that uy,o» — w in C5(Q) with u solution of (Fp). By Step
3 and the facts that uy,o € S, uy,2 > uy,1 and uy,1 — up, we know that

max{uy, 2 — up} > €. This implies that u # uy which contradicts the uniqueness
of the solution of (Fp). O

Remark 4.2. Observe that, by the above proof, we see that the set of A for which
the problem (P,) has at least two solutions is open in |0, +00].
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Proof of Theorem [1.4, We proceed in several steps.

Step 1: Every non-negative upper solution of (Py) satisfies u > wug. If u is a
non-negative upper solution of (Py) then u is an upper solution of (F,). By
Proposition [2.3| we deduce that u > ug and hence u is not a solution of (F,). As
in Step 4 of the proof of Theorem [1.3] we prove that u > .

Step 2: The problem (Py) has no non-negative solution for X\ large. Let ¢ > 0
the first eigenfunction of (1.1)). If (P,) has a non-negative solution, multiplying
(Py) by ¢1 > 0 and integrating we obtain

'yl/c(x)ugol dr = —/Augol dx
0 0
= /\/c(x)ugol d:):+/,u(x)|Vu|2901 dx+/h(x)g01 dx,
Q Q Q

and hence, for A > v, as u > ug, we have

0o > (A—yl)/g)c(x)ugol dx—l—/ﬂu(x)|Vu|2gpl dx+/ﬂh(x)g01 dx

> (A—’yl)/c(:c)u()(pl dx—l—/u(a:)Wu\ngl d:c—l—/h(a:)gol dr,
Q Q Q

which gives a contradiction for A\ large enough.

Step 3: Define X = sup{\ | (P\) has a solution uy > 0}, then, A < +oo and, for
all X > A, (Py) has no non-negative solution. This is obvious by definition of A
and Step 2.

Step 4: For all0 < X\ < X, (Py) has well ordered strict lower and upper solutions.
Observe that ug is a lower solution of (Py) which is not a solution. By definition
of X, we can find A € |\, \[ and a non-negative solution us of (P5). Then us is an
upper solution of (Py) and satisfies u; > wuo by Step 1. At this point following
the arguments of Step 4 of the proof of Theorem , we prove that vy and uj
are strict lower and upper solutions of (Py).

Step 5: For all A €]0,\[, (P\) has at least two positive solutions with uy <
ux1 < uy2. By Step 4, Theorem and Remark we have Ry > 0 such that
deg(l — M,,S) =1 with

S={uecC;Q)|u < u<us, |luller < R},

and we have the existence of a first solution wy; of (Py) with ug < uy; < uj. Let
us choose uy ; as the minimal solution between ug and us.

Now, using Lemma , there exists A; > 0 large enough such that has
no solution for a > A;. By Theorem and Lemma there exists Ry > Ry >
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0 such that, for any a € [0, A;], every solution of (3.3) with u > wg satisfies
|lu|lcr < Ry. Hence, by homotopy invariance of the degree we have

deg(I — My, D) = deg(I — My — L7 (Asc), D),
where B
D={uecC;Q) |u <u, ||ucx < Ri}.
As for a = A, (3.3) has no solution, deg(l — My — L7'(A;c),D) = 0 and we
obtain
deg(l — M, D\ S) =deg(l — M,,D) —deg(l — M,,S)=0—-1=—1.

This proves the existence of a second solution uy o of (Py) with uyo > ug. As
w1 is the minimal solution between ug and us, we have uy; S uy 2 as otherwise,
by Theorem we have a solution u with ug < u < min{uy1,uy2,u;} which
contradicts the minimality of wy;. We proceed as in Step 4 of the proof of
Theorem to conclude that uy; << uy 2.

Step 6: For Ay < Ag, we have uy, 1 < Uy, 1. As uy 1 is the minimal solution above
up and, as in Step 4, uy, ;1 is a strict upper solution of (Py,) with uy, 1 > g, we
deduce that uy, 1 < ux, 1.

Step 7: The problem (P5) has at least one solution. Let {)\,} C]0, \[ be a sequence
such that A, — A and {u,} C W?P(Q) be a sequence of corresponding non
negative solutions. We argue as in Step 5 of the proof of Theorem to obtain
that, up to a subsequence, u,, — u in C¢(Q2) with u € W2?(2) solution of (F).

Step 8: Uniqueness of the non-negative solution of (Px). The proof follows the
lines of Step 6 of the proof of Theorem [I.3]

Step 9: Behaviour of the solutions for A — 0. This can be proved as in Step 7 of
the proof of Theorem O

Proposition 4.3. Under assumption (A), assume that (Py) has a solution uy < 0
with cug S 0. Then, for all X > 0, problem (Py) has at most one solution u < 0.

Proof. The proof is divided in three steps.
Step 1: If u is a lower solution of (Py) with u < 0, then u < ug. In fact, u is a
lower solution of (F,) and, by Proposition we have u < ug. In addition, for
w = 1uy —u, as cu < cuy < 0, we have

—Aw — p(x)(Vu+ Vuy | Vw) = =Ae(z)u = 0, in

w =0, on 0f2.

This implies that w > 0 ie. u <K ug < 0.
Step 2: If we have two solutions uy < 0 and us < 0 of (Py) then we have two

ordered solutions U; S Uy < ug. By Step 1, we have u; < up and up < uy.
In case u; and wus are not ordered, as ug is an upper solution of (P,), applying
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Theorem , there exists a solution uz of (Py) with max{u,us} < usz < wg. This
proves the step by choosing %; = u; and uy = usg.

Step 3: Conclusion. Let us assume by contradiction that we have two solutions
up < 0 and us < 0. By Step 2, we can suppose u; S us. As |ug| > 0, the
set {v € CHQ) | v < |ug|} is an open neighborhood of 0 and hence the set
{e > 0] uy —uy <elug|} is not empty. Then defining

E=1inf{e > 0| ug — uy <elugl},
we have that 0 < £ < oo and
(4.3) g =min{e > 0 | ug — uy < elus|}.

Letting
(1 + g)UJQ — Ux
5

Wg = )

we can write

3 1
VUQ = (1 T g)VUJg‘F (E)Vul,
and by convexity
2 g 2 1 2
< . — .

We then obtain

—Aws < Me(z)ws + ()| Vwe|* + h(z).
By the choice of € > 0, w: < 0 and, by Step 1, w: < ug < 0. At this point, we
have a contradiction with the definition of £ given in (4.3). U

Our next result can be viewed as a generalization of [3, Theorem 3.12].

Corollary 4.4. Under assumption (A), assume that h < 0. Then, for all X > 0,
the problem (Py) has exactly one solution u < 0.

Proof. Clearly u = 0 is an upper solution of (Py) for all A > 0. By Lemma [4.2]
for all A > 0, (Py) has a lower solution ay < 0. From Theorem [2.1]it follows that
(Py) has a solution uy with a, < uy < 0. Now, as ug satisfies

—Aug = pu(z)|Vug|* + h(z),
the strong maximum principle and h < 0, implies that ug < 0 and in particular
cup S 0. We now conclude with Proposition [4.3] g

Proof of Theorem [1.5. We proceed in several steps.

Step 1: For all X > 0, ug is a strict upper solution of (Py). Clearly ug is an
upper solution of (Py) which is not a solution. To prove that it is a strict upper
solution, we argue as in Step 4 of the proof of Theorem [I.3]



28 C. DE COSTER AND L. JEANJEAN

Step 2: For all A > 0, (Py) has a strict lower solution o with o < (3 for all upper
solution 3 of (Py). This is Lemma [4.2]

Step 3: For all A > 0, (Py) has at least two solutions with
ung K ug, ux1 KLuyy and maxuyo > 0.
By Steps 1, 2 and Theorem there exists a R > 0 such that deg(/—M,,S) =1
with
S={ueCyQ)|a<u<ugl|ullc <R}
In particular the existence of a first solution uy; < ug is proved.

The proof of the existence of a second solution wuy o with uy; < uy 2 is derived
exactly as in Step 3 and 4 of the proof of Theorem By Proposition 3] we
have maxuy o > 0.

Step 4: If Ay < Xg, then uy, 1 > uy,1. As uy, 1 is a strict upper solution of (Py,)
and wy, 1 is the minimal solution of (Py,), we have wuy, 1 > uy, 1.

Step 5: Behaviour of the solutions for A — 0. This can be proved as in Step 7 of
the proof of Theorem O

Proof of Corollary[1.6, By the proof of Corollary , as h < 0, we have the
existence of a solution wuy of (Py) with ug < 0 and hence the result follows by
Theorem [L.A O

Proof of Theorem[1.7]. First observe that if (Py) has an upper solution 8, < 0,
then [ satisfies also ¢, < 0 as otherwise, it is also an upper solution of (Fp),
which contradicts the assumption (a) by Lemma [4.2] and Theorem [2.1]

Let us define

A =inf{\ > 0| (Py) has an upper solution 8, < 0 with ¢3, < 0}.

Let A > A. By definition of ), there exists A €]\, Al such that (P5) has an
upper solution 5 < 0 with ¢f; < 0. Clearly 5 is an upper solution of (P)
which is not a solution and hence, as in Step 4 of the proof of Theorem [I.3], 3 is
a strict upper solution of (Py).

By Lemma , (Py) has a strict lower solution a < 35 and o < w for all solution
u of (Py). Using Theorem [2.1 there exists R > 0 such that deg(/ — M,,S) =1
with

S={ueC;Q) | a<u<pbs|uller < R}.
In particular the existence of a first solution uy; < 0 follows.

To obtain a second solution uy » satisfying uy; < uy2 we now just repeat the
arguments of Steps 3 and 4 of the proof of Theorem [I.3]

Again, following the arguments of Step 4 of the proof of Theorem [I.5] we prove
that if )\1 < A27 then U1 > Uxy,1-
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To show that (P)) has at least one solution with u < 0, let {\,} C]A, +o0[ be
a decreasing sequence such that A, — A and {u,} C W?P(Q) be a sequence of
corresponding solutions with u, < u,,; < 0. As {u,} is increasing and bounded
above, there exists M > 0 such that, for all n € N, [Ju,|lc < M and hence,
arguing as in Step 5 of the proof of Theorem , we prove that (Py) has at least
one solution with v < 0.

By assumption (a), we have that A > 0 as we just proved that (P,) has at least
one solution with © < 0. The proof of the uniqueness of the non-positive solution
of (Py) follows then as in Step 6 of the proof of Theorem [1.3] Finally (iii) follows
by definition of A > 0 and the first part of the proof. O

Proof of Theorem[1.8 Let A > ;. We proceed in several steps.

Step 1: For k > 0 small, (Qxx) admits a solution. In view of Lemma [4.2] and of
Theorem 2.1} u it suffices to show that (@, ;) admits an upper solution.

Let g9 > 0 be given by Proposition corresponding to ¢ = ¢, d = ,ugh and
h = mh* and choose A\g € |vy, min(v, + €0, U1 + 2= 5+)]. Then let w < 0 be the
solution of

—Au+ poh™ (2)u = Nc(z)u + psh™(x), in Q,
u =0, on 0f).

Also, taking > 0 small enough, we have that
Aos > (14 As)In(1 + As),

for all s € [—4,0]. Thus, defining /3, = %w for k& > 0 small enough, it follows that
By, € [—6,0] and

~ AR+ poh” (@) B = e(@)(1+ AG) In(1 + ABy) + k2R (x), in Q,
Br =0, on 9N,

At this point defining 3, = i ln()\Bk—i-l) we see, after some standard calculations,
that Sy < 0 is an upper solution for (Q ).

Step 2: For k large, the problem (Qxy) has no solution. Let ¢ € C§°(£2) such
that ¢ > 0. Then, using ¢? as test function we obtain, by Lemma [3.1]

L 2 _ 2,2
| ivek e > 2 [ o(Vu.Vo) o~ [ p(o)Vale dr
= )\/Qc(x)u¢2 dﬂtﬁ—i—k/Qiﬁ(:c)qﬁ2 dx—/ﬂfl(ar:)gé2 dx
—\M 2de +k | ht(2)¢*dz — | h™(z)¢*d
> A ) otk [ W@t dn = [ @),

which is a contradiction for £ > 0 large enough.
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Step 3: Define

k = sup{k €]0,4o00[| the problem (Qxx) has at least one solution},

then k €0, +oo| and for k €10, k[, the problem (Qxx) has a strict upper solution.
By Step 1 and 2 we have easily k €]0, +o0].
Let k €]0, k[ and k €]k, k[ be such that (@, ) has a solution 3. Then § = %B
is an upper solution of (Qyx) as

~AB = Ac(@)B+ Eu(x)|VBI? + kb (z) — Eh (2)
> Ae(2)B + p(x)| VB + kbt (z) — h~(z),  in €,
B >0, on 09,

i.e. [ is an upper solution of (@, ). Now, as in Step 4 of the proof of Theorem
1.4) we can prove that ( is a strict upper solution of (Q ).

Step 4: Conclusion. At this point the proof follows as in the proof of Theorems
or [I.B This is possible in view of Step 2 and of Theorem [3.3] O

Proof of Corollary[1.9. First observe that, by [4, Lemma 6.1] (see also the proof
of Corollary above), we know that (P,,) has no solution. Hence also, for all
A > 0, (Py) has no solution with cu = 0 as otherwise u is solution for every A € R
which contradicts the non existence of a solution for A = ;.

By Step 3 of the proof of Theorem , there exists k > 0 such that, for all
k €]0, k|, the problem (P5) has a strict upper solution fy, with 8y < 0. The
existence of Ay > 77 as in (iii) can then be deduced from Theorem [1.7]

By [4, Theorem 1.1], decreasing k if necessary, we know that for all k € 10, l~€],
the problem (P,) has a solution ug > 0. Hence the existence of A\; as in (i) can
be deduced from Theorem [1.4] O

Proof of Theorem[1.10, First observe that, for all A € R, u = 0 is solution of
©3).

Step 1: for all X €]0,7v1[, the problem (L1.5) has a second solution uys = 0. Let
us prove that the problem (|1.5) has a strict upper solution 5 > 0. To this end,

let A <1 and € > 0 such that, for all v € [0, €], /\WL% < yv. Consider

then the function § = e, where ¢; denotes the first eigenfunction of (T.1)) with
1]l = 1 and observe that

—AB = Ac(x) (1+ p2ff) In(1 + M25)7 a.e. in €,

- M2
£ =0, on 0f).
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Hence for § being defined by 8 = m(“;#, we have
—AB 2 Aelw)B+ 12 VAP = Aelw) B+ ()| VAP ae. in Q.
g =0, on 0f).

This implies, as in Step 4 of the proof of Theorem [I.3 that § > 0 is a strict

upper solution of ([1.5)).
By [, Lemma 6.1], we know that, every solution u of (1.5 satisfies u > 0 and

by Lemma [4.2] the problem (L.5) has a strict lower solution @ S 0. Hence we
conclude the proof of (i) following the same lines as in the proof of Theorem ,
the solution uy; being u = 0.

Step 2: For A = 1 the problem (L.5)) has only the trivial solution. This can be
proved as in Corollary [4.1]

Step 3: For X > 7, the problem (L.5)) has a second solution uys < 0.  Let
A >~ and A €]y, A] such that, by Proposition 2.6, the problem
(4.4) — Au = Nc(@)u+1, ue Hy(Q)N LX)

has a solution u < 0. This implies that for € > 0 small enough, the function
Bo = eu satisfies

—ABy = Moc(x)Bo + € > Aoc(z)Bo + M52‘VU‘2 = Aoc(x)Bo + M’Vﬂo|2>

and the problem (P),) has an upper solution 5y with 5y < 0 and ¢y < 0. The
result follows by Theorem [1.7] O

5. COMPLEMENT IN CASE pt CONSTANT

In that case it is possible to precise the blow-up rate, as A — 07, of our solutions

uy,2 obtained in Theorems [I.3} and [1.10]

Proposition 5.1. Assume that (A) holds with 1 a positive constant and the
problem (Py) has a solution. Moreover, assume the ezistence of a sequence {\,} C
10, +00] with A, — 0 and two sequences {uy,}, {tx,} of solutions of (Py,) such
that

Anlltr, oo = 0 and At |leo — 0,
as A, — 0. Then, for any n € N sufficiently large, uy, = uy,.

Proof. First we recall that if (P,) has a solution then, by [4, Remark 3.2]

inf / (|Vul* = ph(z)u?) dz > 0.
Q

{ueH3 (@) [[ul g3 ) =1}

Hence in particular &;(c) > 0 where & (c) is the first eigenvalue of the problem

—Aw — ph(z)w = £ c(x)w, in Q,
w =0, on 0f).
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Now, if u,, is a solution of (Py,), by the change of variable u, = iln(vn +1) we
have that v,, > —1 is solution of

—Av, — ph(z)v, = A\, c(z) (1 4+ v,) In(1 4+ v,) + ph(z), in Q,
v, = 0, on 0f2.

Setting D(A,) = ||tn||co, since v, = e — 1 we deduce that [|v,|le < C(An)
where

(5.1)

C(\,) = etPOn) 1.
If we assume that A\, D(),) — 0, then

lim A\, (In(1+C(\,)) +1) = lim A\, D(\,) =0.
An—0 An—0

Since &;(¢) > 0, there exists ng € N such that, for all n > ny
An(In(1 4 C(An)) +1) < &i(c).

If we assume by contradiction that, for n > ng, u,, # @,, then (5.1]) has also
two distinct solutions v,,; and v, 2 and w,, = v, 1 — v, 2 is a solution of

—Aw — ph(z)w = A\, c(x)p,(x)w, in Q,

52) w =0, on 0f)
with
pu(z) = (1 4+ 01 (2)) In(1 + 01 () — (14 vn2(2)) In(1 + v, 5(z)) |

Up1(x) — vy o(2)
if v, 1(x) # v 2(2),
= In(1+wv,1(x)) +1, if v,1(x) = vy 2(2),

and by assumption 0 < A\,p, < & (c).

As has a nontrivial solution, we have &;(\,cp,) = 1 for some i € N.
Moreover, as A,p, < &i(c), we know by [I4] that 1 = &(Auepn) > &i(c&i(c)) =
&i(c)/&(¢). This contradicts that the sequence of eigenvalues (&;(c)); is strictly
increasing and proves the proposition. Il

Under the assumption that p is constant, the following lemma gives informa-
tions on the set of solutions of (Py) for A > 0 small.

Corollary 5.2. Assume that assumption (A) holds with p a positive constant
and that (Py) has a solution ug. Let {uy,} be a sequence of solutions of (Py,)
satisfying Anllun,|loo — 0 as A\, — 0. Then we have, for any n € N sufficiently
large,
(1) uy, = un, 1 where uy, 1 is the minimal solution given in Theorem . In
particular uy, — ug 1 CF(Q).
(i) (A, un,) belongs to C where C is defined in Theorem[1.1]
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Proof. Since {uy, 1} satisfies A, ||ua, 1]/cc = 0 as A, — 0 it directly follows from
Proposition that, for any n € N large enough, wy, = uy, 1. In particular it
follows from Theorem [1.3that uy, — ug in C}(2). Now by Theorem We know
that, for n € N large enough, there exists u,, such that (\,,w,,) € C. Since, by
continuity, we have that A, ||, |« — 0 we deduce by (i) that @y, = uy, 1. Thus
Uy, = ﬂ)n. O

Also using again that A, ||ux, 1]|cc — 0 as A, — 0, we immediately deduce from
Proposition [5.1] the following result.

Corollary 5.3. Assume that (A) holds with . a positive constant.

(i) In Theorems and we have that

liminf A|uy ]| > 0.
A—0F

(ii) The bound derived in Theorem |tlo < M(X) for any solution u of
B3) with

limsup M (M)A < C,|

A—0t

for some C' > 0 s sharp.

6. CASE N =1 AND OPEN PROBLEMS

In case 2 = [—%, %] ie. N=1and pu >0, c> 0 and h # 0 are constants, we

can make a more precise study of the situation.
By the classical change of variable v = e#* — 1, we are reduce to the problem

—v" — phv = A(v + 1) In(v + 1) + ph, in[-T, 1]
(6.1) v>-1, in[-%,7]
) =0.

U(_%) =0, U(%

It is easy to prove that in case A\ = 0 this problem has a solution if and only if
ph < (w/T)?* which corresponds to the condition (1.2)).

As this problem is autonomous, we can make a phase-plane analysis. There
are three different situations: h > 0 and A > 0 small, ~ > 0 and A\ large, h < 0.
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Case 1: 0 < A < 2uh. In that case the phase plane is given by

We then see that the only possibility is to have positive solutions. Moreover
considering the time map T’ (a) which gives the time for the positive part of the
orbit to go from (0, a) to (0, —a) with a > 0, it is easy to prove that

lim7,(a) =0 and lim T (a) =0.

a—0 a——+00

This implies the existence of Ty > 0 such that, for all T < Tp, the problem (6.1))
has two solutions and, for 7" > T the problem has no solution. Numerical
experiment shows that the count is exact.

This corresponds to what we prove in Theorem together with [4, Lemma
6.1] where it is shown that, in case h = 0, for all A < =, every solution of (Py) is
non-negative.

Open problem 1 Can we prove that, for all A < =, every solution of (Py)
is non-negative under the sole condition that (F,) has a solution uy with uy > 0
and cug = 07

Open problem 2 Can we prove, under the assumptions of Theorem or
even under the assumptions of Theorem that, for all A < 7;, we have at most
two solutions?
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Case 2: A > 2uh > 0. In that case the phase plane is richer and is given by

We see the possibilities of positive solutions but also of negative or sign-changing
ones.

We can prove that if uh > (7/T)? or A > (7/T)? then the problem has
no non-negative solutions i.e. the time 7', (a) for the positive part of the orbit to
go from (0, a) to (0, —a) with a > 0 is too short with respect to the length of the
interval we consider.

For what concerns negative or sign-changing solutions, we see that, if we denote
by Ty the time needed by the solution with max; 1 ru = 0 to make a turn in
the phase plane, then for T' > Tj, there is a negative solution as well as a sign-
changing one. This is the situation studied in Theorem [1.7]

But for T' > kT we have also solutions making k turns in the phase plane.

Open problem 3 Can we prove in Theorem that the second solution
changes sign?

Open problem 4 Can we prove that in a small interval below A in Theorem
the problem (P,) has no solution and that uy <0 but uy <« 07

Open problem 5 Can we prove the existence of more then two solutions for
A large? Is there a link with the spectrum of the problem

(6.2) — Apy = ye(z)p1, 1 € Hy(Q)?
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Case 3: h < 0. In that case, the phase portrait is given by

and we see that we have always a negative solution. Moreover, if we denote by
Ty the time needed by the solution with mm] T U= 0 to make a turn in the

phase plane, then, for 7" < 7T} the problem (6.]] has a positive solution (as again,

considering the time map 7' (a) which gives the time for the positive part of the

orbit to go from (0,a) to (0,—a) with @ > 0, we have hIJ{I Ty (a) = 0) and for
a——+00

T > T; we have a sign-changing solution. This is the situation considered in
Theorem [L.5]

Open problem 6 Can we prove in Theorem that the second solution is
positive for A > 0 small and changes sign for A large?

Moreover, for T' > EkT} we have also solutions making k turns in the phase
plane.

Open problem 7 As in open problem 5, can we prove the existence of more
than two solutions for A\ large?

In addition to the above open problems directly induced by the phase plane
analysis, we also propose the following questions.

Open problem 8 Can we give a more precise characterization of the situation
in case h changes sign or ug changes sign?

Open problem 9 In [24] some a priori bounds for non-negative solutions have
been derived without assuming that u(xz) > g3 > 0. Can a similar result be
obtained in the general case ?

Open problem 10 In [4], the results are obtained under less regularity as-
sumptions (¢, h € LP(Q) with p > N/2). In [3], the regularity is even weaker. If
some of our results are still valid when (A) is weakened, how dependent is the
structure of the set of solutions of our regularity assumption ?
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7. APPENDIX : PROOF OF THEOREM [2.1].

Let us denote o := max{«; | 1 < i < k} where aq,...,q; are regular lower

solutions of (2.1) and f = min{g; | 1 < j <1} where f, ..., f; are regular upper
solutions of ([2.1)). The proof is divided into three parts.

Part 1. Ezistence of a solution u of (2.1) with a < u < . Observe that by
Lemma [2.4] there exist R > 0 such that, for every function f satisfying (2.4) and
every solution u of (2.1) with a < u < 3, we have

(7.1) lullwzr < R and [ulle < R.
Step 1. Construction of a modified problem. Take R such that

R > max{R, Inax ||| o, max 1Bjller )}

and set, for a.e. z € Q and every (s,£) € R x RV,
i _ f('rusug)v lf |£| SE;
fle,5.8) = { fla,s, BE), e > R

Now we define the functions

pi(z,s,&) = { i(x,(l/i(x)af) +wyi(z, 05(x) —s), if s < ay(x),

f(z,s,€), if s > a;(x),
where
wl,i(xvé) = Iél‘i%( |7($,O&i($), Va,(x) + 6) - T(Iaai(x)>vai(x))|>
and
_ 7(x75j($)7€)_w ,j(mas_/ﬁj(x))’ if3>6j(x)7
4, 5.8) = { Faso, it 5 < (),
where

wa (2, 6) = max | f(x, B;(x), VB;(x) + &) — f(x, B;(x), VB;(x))],

l¢1<o

fori e {1,..,k} and j € {1,....,1}. At last, we define for a.e. = €  and every
(5,€) € R x RY,

max pi(z,5,€), i s < a(a),

1<i<k
lminlqj(x,s,ﬁ), if s > B(x).
SRS

Then we consider the modified problem

—Au = F(z,u,Vu), in €,

(7.2) u =0, on 0f2.
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Notice that F'is a LP-Carathéodory function and that there exists v € LP(£2),
such that
|F(z,5,6)| < (),
for a.e. z € Q and every (s,£) € R x RV,

Step 2. Every solution u of (7.2) satisfies a« < u < . Let u be a solution of
(7.2). Assume by contradiction that min(u — «) < 0. Let i € {1,...,k} and
Q

7 € Q such that
min(u — ) = min(u — ;) = (v — ;)(T) < 0.
) Q
Define v = u — ;. As v > 0 on 0f), we have T € . Therefore Vu(T) = 0 and
there is an open ball B C (2, with T € B such that, a.e. in B,

[Vo(z)] < fo(z)],  vlz) <0,

and
—Av > F(z,u(e), Vu(x)) = f(2,a(2), Vai(z))
> (@, a5(x), V(@) + wi(e, a5(x) — ul@) = [z, 0i(x), Ve ()
s O—w( Vu(@)]) +wiie, [v(@)])

since wy;(z,-) is increasing and |v(z)| > |Vou(z)|. This contradicts the strong
maximum principle.

Similarly, one proves that u < f3.

Step 3. Every solution of 18 a solution of and satisfies a < u < . In
Step 2, we proved that every solution u of satisfies < u < 8 and hence is
a solution of
—Au = f(z,u,Vu), in Q,
u =0, on Of).

As f satisfies (2.4), we have [uller@) < R and hence u is a solution of (2.1).

Step 4. Problem D has at least one solution. Let us consider the solution
operator M : C'(Q) — C'(Q) associated with (7.2), which sends any function
u € C1(Q) onto the unique solution v € W2?(Q) of

—Av = F(z,u,Vu), in ,
v =0, on Of).

The operator M is continuous, has a relatively compact range and its fixed points
are the solutions of ([7.2)). Hence there exists a constant R > 0, that we can
suppose larger than R, such that, for every u € C*(Q),

||/VU||CI(§) <R,
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and hence (see, e.g., [27])

(7.3) deg(I — M, B(0,R)) = 1,

- M,B
where I is the identity operator in _( ) and B(0, R) is the open ball of center
0 and radius R in C'(Q). Therefore M has a fixed point and problem (7.2)) has
at least one solution.

Step 5. Problem (2.1) has at least one solution. By Step 4, we get the existence
of a solution u of the problem ([7.2) and Step 2 implies that u is a solution of

(2.1)) satisfying a < u < .
Part 2. Existence of extremal solutions. We know, from Part 1, that the solutions

wof (2.1), with o < wu < 3, are precisely the fixed points of the solution operator
M associated with ((7.2)), i.e.

={uecCYQ) | u=Mu}

and H is a non-empty compact subset of C'(Q2). Next, for each u € H, define
the closed set C, = {z € H | 2 < u}. The family {C, | v € H} has the finite
intersection property, as it follows from Part 1 observing that if u;,us € H,
then min{u;,us} is an upper solution of with @ < min{uy,us}. Hence
Cuy NCyy, # 0. By the compactness of H there exists v € (1,4, Cu; clearly, v is
the minimum solution in [«, 3] of in Q.

Part 3. Degree computation. Now, let us assume that « and [ are strict lower
and upper solutions respectively. Since there exists a solution u of , which
satisfies @ < u < 3, and every such solution satisfies o < u < f3, it follows that
a < . Hence S is a non-empty open set in C*(Q) and there is no fixed point
either of M or of M on its boundary dS. Moreover, by , the sets of fixed
points of M and M coincide on S N B(0, R) and we have

deg(I — M, SN B(0,R)) = deg(I — M, SN B(0, R)).

Furthermore, by the excision property of the degree (see, e.g., [27]), we get from

D) and (@)

deg(I — M, B(0,R)) =
Finally, since all fixed points of M are in S N B(0, R), we conclude
deg(I — M, SN B(0, R)) = deg(I — M, SN B(0,R)) = deg(I — M, B(0, R)) =
This ends the proof.
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