Betlike Betvole Betebet Galabet Padişahbet Casinolevant mercurecasino queenbet bahissenin bonus veren siteler deneme bonusu veren siteler deneme bonusu https://bonuspick.net deneme bonusu veren siteler casino siteleri dinimi bonusu veren siteler 7750 London Escorts in UK Escort Directory https://www.voguerre.com Hull Escorts (51) - Top Verified Escorts https://www.voguerre.com deneme bonusu bonus veren siteler deneme bonusu veren siteler deneme bonusu veren siteler https://lexilight.com casino siteleri https://www.paletdepom.com.tr 7750 London Escorts in UK Escort Directory https://www.voguerre.com Hull Escorts (51) - Top Verified Escorts https://www.voguerre.com bonus veren siteler deneme bonusu veren siteler deneme bonusu https://bonuspick.net deneme bonusu veren siteler casino siteleri 7750 London Escorts in UK Escort Directory https://www.voguerre.com Hull Escorts (51) - Top Verified Escorts https://www.voguerre.com Free Porn

xbporn


https://www.bangspankxxx.com
Porn
bonus veren siteler deneme bonusu veren siteler deneme bonusu https://bonuspick.net deneme bonusu veren siteler casino siteleri myremedyproducts.com albalondres.com kineticartstucson.com stolenbeauty.org www.bilgihocasi.com joinoilfield.com Laboratoire de Mathématiques de Besançon - UMR 6623 CNRS - Soutenance de thèse de Youssef ESSTAFA
UFC
CNRS


Accueil > Activités > Archives > Archives des manifestations en 2019/2020

Soutenance de thèse de Youssef ESSTAFA

Vendredi 8 novembre 2019, 14h, Amphi B, (UFR ST, Besançon)

par Dupré Emilie - publié le , mis à jour le

Youssef Esstafa soutiendra sa thèse, encadrée par Yacouba Boubacar Maïnassara et Bruno Saussereau (UBFC), et intitulée :

Modèles de séries temporelles à mémoire longue avec innovations dépendantes

le vendredi 8 novembre, à 14h, à l’UFR ST, Amphi B.

Un pot s’ensuivra salles 316B et 316Bbis.

 
Résumé de la thèse :

Dans cette thèse nous considérons, dans un premier temps, le problème de l’analyse statistique des modèles FARIMA (Fractionally AutoRegressive Integrated Moving-Average) induits par un bruit blanc non corrélé mais qui peut contenir des dépendances non linéaires très générales. Ces modèles sont appelés FARIMA faibles et permettent de modéliser des processus à mémoire longue présentant des dynamiques non linéaires, de structures souvent non-identifiées, très générales. Relâcher l’hypothèse d’indépendance sur le terme d’erreur, une hypothèse habituellement imposée dans la littérature, permet aux modèles FARIMA faibles d’élargir considérablement leurs champs d’application en couvrant une large classe de processus à mémoire longue non linéaires. Les modèles FARIMA faibles sont denses dans l’ensemble des processus stationnaires purement non déterministes, la classe formée par ces modèles englobe donc celle des processus FARIMA avec un bruit indépendant et identiquement distribué (iid). Nous appelons par la suite FARIMA forts les modèles dans lesquels le terme d’erreur est supposé être un bruit iid.

Nous établissons les procédures d’estimation et de validation des modèles FARIMA faibles. Nous montrons, sous des hypothèses faibles de régularités sur le bruit, que l’estimateur des moindres carrés des paramètres des modèles FARIMA(p,d,q) faibles est fortement convergent et asymptotiquement normal. La matrice de variance asymptotique de l’estimateur des moindres carrés des modèles FARIMA(p,d,q) faibles est de la forme "sandwich". Cette matrice peut être très différente de la variance asymptotique obtenue dans le cas fort (i.e. dans le cas où le bruit est supposé iid). Nous proposons, par deux méthodes différentes, un estimateur convergent de cette matrice. Une méthode alternative basée sur une approche d’auto-normalisation est également proposée pour construire des intervalles de confiance des paramètres des modèles FARIMA(p,d,q) faibles. Cette technique nous permet de contourner le problème de l’estimation de la matrice de variance asymptotique de l’estimateur des moindres carrés.

Nous accordons ensuite une attention particulière au problème de la validation des modèles FARIMA(p,d,q) faibles. Nous montrons que les autocorrélations résiduelles ont une distribution asymptotique normale de matrice de covariance différente de celle obtenue dans le cadre des FARIMA forts. Cela nous permet de déduire la loi asymptotique exacte des statistiques portmanteau et de proposer ainsi des versions modifiées des tests portmanteau standards de Box-Pierce et Ljung-Box. Il est connu que la distribution asymptotique des tests portmanteau est correctement approximée par un khi-deux lorsque le terme d’erreur est supposé iid. Dans le cas général, nous montrons que cette distribution asymptotique est celle d’une somme pondérée de khi-deux. Elle peut être très différente de l’approximation khi-deux usuelle du cas fort. Nous adoptons la même approche d’auto-normalisation utilisée pour la construction des intervalles de confiance des paramètres des modèles FARIMA faibles pour tester l’adéquation des modèles FARIMA(p,d,q) faibles. Cette méthode a l’avantage de contourner le problème de l’estimation de la matrice de variance asymptotique du vecteur joint de l’estimateur des moindres carrés et des autocovariances empiriques du bruit.

Dans un second temps, nous traitons dans cette thèse le problème de l’estimation des modèles autorégressifs d’ordre 1 induits par un bruit gaussien fractionnaire d’indice de Hurst H supposé connu. Nous étudions, plus précisément, la convergence et la normalité asymptotique de l’estimateur des moindres carrés généralisés du paramètre autorégressif de ces modèles.

Mots-clés : Processus à mémoire longue, processus non linéaires, modèles FARIMA faibles, estimateur des moindres carrés, convergence forte, normalité asymptotique, estimateur spectral, approche d’auto-normalisation, autocorrélations résiduelles, tests portmanteau de Ljung-Box et Box-Pierce, mouvement brownien fractionnaire, bruit gaussien fractionnaire, modèles autorégressifs fractionnaires, estimateur des moindres carrés généralisés.